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Abstract. Given a filtration of a commutative monoid A in a symmetric monoidal sta-
ble model category C , we construct a spectral sequence analogous to the May spectral
sequence whose input is the higher order topological Hochschild homology of the associ-
ated graded commutative monoid of A, and whose output is the higher order topological
Hochschild homology of A. We then construct examples of such filtrations and derive
some consequences: for example, given a connective commutative graded ring R, we get
an upper bound on the size of the T HH-groups of E8-ring spectra A such that π˚pAq – R.
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1. Introduction.

Suppose A “ F0A Ě F1A Ě F2A Ě . . . is a filtered augmented k-algebra. In J. P. May’s
1964 Ph.D. thesis, [24], May sets up a spectral sequence with input Ext˚,˚

E˚0 A
pk, kq and which

converges to Ext˚Apk, kq. Here E˚0 A “ ‘ně0FnA{Fn`1A is the associated graded algebra of
A.

In the present paper, we do the same thing for topological Hochschild homology and
its “higher order” generalizations (as in [28]). Given a filtered E8-ring spectrum A, we
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2 G. ANGELINI-KNOLL AND A. SALCH

construct a spectral sequence

(1.0.1) E1
˚,˚ – T HH˚,˚pE˚0 Aq ñ T HH˚pAq.

Here E˚0 A is the associated graded E8-ring spectrum of A; part of our work in this paper
is to define this “associated graded E8-ring spectrum,” and prove that it has good formal
properties and useful examples (e.g. Whitehead towers; see 1.0.5, below).

More generally: given any generalized homology theory H, and given any simplicial
finite set X‚, we construct a spectral sequence

(1.0.2) E1
˚,˚ – E˚,˚pX‚ b E˚0 Aq ñ E˚pX‚ b Aq.

We recover spectral sequence 1.0.1 as a special case of 1.0.2 by letting E˚ “ π˚ and letting
X‚ be a simplicial model for the circle S 1.

A major part of the work we do in this paper is to formulate a definition (see Defi-
nition 3.1.1) of a “filtered E8-ring spectrum” which is sufficiently well-behaved that we
can actually construct a spectral sequence of the form 1.0.2, identify its E1- and E8-terms
and prove its multiplicativity and good convergence properties. Actually our constructions
and results work in a somewhat wider level of generality than commutative ring spectra:
we fix a symmetric monoidal stable model category C satisfying some mild hypotheses
(spelled out in Running Assumptions 2.0.2 and 2.0.3), and we work with filtered com-
mutative monoid objects in C . In the special case where C is the category of symmetric
spectra in simplicial sets, in the sense of [15] and [30], the commutative monoid objects
are equivalent to E8-ring spectra. Our framework is sufficiently general that an interested
reader could potentially also apply it to monoidal model categories of equivariant, motivic,
and/or parametrized spectra.

In the appendix, we construct a version of spectral sequence 1.0.2 with coefficients in a
filtered symmetric A-bimodule M:

(1.0.3) E1
˚,˚ – E˚,˚pX‚ b pE˚0 A, E˚0 Mqq ñ E˚pX‚ b pA,Mqq,

and as a special case,

(1.0.4) E1
˚,˚ – E˚,˚T HHpE˚0 A, E˚0 Mq ñ E˚T HHpA,Mq.

Some of the most important cases of filtered commutative ring spectra, or filtered com-
mutative monoid objects in general, are those which arise from Whitehead towers: given
a cofibrant connective commutative monoid in C , we construct a filtered commutative
monoid

(1.0.5) A “ τě0A Ě τě1A Ě τě2A Ě . . .

where the induced map πnpτěmAq Ñ πnpτěm´1Aq is an isomorphism if n ě m, and
πnpτěmAq – 0 if n ă m. While the homotopy type of τěmA is very easy to construct,
it takes us some work to construct a sufficiently rigid multiplicative model for the White-
head tower 1.0.5; this is the content of Theorem 4.1.5.

If C is the category of symmetric spectra in simplicial sets, then the associated graded
ring spectrum of the Whitehead tower 1.0.5 is the generalized Eilenberg-Mac Lane ring
spectrum Hπ˚pAq of the graded ring π˚pAq. Consequently we get a spectral sequence

(1.0.6) E1
˚,˚ – E˚,˚pX‚ b Hπ˚Aq ñ E˚pX‚ b Aq,

and as a special case,

(1.0.7) E1
˚,˚ – T HH˚,˚pHπ˚Aq ñ T HH˚pAq.



A MAY-TYPE SPECTRAL SEQUENCE FOR HIGHER TOPOLOGICAL HOCHSCHILD HOMOLOGY 3

Many explicit computations are possible using spectral sequence 1.0.7 and its general-
izations with coefficients in a bimodule (defined in Definition 3.4.6, and basic properties
proven in Theorems 6.0.16 and 6.0.19). For example, in [1], G. Angelini-Knoll uses these
spectral sequences to compute the topological Hochschild homology of the algebraic K-
theory spectra of a large class of finite fields.

In lieu of explicit computations using our new spectral sequences, we point out that
the mere existence of these spectral sequences implies an upper bound on the size of the
topological Hochschild homology groups of a ring spectrum: namely, if R is a graded-
commutative ring and X‚ is a simplicial finite set and E˚ is a generalized homology theory,
then for any E8-ring spectrum A such that π˚pAq – R, E˚pX‚ b Aq is a subquotient of
E˚pX‚ b HRq. Here we write HR for the generalized Eilenberg-Maclane spectrum with
π˚pHRq – R as graded rings.

Consequently, in Theorem 5.2.1 we arrive at the slogan: among all the E8-ring spectra
A such that π˚pAq – R, the topological Hochschild homology of A is bounded above by the
topological Hochschild homology of Hπ˚pRq. This lets us extract a lot of information about
the topological Hochschild homology of E8-ring spectra A from information depending
only on the ring π˚pAq of homotopy groups of A. We demonstrate how to apply this idea
in Theorem 5.2.4 and its corollaries, by working out the special case where R “ Ẑprxs
for some prime p, with x in positive grading degree 2n. We get, for example, that for any
E8-ring spectrum A such that π˚pAq – Ẑprxs, the Poincaré series of the mod p topological
Hochschild homology pS {pq˚pT HHpAqq satisfies the inequality

ÿ

iě0

`

dimFppS {pq˚pT HHpAqq
˘

ti ď
p1` p2p´ 1qtqp1` p2n` 1qtq

p1´ 2ntqp1´ 2ptq
,

and:
‚ If p does not divide n, then T HH2ipAq – 0 for all i congruent to ´p modulo n

such that i ď pn´ p´ n, and T HH2ipAq – 0 for all i congruent to ´n modulo p
such that i ď pn´ p´ n. In particular, T HH2ppn´p´nqpAq – 0.

‚ If p divides n, then T HHipAq – 0, unless i is congruent to ´1, 0, or 1 modulo 2p.
There is some precedent for spectral sequence 1.0.1: when A is a filtered commutative

ring (rather than a filtered commutative ring spectrum), M. Brun constructed a spectral se-
quence of the form 1.0.1 in the paper [8]. In Theorem 2.9 of the preprint [3], V. Angeltveit
remarks that a version of spectral sequence 1.0.1 exists for commutative ring spectra by
virtue of a lemma in [8] on associated graded FSPs of filtered FSPs; filling in the details to
make this spectral sequence have the correct E1-term, E8-term, convergence properties,
and multiplicativity properties takes a lot of work, and even aside from the substantially
greater level of generality of the results in the present paper (allowing X‚ b A and not
just S 1 b A, working with commutative monoids in symmetric monoidal model categories
rather than any particular model for ring spectra, working with coefficient bimodules as
in 1.0.6), we think it is valuable to add these very nontrivial details to the literature.

We are grateful to C. Ogle and Ohio State University for their hospitality in hosting us
during a visit to talk about this project and A. Blumberg for a timely and useful observation
(that the Reedy model structure on inverse sequences may not have certain desired proper-
ties). The first author would like to thank Ayelet Lindenstrauss, Teena Gerhardt, and Cary
Malkiewich for helpful conversations on the material in this paper and for hosting him at
their respective universities to discuss this work.
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2. Conventions and running assumptions

Conventions 2.0.1. By convention, the “cofiber of f : XÝÑY” will mean that f is a
cofibration and we are forming the pushout Y

š

X 0 in the given pointed model category.
By convention we will write Y{X for Y

š

X 0 when f : XÝÑY is a cofibration.

We will write CommpCq for the category of commutative monoid objects in a symmetric
monoidal category C , we will write sC for the category of simplicial objects in C , and we
will write ^ for the symmetric monoidal product in a symmetric monoidal category C
since the main example we have in mind is the category of symmetric spectra where the
symmetric monoidal product is the smash product.

Running Assumption 2.0.2. Throughout, let C be a complete, co-complete left proper
stable model category equipped with the structure of a symmetric monoidal model category
in the sense of [32], satisfying the following axioms:

‚ The unit object 1 of C is cofibrant.
‚ A model structure (necessarily unique) on CommpCq exists in which weak equiv-

alences and fibrations are created by the forgetful functor CommpCq Ñ C .
‚ The forgetful functor CommpCq Ñ C commutes with geometric realization of

simplicial objects.
‚ Geometric realization of simplicial cofibrant objects in C commutes with the monoidal

product, i.e., if X‚,Y‚ are simplicial cofibrant objects of C , then the canonical com-
parison map

|X‚ ^ Y‚| Ñ |X‚| ^ |Y‚|
is a weak equivalence in C .

Here are a few immediate consequences of these assumptions about C :
(1) Since being cofibrantly generated is part of the definition of a monoidal model cat-

egory in [32], C is cofibrantly generated and hence can be equipped with functo-
rial factorization systems. We assume that a choice of functorial factorization has
been made and we will use it implicitly whenever a cofibration-acyclic-fibration
or acyclic-cofibration-fibration factorization is necessary.

(2) Smashing with any given object preserves colimits. Smashing with any given
cofibrant object preserves cofibrations and weak equivalences.

(3) Axioms (TC1)-(TC5) of May’s paper [23] are satisfied, so the constructions and
conclusions of [23] hold for C . In particular, we have a natural filtration on any
finite smash power of a filtered object in C , which we say more about below.

(4) Since C is assumed left proper, a homotopy cofiber of any map f : X Ñ Y between
cofibrant objects in C can be computed by factoring f as f “ f2 ˝ f1 with f1 : X Ñ
Ỹ a cofibration and f2 : Ỹ Ñ Y an acyclic fibration, and then taking the pushout
of the square

X
f1 //

��

Ỹ

0.
(5) In particular, if f is already a cofibration, the pushout map Y Ñ Y

š

X 0 is a
homotopy cofiber of f .

Running Assumption 2.0.3. In addition to Running Assumption 2.0.2, we assume our
model category C satisfies the following condition: a map X‚ Ñ Y‚ in the category of
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simplicial objects in C is a Reedy cofibration between Reedy cofibrant objects whenever
the following all hold:

(1) Each object Xn and Yn of C is cofibrant.
(2) Each degeneracy map si : Xn Ñ Xn`1 and si : Yn Ñ Yn`1 is a cofibration in C
(3) Each map Xn Ñ Yn is a cofibration in C .

A consequence of this assumption is that the geometric realization of a map of simplicial
objects in C satisfying Item 1, Item 2, and Item 3 is a cofibration.

The main motivating example of such a category C satisfying Running Assumption
2.0.2 is the category of symmetric spectra in a pointed simplicial model category D, de-
noted S pD , as in [30]. In the case when C is the category S pD , then CommpCq is the
category of commutative ring spectra and it is known to be equivalent to the category of
E8-ring spectra. The existence of the desired model structure on CommpCq is proven in
Theorem 4.1 of [32]. We ask that D admits the mixed Σ-equivariant model structure of [30,
Thm. 3.8], so that S pD may be equipped with the stable positive flat model structure. The
fact that the forgetful functor CommpCq Ñ C commutes with geometric realization in the
stable positive flat model structure on C is a consequence of [14, Thm. 1.6].

Under the additional hypothesis that D is a graded concrete category (see [2, Def. 3.1]),
the category S pD satisfies Running Assumption 2.0.3, as the authors prove in [2]. In fact,
in this setting Item 2 of Running Assumption 2.0.3 can be weakened to: each degeneracy
map si : Xn Ñ Xn`1 is levelwise a cofibration in D. The main example of a category D
that satisfies all of these conditions is the category of pointed simplicial sets. Consequently,
the category of symmetric spectra in simplicial sets equipped with the stable positive flat
model structure satisfies all of our running assumptions.

3. Construction of the spectral sequence.

3.1. Filtered commutative monoids and their associated graded commutative monoids.

Definition 3.1.1. By a cofibrant decreasingly filtered object in C we mean a sequence of
cofibrations in C

¨ ¨ ¨
f3
ÝÑ I2

f2
ÝÑ I1

f1
ÝÑ I0,

such that each object Ii is cofibrant.

Definition 3.1.2. By a cofibrant decreasingly filtered commutative monoid in C we mean:
‚ a cofibrant decreasingly filtered object

¨ ¨ ¨
f3
ÝÑ I2

f2
ÝÑ I1

f1
ÝÑ I0

in C , and
‚ for every pair of natural numbers i, j P N, a map in C

ρi, j : Ii ^ I j Ñ Ii` j,

and
‚ a map η : 1Ñ I0,

satisfying the axioms listed below. For the sake of listing the axioms concisely, it will be
useful to have the following notation: if i1 ď i, we will write f i1

i : Ii Ñ Ii1 for the composite

f i1
i “ fi1`1 ˝ fi1`2 ˝ ¨ ¨ ¨ ˝ fi´1 ˝ fi.

Here are the axioms we require:
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‚ (Compatibility.) For all i, j, i1, j1 P N with i1 ď i and j1 ď j, the diagram

Ii ^ I j

f i1
i ^ f j1

j

��

ρi, j // Ii` j

f i1` j1

i` j

��
Ii1 ^ I j1

ρi1 , j1 // Ii1` j1

commutes.
‚ (Commutativity.) For all i, j P N, the diagram

Ii ^ I j

χIi ,I j

��

ρi, j

""
I j ^ Ii ρ j,i

// Ii` j

commutes, where χIi,I j : Ii ^ I j
–
ÝÑ I j ^ Ii is the symmetry isomorphism in C .

‚ (Associativity.) For all i, j, k P N, the diagram

Ii ^ I j ^ Ik
idIi ^ρ j,k //

ρi, j^idIk

��

Ii ^ I j`k

ρi, j`k

��
Ii` j ^ Ik ρi` j,k

// Ii` j`k

commutes.
‚ (Unitality.) For all i P N, the diagram

1^ Ii

–

""
η^idIi

��
I0 ^ Ii ρ0,i

// Ii

commutes, where the map marked – is the (left-)unitality isomorphism in C .
We will sometimes write I‚ as shorthand for this entire structure.

Note that, if I‚ is a cofibrant decreasingly filtered commutative monoid in C , then I0
really is a commutative monoid in C , with multiplication map ρ0,0 : I0 ^ I0 Ñ I0 and unit
map η : 1 Ñ I0. The objects Ii for i ą 0 do not receive commutative monoid structures
from the structure of I‚, but instead play a role analogous to that of the nested sequence of
powers of an ideal in a commutative ring.

Definition 3.1.3. Suppose I‚ is a cofibrant decreasingly filtered commutative monoid in C .
‚ We shall say that I‚ is Hausdorff if the homotopy limit of the In is weakly equivalent

to the zero object: holimn In » 0.
‚ We shall say that I‚ is finite if there exists some n P N such that fm : Im Ñ Im´1 is

a weak equivalence for all m ą n.

Remark 3.1.4. Definition 3.1.2 has the advantage of concreteness, but there is an equiv-
alent, more concise definition of a cofibrant decreasingly filtered commutative monoid.
Observe that the the data of a decreasingly filtered commutative monoid, without the cofi-
brancy conditions, is the same as the data of a lax symmetric monoidal functor

I‚ : pNop,`, 0qÝÑpC ,^,1q.
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Recall that due to Day [9], the category of lax symmetric monoidal functors in CN
op

is
equivalent to the category Comm CN

op
of commutative monoid objects in the symmet-

ric monoidal category pCN
op
,bDay,1Dayq where bDay is the Day convolution symmetric

monoidal product also constructed in [9] and 1Day is a cofibrant replacement for the unit
of this symmetric monoidal product. (See [13] for a modern treatment of this in the setting
of quasi-categories.)

In particular, a decreasingly filtered commutative monoid is therefore equivalent to an
object in Comm CN

op
. Now we claim that CN

op
with the projective model structure is cofi-

brantly generated and it is a monoidal model category satisfying the monoid axiom in
the sense of Schwede-Shipley [32]. The fact that a functor category with the projective
model structure is cofibrantly generated follows from [20, A.2.8.3]. Therefore, whenever
C is cofibrantly generated, as we assume in Running Assumption 2.0.2, then CN

op
ad-

mits the projective model structure and it is cofibrantly generated. The fact that CN
op

is a
closed symmetric monoidal model category satisfying the pushout product axiom follows
by Propositions 2.2.15 and 2.2.16 of the thesis of Isaacson [16]. To apply the theorem of
Isaacson, we need to enrich Nop in C by letting

Noppn,mq –
"

1 if n ě m
0 otherwise,

where 1 is a cofibrant model for the unit of the symmetric monoidal product on C . This
ensures that all morphisms are “virtually cofibrant” in the sense of Isaacson [16]. We claim
that if I‚ is a cofibrant object in the projective model structure on CN

op
, then it is a sequence

. . .
f3 // I2

f2 // I1
f1 // I0

such that each map fi is a cofibration and each object Ii is cofibrant, and we will prove this
in Lemma 3.1.5, which follows. We do not prove the converse statement that all cofibrant
objects in the projective model structure on CN

op
are of this form and we make no claim to

its validity.
Due to Schwede-Shipley [32, Thm 4.1], if we equip the category Comm CN

op
with the

model structure created by the forgetful functor U : Comm CN
op
Ñ CN

op
, then cofibrant

objects in Comm CN
op

forget to cofibrant objects in CN
op

since CN
op

is cofibrantly generated,
closed symmetric monoidal, and satisfies the pushout product axiom. Therefore cofibrant
objects in Comm CN

op
are cofibrant decreasingly filtered commutative monoids in C as

defined in Definition 3.1.1.

Lemma 3.1.5. Let D be a cofibrantly generated model category, and let DN
op

pro j be the
category of inverse sequences in D, i.e., functors Nop Ñ D, equipped with the projective
model structure. (Recall that this is the model structure in which a map F : X Ñ Y is a
weak equivalence, respectively fibration, if Fpnq : Xpnq Ñ Ypnq is a weak equivalence,
respectively fibration, for all n P N.) Let P be a cofibrant object in DN

op

pro j. Then, for all
n P N, the object Ppnq of D is cofibrant, and the morphism Ppn`1q Ñ Ppnq is a cofibration
in D.

Proof. First, a quick definition:
‚ given a morphism f : Y Ñ Z in D and a nonnegative integer n, let bn f : Nop Ñ D

be the functor given by letting bn f pmq “ Y if m ě n, letting bn f pn´ 1q “ Z, and
letting bn f pmq “ 1 if m ă n ´ 1. Here we are writing 1 for the terminal object
of D. We let bn f pm ` 1q Ñ bn f pmq be the identity map on Y if m ě n, we let
bn f pnq Ñ bn f pn ´ 1q be the map f : Y Ñ Z, and we let bn f pm ` 1q Ñ bn f pmq
be the projection to the terminal object if m ă n´ 1.
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‚ Given an object Y of D and a nonnegative integer n, we write cnY for bnπ where π
is the projection Y Ñ 1 to the terminal object. It is easy to see that cn : D Ñ DN

op

is a functor by letting cn f pmq : cnYpmq Ñ cnZpmq be f : Y Ñ Z if m ě n and
cn f pmq “ id1 if m ă n.

Fix some n P N, let φ : Ppnq Ñ W be a map in D, and let g : V Ñ W be an acyclic
fibration in D. We have a commutative diagram in DN

op

pro j:

(3.1.1) cnV

cng

��
P h // cnW

where hpnq : Ppnq Ñ cnWpnq is φ if m “ n, where hpmq is the projection to the terminal
object if m ă n, and where, if m ą n, then hpmq is the composite

Ppmq Ñ Ppm´ 1q Ñ ¨ ¨ ¨ Ñ Ppn` 1q Ñ Ppnq
φ
ÝÑ W “ cnWpnq.

Since φ and id1 are both acyclic fibrations, the map cng is an acyclic fibration in the pro-
jective model structure on DN

op
. So there exists a map ` : P Ñ cnV filling in diagram 3.1.1

and making it commute. Evaluating at n, we get that `pnq : Ppnq Ñ cnVpnq “ V is a map
satisfying g ˝ `pnq “ φ. So 0 Ñ Ppnq lifts over every acyclic fibration in D, so Ppnq is
cofibrant in D.

Now suppose the map Ppn ď n`1q : Ppn`1q Ñ Ppnq fits into a commutative diagram

(3.1.2) Ppn` 1q

Ppnďn`1q
��

ψ // V

t

��
Ppnq

φ
// W

in D, in which t is an acyclic fibration. We have a commutative diagram in DN
op

pro j:

(3.1.3) cnV

i
��

P
j // bn`1t

where ipnq : V Ñ W is t, where ipmq “ idV if m ą n, and where ipmq “ id1 if m ă n; and
where jpnq : Ppnq Ñ W is φ, where jpn`1q : Ppn`1q Ñ V is ψ, where jpmq is projection
to the terminal object if m ă n, and where, if m ą n` 1, then jpmq is the composite

Ppmq Ñ Ppm´ 1q Ñ ¨ ¨ ¨ Ñ Ppn` 1q Ñ Ppnq
φ
ÝÑ W “ bntpnq.

Since idV and t and id1 are all acyclic fibrations, we know that i is an acyclic fibration
in the projective model structure on DN

op
. So there exists a map ` : P Ñ cnV filling in

diagram 3.1.3 and making it commute. Evaluating ` at n yields a map

`pnq : Ppnq Ñ cnVpnq “ V
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such that

t ˝ `pnq “ ipnq ˝ `pnq

“ jpnq

“ φ, and(3.1.4)

`pn` 1q “ idV ˝`pn` 1q

“ ipn` 1q ˝ `pn` 1q

“ jpn` 1q
“ ψ, and

`pnq ˝ Ppn ď n` 1q “ cnVpn ď n` 1q ˝ `pn` 1q
“ idV ˝ψ.(3.1.5)

Equations 3.1.4 and 3.1.5 express exactly that the map `pnq fills in the diagonal of dia-
gram 3.1.2, making it commute. So Ppn ď n ` 1q lifts over every acyclic fibration. So
Ppn ď n` 1q is a cofibration in D. �

Definition 3.1.6. (The associated graded monoid.) Let I‚ be a cofibrant decreasingly
filtered commutative monoid in C . By E˚0 I‚, the associated graded commutative monoid of
I‚, we mean the graded commutative monoid object in C defined as follows:

‚ “additively,” that is, as an object of C ,

E˚0 I‚ –
ž

nPN

In{In`1.

‚ The unit map 1Ñ E˚0 I‚ is the composite

1
η
ÝÑ I0 Ñ I0{I1 ãÑ E˚0 I‚.

(Note that E˚0 I‚ is constructed as an I0{I1-algebra).
‚ The multiplication on E˚0 I‚ is given as follows. Since the smash product commutes

with colimits, hence with coproducts, to specify a map

E˚0 I‚ ^ E˚0 I‚ Ñ E˚0 I‚
it suffices to specify a component map

∇i, j : Ii{Ii`1 ^ I j{I j`1 Ñ E˚0 I‚
for every i, j P N. We define such a map ∇i, j as follows: first, we have the commu-
tative square

Ii`1 ^ I j
ρi`1, j //

fi`1^idI j

��

Ii` j`1

fi` j`1

��
Ii ^ I j

ρi, j // Ii` j

so, since the vertical maps are cofibrations by Definition 3.1.2, we can take vertical
cofibers to get a map

∇̃i, j : Ii{Ii`1 ^ I j Ñ Ii` j{Ii` j`1,

which is well-defined by Running Assumption 2.0.2.
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Now we have the commutative diagram

Ii`1 ^ I j`1
idIi`1 ^ f j`1

''
fi`1^idI j`1

��

ρi`1, j`1 // Ii` j`2

fi` j`2

''

fi` j`2

��

Ii`1 ^ I j

fi`1^idI j

��

ρi`1, j // Ii` j`1

fi` j`1

��

Ii ^ I j`1
idIi ^ f j`1

''

ρi, j`1 //

��

Ii` j`1

fi` j`1

''

��

Ii ^ I j
ρi, j //

��

Ii` j

��

Ii{Ii`1 ^ I j`1

idIi{Ii`1 ^ f j`1 ''

∇̃i, j`1 // Ii` j`1{Ii` j`2

0

''
Ii{Ii`1 ^ I j

∇̃i, j // Ii` j{Ii` j`1

in which the columns are cofiber sequences. So we have a factorization of the com-
posite map ∇̃i, j ˝

`

idIi{Ii`1 ^ f j`1
˘

through the zero object by Running Assumption
2.0.2 Item 4. Thus, we have the commutative square

Ii{Ii`1 ^ I j`1

idIi{Ii`1 ^ f j`1

��

// 0

��
Ii{Ii`1 ^ I j

∇̃i, j // Ii` j{Ii` j`1

and, taking vertical cofibers, a map

Ii{Ii`1 ^ I j{I j`1 Ñ Ii` j{Ii` j`1,

which we compose with the inclusion map Ii` j{Ii` j`1 ãÑ E˚0 I‚ to produce our
desired map ∇i, j : Ii{Ii`1 ^ I j{I j`1 Ñ E˚0 I‚. (Note that all these maps are defined
in the model category C , not just in Ho(C ).)

3.2. Filtered coefficient bimodules. Now we lay out all the same definitions as in the pre-
vious subsection, but with extra data: we assume that, along with our filtered commutative
monoid object I‚, we also have a choice of filtered bimodule object M‚. These definitions
are necessary in order to get a THH-May spectral sequence with coefficients, something
that has already proven important in practical computations (e.g. of T HHpKpFqqq, in a
paper by G. Angelini-Knoll [1]), but these definitions involve some repetition of those in
the previous subsection, so we try to present them concisely.

Definition 3.2.1. Suppose we have a cofibrant decreasingly filtered commutative monoid
I‚ of a commutative monoid I0 in C . We therefore have structure maps ρi, j : Ii^ I jÝÑ Ii` j

and maps fi : Ii`1ÝÑ Ii for each integer i and j. Let the sequence

. . .
gn`1 // Mn

gn // . . .
g2 // M1

g1 // M0
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be a cofibrant decreasingly filtered object in C in the sense of 3.1.1. We call the sequence
a cofibrant decreasingly filtered I‚-bimodule if we have maps

ψr
i, j : Mi ^ I jÝÑMi` j

ψ`i, j : Ii ^ M jÝÑMi` j

satisfying the following axioms. To write the axioms it will be helpful to use the notation,

gm
n “ gm`1 ˝ gm`2 ˝ ... ˝ gn for n ě m.

(1) (Associativity.) The relations,

ψr
i` j,k ˝ pψ

r
i, j ^ idIkq “ ψr

i, j`k ˝ pidMi ^ρ j,kq

ψr
i` j,k ˝ pψ

`
i, j ^ idIkq “ ψ`i, j`kpidIi ^ψ

r
j,kq

ψ`i, j`k ˝ pidIi ^ψ
`
j,kq “ ψ`i` j,kpρi, j ^ idMkq

hold for all integers i, j, and k.
(2) (Compatibility.) For i, j, i1, j1 integers such that i ą i1, j ą j1, the following

relations hold:
gi1` j1

i` j ˝ ψ
r
i, j “ ψr

i1, j1 ˝ pg
i1
i ^ f j1

j q

gi1` j1

i` j ˝ ψ
`
i, j “ ψ`i1, j1 ˝ p f i1

i ^ g j1

j q.

(3) (Unitality.) The diagrams,

M0 M0 ^ S»oo

idM0^η

��

S ^ M0
» //

η^idM0

��

M0

M0 ^ I0

ψr
0,0

cc

I0 ^ M0

ψ`0,0

;;

commute.
We say that the cofibrant decreasingly filtered bimodule M‚ is symmetric if the factor-swap
isomorphism

χi, j : Mi ^ I jÝÑ I j ^ Mi satisfies ψr
i, j “ ψ`j,i ˝ χi, j.

Remark 3.2.2. As in Definition 3.1.3, we will say that a cofibrant decreasingly filtered
I‚-bimodule M‚ is Hausdorff if holimn Mn is weakly equivalent to the zero object, and
we will say that M‚ is finite if there exists n P N such that fm : Mm Ñ Mm´1 is a weak
equivalence for all m ą n.

Remark 3.2.3. Just as a cofibrant decreasingly filtered commutative monoid in C can
be considered as a cofibrant object in Comm CN

op
(See Remark 3.1.4), we can define a

cofibrant decreasingly filtered I‚-bimodule as an cofibrant symmetric I‚-bimodule in the
category of functors CN

op
.

Definition 3.2.4. (The associated graded bimodule.) Let I‚ be a cofibrant decreas-
ingly filtered commutative monoid in C , and let M‚ be a cofibrant decreasingly filtered
I‚-bimodule. By E˚0 M‚, the associated graded bimodule of M‚, we mean the graded E˚0 I‚-
bimodule object in C defined as follows:

‚ “additively,” that is, as an object of C ,

E˚0 M‚ –
ž

nPN

Mn{Mn`1.
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‚ The left action map E˚0 I‚ ^ E˚0 M‚ Ñ E˚0 M‚ is defined as follows. Using the fact
that f j and gi` j`1 are cofibrations in the diagram,

I j`1 ^ Mi

f j^1Mi

��

ψ`j`1,i // Mi` j`1

gi` j`1

��
I j ^ Mi

ψ`j,i

// Mi` j

we get a map Ψ̃i, j : I j{I j`1 ^ MiÝÑMi` j{Mi` j`1. We then observe that the
diagram,

I j`1 ^ Mi`1
idI j`1 ^gi`1

((
f j`1^idMi`1

��

ψ`j`1,i`1 // Mi` j`2

gi` j`2

((

gi` j`2

��

I j`1 ^ Mi

f j`1^idMi

��

ψ`j`1,i // Mi` j`1

fi` j`1

��

I j ^ Mi`1
idI j ^gi`1

((

ψ`j,i`1 //

��

Mi` j`1

gi` j`1

((

��

I j ^ Mi

ψ`j,i //

��

Mi` j

��

I j{I j`1 ^ Mi`1

idI j{I j`1 ^gi`1 ((

Ψ̃ j,i`1 // Mi` j`1{Mi` j`2

0

((
I j{I j`1 ^ Mi

Ψ̃ j,i // Mi` j{Mi` j`1

,

produces a factorization of the the composite pidI j{I j`1 ^gi`1q ˝ Ψ̃i, j through the
zero object. There is a commutative diagram

I j{I j`1 ^ Mi`1 //

idI j{I j`1 ^gi

��

0

��
I j{I j`1 ^ Mi

Ψ̃i, j // Mi` j{Mi` j`1

which, since the maps fi and gi are cofibrations by Definition 3.2.1, produces a
map,

Ψ̄i, j : I j{I j`1 ^ Mi{Mi`1ÝÑMi` j{Mi` j`1.

We therefore have a module map,

Ψ :
ž

jPN

I j{I j`1 ^
ž

iPN

Mi{Mi`1ÝÑ
ž

kPN

Mk{Mk`1,

given on each wedge factor by the composite,

I j{I j`1 ^ Mi{Mi`1
Ψ̄i, j // Mi` j{Mi` j`1

ιi` j // š
kPN Mk{Mk`1,

where ιi` j is the inclusion.
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‚ The right action map E˚0 M‚^E˚0 I‚ Ñ E˚0 M‚ is defined in the same way as above
and the symmetry of M‚ along with these maps gives E˚0 M‚ the structure of a
symmetric bimodule over E˚0 I‚.

3.3. Tensoring and pretensoring over simplicial sets. We will write f S et for the cate-
gory of finite sets. First we introduce the pretensor product, which is merely a convenient
notation for the well-known “Loday construction” of [18]:

Definition 3.3.1. We define a functor

´b̃´ : s f SetsˆComm C Ñ s Comm C ,

which we call the pretensor product, as follows. If X‚ is a simplicial finite set and A a
commutative monoid in C , the simplicial commutative monoid X‚b̃A is given by:

‚ For all n P N, the n-simplex object

pX‚b̃Aqn “
ž

xPXn

A

is a coproduct, taken in CommpCq, of copies of A, with one copy for each n-simplex
x P Xn. Recall that the categorical coproduct in CommpCq is the smash product
^.

‚ For all positive n P N and all 0 ď i ď n, the ith face map

di : pX‚b̃Aqn Ñ pX‚b̃Aqn´1

is given on the component corresponding to an n-simplex x P Xn by the map

A Ñ
ž

yPXn´1

A

which is inclusion of the coproduct factor corresponding to the pn ´ 1q-simplex
δipxq.

‚ For all positive n P N and all 0 ď i ď n, the ith degeneracy map

si : pX‚b̃Aqn Ñ pX‚b̃Aqn`1

is given on the component corresponding to an n-simplex x P Xn by the map

A Ñ
ž

yPXn`1

A

which is inclusion of the coproduct factor corresponding to the pn ` 1q-simplex
σipxq.

We have defined the pretensor product on objects; it is then defined on morphisms in the
evident way.

We define the tensor product

´b´ : s f SetsˆComm C Ñ Comm C

as the geometric realization of the pretensor product:

X‚ b A “ |X‚b̃A| .

It is easy to check that X‚b̃A is indeed a simplicial object in CommpCq.
In the case that C is the category of symmetric spectra, the tensor product X‚ b A

agrees with the tensoring of commutative ring spectra over simplicial sets. (This is proven
in [25], although using (an early incarnation of) S -modules, rather than symmetric spec-
tra; the symmetric monoidal Quillen equivalence of S -modules and symmetric spectra, as



14 G. ANGELINI-KNOLL AND A. SALCH

in [31], then gives us the same result in symmetric spectra.) The same is true when E is
a commutative S -algebra and C is the category of E-modules. In fact, the tensor product
defined in 3.3.1 agrees with the tensoring over simplicial sets in every case of a symmet-
ric monoidal model category whose category of commutative monoids is tensored over
simplicial sets that is known to the authors.

In particular, when X‚ is the minimal simplicial model for the circle, i.e., X‚ “ p∆r1s{d∆r1sq‚,
then X‚b̃A is the cyclic bar construction on A, and hence (by the main result of [25]) X‚bA
agrees with the topological Hochschild homology ring spectrum T HHpA, Aq.

For other simplicial sets, X‚bA is regarded as a generalization of topological Hochschild
homology, e.g. as “higher order Hochschild homology” in [28]. For the definition of ten-
soring a simplicial finite set with a commutative monoid with coefficients in a bimodule,
see the appendix.

3.4. The fundamental theorem of the May filtration. The fundamental theorem of the
May filtration relies on the following lemma. This lemma also occurs as Lemma 4.7 in
May’s [23]. (May’s treatment of this particular lemma addresses the question of the com-
patibility of cofiber sequence 3.4.1 with other cofiber sequences that arise naturally in this
context, but this is omitted from our treatment.)

Lemma 3.4.1. Suppose I, J are objects of C and I1 Ñ I and J1 Ñ J are cofibrations.
Suppose I, J, I1, J1 are cofibrant. Let P denote the pushout (which, by Running Assumption
2.0.2, is a homotopy pushout) of the diagram

I1 ^ J1 //

��

I1 ^ J

I ^ J1

.

Let f : P Ñ I^ J denote the canonical map given by the universal property of the pushout.
Then f is a cofibration by the pushout product axiom in the definition of a monoidal model
category, as in [32]. Then the cofiber of f is isomorphic to pI{I1q ^ pJ{J1q, where I{I1 and
J{J1 denote the cofibers of I1 Ñ I and J1 Ñ J, respectively. So

(3.4.1) P
f
ÝÑ I ^ J Ñ pI{I1q ^ pJ{J1q

is a cofiber sequence.

Proof. We define three diagrams in C :

X1 “

¨

˚

˚

˝

I1 ^ J1 //

��

I ^ J1

I1 ^ J

˛

‹

‹

‚

X2 “

¨

˚

˚

˝

I1 ^ J //

��

I ^ J

I1 ^ J

˛

‹

‹

‚

X3 “

¨

˚

˚

˝

I1 ^ pJ{J1q //

��

I ^ pJ{J1q

0

˛

‹

‹

‚

.
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The obvious maps of diagrams
X1 Ñ X2 Ñ X3

are trivially seen to be levelwise cofiber sequences. Since colimits commute with colimits,
we then have a commutative diagram where each row is a cofiber sequence:

colim X1 //

–

��

colim X2 //

–

��

colim X3

–

��
P // I ^ J // pI{I1q ^ pJ{J1q.

�

Definition 3.4.2. (Some important colimit diagrams I.)
‚ If S is a finite set, we will equip the set NS of functions from S to N with the strict

direct product order, that is, x ď y in NS if and only if xpsq ď ypsq for all s P S .

‚ If T
f
ÝÑ S is a function between finite sets, let NT N f

ÝÑ NS be the function of
partially-ordered sets defined by

`

N f pxq
˘

psq “
ÿ

ttPT : f ptq“su

xptq.

One checks easily that this defines a functor

N´ : f Sets Ñ POSets

from the category of finite sets to the category of partially-ordered sets.
‚ For each finite set S , we also equip NS with the L1-norm:

|´| : NS Ñ N

|x| “
ÿ

sPS

xpsq.

One checks easily that, if T
f
ÝÑ S is a function between finite sets, the induced

map N f preserves the L1 norm, that is,

|x| “
ˇ

ˇN f pxq
ˇ

ˇ

for all x P NT .

Definition 3.4.3. (Some important colimit diagrams II.)
‚ – If S is a finite set, for each n P N we will let DS

n be the sub-poset of NS

consisting of all functions x P NS such that |x| ě n.

– If T
f
ÝÑ S is a function between finite sets, let DT

n
D f

n
ÝÑ DS

n be the function
of partially-ordered sets defined by restricting N f to DT

n . One checks easily

that, this assignment f � // D f
n;x respects composition of functions in the

variable f .
‚ – For each x P NS and each n P N, let DS

n;x denote the following sub-poset of
NS :

DS
n;x “

 

y P NS : y ě x, and |y| ě n` |x|
(

.

So, for example, DS
n;~0
“ DS

n , where ~0 is the constant zero function.
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– If T
f
ÝÑ S is a function between finite sets and x P NT and n P N, let

DT
n;x

D f
n;x
ÝÑ DS

n;D f
n pxq

be the function of partially-ordered sets defined by restrict-

ing N f to DT
n;x. One checks easily that, for each n P N and each x P NT , this

defines a functor

D´n;x : f Sets Ñ POSets

from the category of finite sets to the category of partially-ordered sets.

Definition 3.4.4. (Some important colimit diagrams III.)
‚ Let S be a finite set and let n be a nonnegative integer. We write ES

n for the set

ES
n,k “

#

x P t0, 1, . . . , nuS :
ÿ

sPS

xpsq ě k

+

where k ě n. We partially-order ES
n,k by the strict direct product order, i.e., x1 ď x

if and only if x1psq ď xpsq for all s P S . When n “ k, we simply write ES
n for this

poset.
‚ The definition of ES

n is natural in S in the following sense: if T
f
ÝÑ S is a injective

map of finite sets, then N f naturally restricts to a function ET
n Ñ ES

n .

Definition 3.4.5. (Some important colimit diagrams IV.)
‚ Suppose I‚ is a cofibrant decreasingly filtered object in C and suppose S is a finite

set. We will let
F S pI‚q :

`

NS ˘op
Ñ C

be the functor sending x to the smash product

^sPS Ixpsq,

and defined on morphisms in the apparent way, and let

F S
n pI‚q :

`

DS
n

˘op
Ñ C

be the functor which is the composite of F S pI‚q with the inclusion of DS
n into NS :

`

DS
n

˘op
ãÑ

`

NS ˘op F S pI‚q
ÝÑ C .

‚ If x P DS
n , we will write F S

n;xpI‚q for the restriction of the diagram F S pI‚q to DS
n;x,

i.e., F S
n;xpI‚q is the composite

pDS
n;xq

op ãÑ
`

NS ˘op F S pI‚q
ÝÑ C .

‚ Finally, let M S
n pI‚q denote the colimit

M S
n pI‚q “ colim

`

F S
n pI‚q

˘

in C . By the natural inclusion of DS
n into DS

n´1, we now have a sequence in C :

(3.4.2) ¨ ¨ ¨ Ñ M S
3 pI‚q Ñ M S

2 pI‚q Ñ M S
1 pI‚q Ñ M S

0 pI‚q – ^sPS I0.

We refer to the functorNop Ñ C given by sending n to M S
n pI‚q as the May filtration

on ^sPS I0.
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‚ The May filtration is functorial in S in the following sense: if T
f
ÝÑ S is a map of

finite sets, we have a functor

D f
n : DT

n Ñ DS
n

´

D f
n pxq

¯

psq ÞÑ
ÿ

ttPT : f ptq“su

xptq

and a map of diagrams from F T
n pI‚q to F S

n pI‚q given by sending the object

F T
n pI‚qpxq “ ^tPT Ixptq

to the object
F S

n pI‚qpD
f
n pxqq “ ^sPS IΣttPT : fptq“suxptq

by the map
^tPT Ixptq Ñ ^sPS IΣttPT : fptq“suxptq

given as the smash product, across all s P S , of the maps

^ttPT : f ptq“suIxptq Ñ IΣttPT : fptq“suxptq

given by multiplication via the maps ρ of Definition 3.1.2.

To really make Definition 3.4.5 precise, we should say in which order we multiply
the factors Ixptq using the maps ρ; but the purpose of the associativity and commutativity
axioms in Definition 3.1.2 is that any two such choices commute, so any choice of order of
multiplication will do.

Definition 3.4.6. (Definition of the May filtration.) If I‚ is a cofibrant decreasingly
filtered commutative monoid in C and X‚ a simplicial finite set, by the May filtration on
X‚b̃I0 we mean the functor M X‚pI‚q : Nop Ñ C ∆op

given by sending a natural number n
to the simplicial object of C

M X0
n pI‚q // M X1

n pI‚qoo
oo //

// M
X2

n pI‚qoo

oo
oo

//

//
// . . .

oo
oo
oo
oo

with M Xi
n pI‚q defined as in Definition 3.4.5, and with face and degeneracy maps defined as

follows:
‚ The face map

di : M X j
n pI‚q Ñ M X j´1

n pI‚q
is the colimit of the map of diagrams

F X j
n pI‚q Ñ F X j´1

n pI‚q

induced, as in Definition 3.4.5, by δi : X j Ñ X j´1.
‚ The degeneracy map

si : M X j
n pI‚q Ñ M X j`1

n pI‚q

is the colimit of the map of diagrams

F X j
n pI‚q Ñ F X j`1

n pI‚q

induced, as in Definition 3.4.5, by σi : X j Ñ X j`1.
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Remark 3.4.7. Note that the associative, commutative, and unital multiplications on the
objects Ii, via the maps ρ of Definition 3.1.2, also yield (by taking smash products of the
maps ρ) associative, commutative, and unital multiplication natural transformations

(3.4.3) F S
m pI‚q ^ F S

n pI‚q Ñ F S
m`npI‚q,

hence, on taking colimits, associative, commutative, and unital multiplication maps

M S
m pI‚q ^M S

n pI‚q Ñ M S
m`npI‚q,

i.e., the functor

Nop Ñ C
n ÞÑ M S

n pI‚q

is a cofibrant decreasingly filtered commutative monoid, in the sense of Definition 3.1.2.
Note furthermore that, if f : T Ñ S is a map of finite sets, then the induced maps
F T

m pI‚q Ñ F S
m pI‚q commute with the multiplication maps 3.4.3, and so M T

‚ pI‚q Ñ M S
‚ pI‚q

is a map of cofibrant decreasingly filtered commutative monoids.
Consequently, for any simplicial finite set X‚, we have that M X‚

‚ pI‚q is a simplicial ob-
ject in the category of cofibrant decreasingly filtered commutative monoids in C . Since
geometric realization commutes with the monoidal product in C by our running assump-
tions on C , this in turn implies that the geometric realization

ˇ

ˇM X‚
‚ pI‚q

ˇ

ˇ of M X‚
‚ pI‚q is a

cofibrant decreasingly filtered commutative monoid in C by Running Assumption 2.0.3. It
can easily be shown that M X‚

n pI‚q satisfies Running Assumption 2.0.3’s Item 2 for each n
whenever I0 is cofibrant as an object in Comm C . Running Assumption 2.0.3’s Item 1 and
Item 3 are satisfied by definition of M X‚

n pI‚q and by definition of the maps

M X‚
n pI‚q Ñ M X‚

n´1pI‚q.

Therefore, the decreasingly filtered commutative monoid
ˇ

ˇM X‚
‚ pI‚q

ˇ

ˇ is a cofibrant decreas-
ingly filtered commutative monoid in C . Recall that, by the main theorem of the authors’
paper [2], there is a symmetric monoidal model structure on symmetric spectra in simpli-
cial sets in which Running Assumption 2.0.3 holds.

Lemma 3.4.8. Let I‚ be a cofibrant decreasingly filtered object in C and let S be a finite
set. Suppose n P N. We have the canonical inclusion of categories ι : DS

n`1 Ñ DS
n . Let

F̃ S
n`1pI‚q be the left Kan extension of F S

n`1pI‚q : pDS
n`1q

op Ñ C along ιop, i.e., if we write

Kan : C pD
S
n`1q

op
Ñ C pD

S
n q

op

for the left adjoint of the map C pD
S
n q

op
Ñ C pD

S
n`1q

op
induced by ι, then

F̃ S
n`1pI‚q “ KanpF S

n`1pI‚qq.

By the universal property of this Kan extension, we have a canonical map c : F̃ S
n`1pI‚q Ñ

F S
n pI‚q.

Then the cofiber of the map

colim
`

F̃ S
n`1pI‚q

˘ colim c
ÝÑ colim

`

F S
n pI‚q

˘

,

computed in C , is isomorphic to the coproduct in C
ž

txPNS :|x|“nu

``

^sPS Ixpsq
˘

{
`

colim F S
1;xpI‚q

˘˘

.

This isomorphism is natural in the variable S .
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(It is a elementary exercise in combinatorics to show that there are
`n`#pS q

n

˘

summands
in this coproduct, where #pS q is the cardinality of S .)

Proof. One knows that the left Kan extension of F S
n`1pI‚q agrees with F S

n`1pI‚qwhere both
are defined, so

F̃ S
n`1 pI‚q pxq – F S

n`1 pI‚q pxq

“ ^sPS Ixpsq

for all x P DS
n`1 Ď DS

n . The elements of DS
n which are not in DS

n`1 are those x such that
|x| “ n, and by the usual basic results (see e.g. [21]) on Kan extensions one knows that,
for all x such that |x| “ n, we have an isomorphism of F̃ S

n`1pI‚q pxq with the colimit of the
values of F S

n`1pI‚q over those elements of pDS
n`1q

op which map to x, i.e., the colimit of the

values of F S
n`1pI‚q over pDS

1,xq
op Ď pDS

n`1q
op, i.e., colim

´

F S
1,xpI‚q

¯

.
The map c can be shown to be a cofibration by iterated use of the pushout product

axiom, so the cofiber of c is a homotopy cofiber. By the previous paragraph the levelwise
cofiber cof c : pDS

n q
op Ñ C of the natural transformation c is given as follows:

pcof cq pxq –

#

0 if |x| ą n
`

F S
n pI‚q

˘

{

´

colim
´

F S
1,xpI‚q

¯¯

if |x| “ n.

Hence, on taking colimits, we have

cof colim c – colim cof c

“
ž

txPNS :|x|“nu

``

^sPS Ixpsq
˘

{
`

colim F S
1;xpI‚q

˘˘

,

as claimed. �

Lemma 3.4.9. Suppose S is a finite set and suppose Zs,1 Ñ Zs,0 is a cofibration for each
s P S . Suppose the objects Zs,1,Zs,0 are all cofibrant. Let GS : pES

1 q
op Ñ C be the functor

given on objects by
GS pxq “ ^sPS Zs,xpsq,

and given on morphisms in the obvious way.
Then the smash product

^sPS Zs,0 Ñ ^sPS pZs,0{Zs,1q

of the cofiber projections Zs,0 Ñ Zs,0{Zs,1 fits into a cofiber sequence:

colim GS Ñ ^sPS Zs,0 Ñ ^sPS pZs,0{Zs,1q .

Proof. If the cardinality of S is one, the statement of the lemma is true by the definition of
a cofiber.

The case in which the cardinality of S is two is precisely Lemma 3.4.1, already proven.
For the case in which the cardinality of S is greater than two, we introduce a notation

we will need to use: let PO denote the category indexing pushout diagrams, i.e.,

PO “

¨

˚

˚

˚

˝

r11s

~~   
r1s r0s

˛

‹

‹

‹

‚

,

the symbols r11s, r1s, r0s each representing an object, and the arrows each representing a
morphism. We observe that PO and ES

1 are not arbitrary small categories but are in fact
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partially-ordered sets; this simplifies some of the arguments we will give in the rest of the
proof.

Suppose the cardinality of S is greater than two. Choose an element s0 P S . We will
write S 1 for the complement

S 1 “ ts P S : s ‰ s0u

of s0 in S . Define objects X11, X
1
2,Y

1
1,Y

1
2 in C as follows:

Y 11 “ colim GS 1

X11 “ ^sPS 1Zs,0

Y 12 “ Zs0,1

X12 “ Zs0,0.

Now we apply the statement of the lemma, in the (already proven, above) case S “ t1, 2u
and using X11, X

1
2,Y

1
1,Y

1
2 in place of Z1,0,Z2,0,Z1,1,Z2,1 to obtain a cofiber sequence

(3.4.4) colim B Ñ ^sPS Zs,0 Ñ ^sPS pZs,0{Zs,1q ,

where B is the functor PO Ñ C given by:

B pr11sq “ pcolim GS 1q ^ Zs0,1

B pr1sq “ p^sPS 1Zs0,0q ^ Zs0,1

B pr0sq “ pcolim GS 1q ^ Zs0,0.

By Lemma 3.4.1, we know that the map colim GS 1 ÝÑ^sPS 1Zs,0 is a cofibration in the
case S “ t1, 2u. Since colim B is constructed as a pushout, the pushout product axiom en-
sures that the map colim B ÝÑ^sPS Zs,0 is also a cofibration as long as colim GS 1 ÝÑ^sPS 1Zs,0
is a cofibration. It suffices to show that colim B – colim GS . This will show that the map
colim GS ÝÑ^sPS Zs,0 is a cofibration and allow us to identify the cofiber, thus completing
the induction on the cardinality of the set S . We can reindex, to describe colim B as the
colimit of a larger diagram H :

H : pES 1
1 q

op ˆ PO Ñ C

px, r11sq ÞÑ
`

^sPS 1Zs,xpsq
˘

^ Zs0,1

px, r1sq ÞÑ p^sPS 1Zs,0q ^ Zs0,1

px, r0sq ÞÑ
`

^sPS 1Zs,xpsq
˘

^ Zs0,0

We have a functor

P : pES 1
1 q

op ˆ PO Ñ pES
1 q

op

px, r11sq psq “

"

xpsq if s ‰ s0
1 if s “ s0

px, r1sq psq “

"

0 if s ‰ s0
1 if s “ s0

px, r0sq psq “

"

xpsq if s ‰ s0
0 if s “ s0

.

Now we claim that the canonical map colim H Ñ colim GS given by P is an isomor-
phism in C . We define a functor

I : pES
1 q

op Ñ pES 1
1 q

op ˆ PO

x ÞÑ

"

pI1pxq, r11sq if xps0q “ 1
pI1pxq, r0sq if xps0q “ 0
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where I1 : pES
1 q

op Ñ pES 1
1 q

op is the functor given by restriction, i.e., I1pxqpsq “ xpsq for
s P S 1. Now we observe some convenient identities:

pGS ˝ Pqpx, jq “

$

&

%

`

^sPS 1Zs,xpsq
˘

^ Zs0,1 if j “ r11s
`

^sPS 1Zs,xpsq
˘

^ Zs0,0 if j “ r0s
p^sPS 1Zs,0q ^ Zs0,1 if j “ r1s

“ H px, jq, and

pH ˝ Iqpxq “

" `

^s1Zs,xpsq
˘

^ Zs0,1 if xs0 “ 1
`

^s1Zs,xpsq
˘

^ Zs0,0 if xs0 “ 0

“ GS pxq.

We conclude that P, I give mutually inverse maps between colim GS and colim H , i.e.,
colim GS – colim H and hence colim GS – colim B, as desired. So from cofiber se-
quence 3.4.4, we have a cofiber sequence

colim GS Ñ ^sPS Zs,0 Ñ ^sPS pZs,0{Zs,1q ,

as desired.
From inspection of the colimit diagrams one sees that the cofiber sequence 3.4.4 does

not depend on the choice of s0 P S , and naturality in S follows. �

Lemma 3.4.10. Let S be a finite set, let n be a positive integer, and let x P NS . Let ES
n and

DS
n;x be as in Definition 3.4.3 and Definition 3.4.4. Let JS

n;x be the functor (i.e., morphism
of partially-ordered sets) defined by

JS
n;x : ES

n Ñ DS
n;x

pJn;xpyqqpsq “ xpsq ` ypsq.

Then Jn;x has a right adjoint. Consequently Jn;x is a cofinal functor, i.e., for any functor F
defined on DS

n;x such that the limit lim F exists, the limit limpF ˝ JS
n;xq also exists, and the

canonical map limpF ˝ JS
n;xq Ñ lim F is an isomorphism.

Proof. We construct the right adjoint explicitly. Let KS
n;x be the functor defined by

KS
n;x : DS

n;x Ñ ES
n

pKS
n;xpyqqpsq “ mintn, ypsq ´ xpsqu.

(We remind the reader that every element y P DS
n;x has the property that ypsq ě xpsq for all

s P S , so ypsq ´ xpsq will always be nonnegative.)
Now suppose z P ES

n and y P DS
n;x. Then:

‚ z ď KS
n;xpyq if and only if zpsq ď KS

n;xpyqpsq for all s P S ,
‚ i.e., z ď KS

n;xpyq if and only if zpsq ď mintn, ypsq ´ xpsqu for all s P S .
‚ By the definition of ES

n , zpsq ď n for all s P S . Hence z ď KS
n;xpyq if and only if

zpsq ď ypsq ´ xpsq for all s P S ,
‚ i.e., z ď KS

n;xpyq if and only if xpsq ` zpsq ď ypsq for all s P S ,
‚ i.e., z ď KS

n;xpyq if and only if JS
n;xpzq ď y.

Hence homES
n
pz,KS

n;xpyqq is nonempty if and only if homDS
n;x
pJS

n;xpzq, yq is nonempty. Since
ES

n and DS
n;x are partially-ordered sets and hence their hom-sets are either nonempty or

have only a single element, we now have a (natural) bijection

homES
n
pz,KS

n;xpyqq – homDS
n;x
pJS

n;xpzq, yq

which is exactly what we are looking for: JS
n;x is left adjoint to KS

n;x.
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For the fact that having a right adjoint implies cofinality, see section IX.3 of Mac Lane’s
[21]. (Mac Lane handles the equivalent dual case.) �

Theorem 3.4.11. (Fundamental theorem of the May filtration.) Let I‚ be a cofibrant
decreasingly filtered commutative monoid in C , and let X‚ be a simplicial finite set. Then
the associated graded commutative monoid E˚0

ˇ

ˇM X‚pI‚q
ˇ

ˇ of the geometric realization of
the May filtration is weakly equivalent, as a commutative graded monoid, to the tensoring
X‚ b E˚0 I‚ of X‚ with the associated graded commutative monoid of I‚:

E˚0
ˇ

ˇM X‚pI‚q
ˇ

ˇ » X‚ b E˚0 I‚.

Proof. We must compute the filtration quotients
ˇ

ˇM X‚
n pI‚q

ˇ

ˇ {

ˇ

ˇ

ˇ
M X‚

n`1pI‚q
ˇ

ˇ

ˇ
–

ˇ

ˇ

ˇ
M X‚

n pI‚q{M
X‚

n`1pI‚q
ˇ

ˇ

ˇ
.

We handle this as follows. First, we claim that there exists, for any finite set S and for all
n P N, a cofiber sequence

(3.4.5) colim
`

F S
n`1pI‚q

˘

Ñ colim
`

F S
n pI‚q

˘

Ñ
ž

xPNS :|x|“n

`

^sPS
`

Ixpsq{I1`xpsq
˘˘

in C , natural in S . We have already defined (in Definition 3.4.5) how F S
n is natural, i.e.,

functorial in S ; by taking the obvious coproduct of quotients, this naturality in S induces
a naturality in S on the terms

š

xPNS :|x|“n

`

^sPS
`

Ixpsq{I1`xpsq
˘˘

appearing in 3.4.5. The
claim that 3.4.5 is a cofiber sequence implies that

(3.4.6) |M Xk
n pI‚q|{|M

Xk
n`1pI‚q| –

ž

xPNXk :|x|“n

`

^sPXk

`

Ixpsq{I1`xpsq
˘˘

,

and naturally implies the necessary naturality with respect to the face and degeneracy maps.
We now show that the cofiber sequence 3.4.5 exists. First, by the universal property of

the Kan extension, the map of diagrams F S
n`1pI‚q Ñ F S

n pI‚q factors uniquely through
the map to the left Kan extension F S

n`1pI‚q Ñ F̃ S
n`1pI‚q from Lemma 3.4.8, and the

cofiber of the map colimpF S
n`1pI‚qq Ñ colimpF S

n pI‚qq agrees with the cofiber of the map
colimpF̃ S

n`1pI‚qq Ñ colimpF S
n pI‚qq. By Lemma 3.4.8, this cofiber is the coproduct

ž

txPNS :|x|“nu

``

^sPS Ixpsq
˘

{
`

colim F S
1;xpI‚q

˘˘

.

In Lemma 3.4.10, we showed that the functor J1;x is cofinal, hence that the comparison
map of colimits

colim pF1;xpI‚q ˝ J1;xq Ñ colim pF1;xpI‚qq
is an isomorphism. (We here have a colimit, not a limit as in the statement of Lemma 3.4.10,
since F1;xpI‚q is a contravariant functor on DS

1;x. Of course Lemma 3.4.10 still holds in this
dual form.)

Now Lemma 3.4.9 identifies the cofiber
`

^sPS Ixpsq
˘

{ pcolim pF1;xpI‚q ˝ Jxqq

with ^sPS
`

Ixpsq{I1`xpsq
˘

, as desired. So we have our cofiber sequence of the form 3.4.5.
All isomorphisms in the lemmas we have invoked in this proof are natural in S , with

the exception of the isomorphisms from Lemma 3.4.10 and Lemma 3.4.9 which directly
involve ES

1 , only because we did not specify in Lemma 3.4.9 how GS is functorial in S . In
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the present proof, GS is F1;xpI‚q ˝ J1;x, and the cofinality of J1;x together with the fact that
K1;x ˝ J1;x “ idES

1
implies, on inspection of the colimit diagrams, that the isomorphism

colim GS “ colim pF1;xpI‚q ˝ Jxq

– colim pF1;xpI‚qq

is natural in S ; details are routine and left to the reader. We conclude that the cofiber
sequence 3.4.5 is indeed natural in S .

Now we have the sequence of simplicial commutative monoids in C :

...

��

...

��

...

��
M X0

2 pI‚q //

��

M X1
2 pI‚qoo

oo //
//

��

M X2
2 pI‚qoo

oo
oo

//

//
//

��

. . .

oo
oo
oo
oo

M X0
1 pI‚q //

��

M X1
1 pI‚qoo

oo //
//

��

M X2
1 pI‚qoo

oo
oo

//

//
//

��

. . .

oo
oo
oo
oo

M X0
0 pI‚q // M X1

0 pI‚qoo
oo //

// M
X2

0 pI‚qoo

oo
oo

//

//
// . . .

oo
oo
oo
oo

and geometric realization commuting with cofibers together with the isomorphism 3.4.6
implies that the comparison map

(3.4.7) X‚ b E˚0 I‚ Ñ E˚0
ˇ

ˇM X‚pI‚q
ˇ

ˇ

of objects in C is a weak equivalence. Hence the comparison map 3.4.7 in CommpCq must
also be a weak equivalence, since the weak equivalences in CommpCq are created by the
forgetful functor CommpCq Ñ C , by assumption. �

3.5. Construction of the topological Hochschild-May spectral sequence.

Definition 3.5.1. By a connective generalized homology theory on C we shall mean the
following data:

‚ for each integer n, a functor Hn : HopCq Ñ Ab, and
‚ for each integer n and each cofiber sequence

X Ñ Y Ñ Z

in C , a map δXÑYÑZ
n : HnpZq Ñ Hn´1pXq,

satisfying the axioms:
Exactness: For each cofiber sequence

X
f
ÝÑ Y

g
ÝÑ Z
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in C , the sequence of abelian groups

. . . // Hn`1pYq
Hn`1pgq// Hn`1pZq

δXÑYÑZ
n`1

��
HnpXq

Hnp f q // HnpYq
Hnpgq // HnpZq

δXÑYÑZ
n

��
Hn´1pXq

Hn´1p f q// Hn´1pYq
Hn´1pgq // . . .

is exact.
Additivity: For each integer n and each collection of objects tXiuiPI in HopCq, the

canonical map of abelian groups
ž

iPI

HnpXiq Ñ Hnp
ž

iPI

Xiq

is an isomorphism.
Naturality of boundaries: For each integer n and each map of cofiber sequences

X1 //

g

��

Y 1 //

f
��

Z1

h
��

X // Y // Z,

the square of abelian groups

HnpZ1q

Hnphq
��

δX1ÑY1ÑZ1

// Hn´1pX1q

Hn´1pgq
��

HnpZq
δXÑYÑZ

// Hn´1pXq

commutes.
Connectivity of the unit object: We have Hnp1q – 0 for all n ă 0.
Connectivity of smash products: Suppose that X,Y are objects of C , and that A, B

are nonnegative integers such that HnpXq – 0 for all n ă A, and HnpYq – 0 for
all n ă B. Then HnpX ^ Yq – 0 for all n ă A` B.

Clearly Definition 3.5.1 is just a formulation, in a general pointed model category, of the
Eilenberg-Steenrod axioms (from [12]) for a generalized homology theory with connective
(i.e., vanishing in negative degrees) coefficients. The “connectivity of smash products”
axiom is easily proven anytime one has an E-homology Künneth spectral sequence in C ,
which is the case in (for example) any of the usual models for the stable homotopy category.

Definition 3.5.2. If I‚ is a cofibrant decreasingly filtered commutative monoid in C , X‚ is a
simplicial finite set, and H˚ is a connective generalized homology theory on C , then by the
topological Hochschild-May spectral sequence for X‚b̃I‚ we mean the spectral sequence
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in A obtained by applying H˚ to the tower of cofiber sequences in C

(3.5.1)
...

��
ˇ

ˇM X‚
2 pI‚q

ˇ

ˇ //

��

ˇ

ˇM X‚
2 pI‚q

ˇ

ˇ {
ˇ

ˇM X‚
3 pI‚q

ˇ

ˇ

ˇ

ˇM X‚
1 pI‚q

ˇ

ˇ //

��

ˇ

ˇM X‚
1 pI‚q

ˇ

ˇ {
ˇ

ˇM X‚
2 pI‚q

ˇ

ˇ

ˇ

ˇM X‚
0 pI‚q

ˇ

ˇ //
ˇ

ˇM X‚
0 pI‚q

ˇ

ˇ {
ˇ

ˇM X‚
1 pI‚q

ˇ

ˇ .

That is, it is the spectral sequence of the exact couple

D1
˚,˚ –

À

i, j Hi

ˇ

ˇ

ˇ
M X‚

j pI‚q
ˇ

ˇ

ˇ

//À
i, j Hi

ˇ

ˇ

ˇ
M X‚

j pI‚q
ˇ

ˇ

ˇ
– D1

˚,˚

��

E1
˚,˚ –

À

i, j Hi

ˇ

ˇ

ˇ
M X‚

j pI‚q
ˇ

ˇ

ˇ
{

ˇ

ˇ

ˇ
M X‚

j`1pI‚q
ˇ

ˇ

ˇ

jj

Lemma 3.5.3. (Connectivity conditions.) Let H˚ be a connective generalized homology
theory on C . Suppose C is stable, and suppose that there exist objects Z,H of C such that
H˚p´q is naturally isomorphic to rΣ˚Z,H ^´s.

‚ Let

(3.5.2) ¨ ¨ ¨ Ñ Y2 Ñ Y1 Ñ Y0

be a sequence in C , and suppose that HnpYiq – 0 for all n ă i. Then rΣnZ, holimipH^
Yiqs – 0 for all n.

‚ Suppose that A is a nonnegative integer and that

(3.5.3) X0 // X1oo
oo //

// X2oo

oo
oo

//

//
// . . .

oo

oo

oo
oo

is a simplicial object of C . Suppose that HnpXiq – 0 for all n ă A and all i. Then
Hn p|X‚|q – 0 for all n ă A.

Proof. ‚ Since C is assumed stable, the homotopy limit holimi Yi is the homotopy
fiber of the map

ź

nPN

Yn
id´T
ÝÑ

ź

nPN

Yn
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in HopCq, where T is the product of the maps Yn Ñ Yn´1 occuring in the se-
quence 3.5.2. For each object Z of C , we then have the long exact sequence

. . . // rΣ jZ,
ś

nPN H ^ Yns
id´T // rΣ jZ,

ś

nPN H ^ Yns

��
rΣ j´1Z, holimi H ^ Yis // rΣ j´1Z,

ś

nPN H ^ Yns
id´T // rΣ j´1Z,

ś

nPN H ^ Yns

��
rΣ j´2Z, holimi H ^ Yis // rΣ j´2Z,

ś

nPN H ^ Yns
id´T // . . .

hence the Milnor exact sequence

0 Ñ R1 lim
i
rΣ j`1Z,H ^ Yis Ñ rΣ jZ, holimi H ^ Yis Ñ lim

i
rΣ jZ,H ^ Yis Ñ 0.

The assumption that rΣ jZ,H ^ Yis – 0 for j ă i guarantees that the sequence

¨ ¨ ¨ Ñ rΣ jZ,H ^ Y2s Ñ rΣ jZ,H ^ Y1s Ñ rΣ jZ,H ^ Y0s

is eventually constant and zero for all j, hence both its limit and R1 lim vanish for
all j, hence rΣ jZ, holimi H ^ Yis – 0 for all j.

‚ The Bousfield-Kan spectral sequence, i.e., the H-homology spectral sequence
of the simplicial object 3.5.3, has input E1

s,t – πspH ^ Xtq and converges to
Hs`t p|X‚|q, since rΣ˚Z, holim H ^ Yis vanishes. The differential in this spectral
sequence is of the form dr : Er

s,t Ñ Er
s´r,t`r´1, hence this spectral sequences has

a nondecreasing upper vanishing curve at E1, hence converges strongly. Triviality
of E1

s,t for s ă A and t ă 0 then gives us that Hs p|X‚|q vanishes for s ă A.
�

Lemma 3.5.4. Suppose H˚ is a connective generalized homology theory as defined in
Definition 3.5.1, and M S

i pI‚q is the i-th degree of the May filtration for a finite set S and a
cofibrant decreasingly filtered commutative monoid I‚ as defined in Definition 3.1.2. Then,
if HmpIiq – 0 for all m, i P N such that m ă i, then

HmpM S
i pI‚qq – 0

for all m, i P N such that m ă i.

Proof. The proof is inductive on the cardinality of S , which we denote #pS q. First recall
that by Definition 3.4.5,

M S
i pI‚q “ colim F S

i pI‚q
and F S

i pI‚q is a functor
F S

i pI‚q : pDS
i q

opÝÑ C ,
where pDS

i q
op is the full sub-poset of pNS qop containing exactly the objects x P NS such

that |x| ě i. Also, recall the definition

ES
n,k “ tx P t0, ..., nu

S |
ÿ

sPS

xpsq ě ku

where k ě n and the convention of writing ES
n when n “ k. One can easily see that the

diagram pES
n q

opÝÑ C is cofinal in in the diagram pDS
n q

opÝÑ C .
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The case #pS q “ 1 is trivial since the constant diagram Ii is cofinal in F S
i pI‚q. The

claim follows by the assumption that

HmpIiq – 0

for all m, i P N such that m ă i.
The case #pS q ě 2 and i “ 0 is trivial as well by the following argument. First, the

constant diagram
Ź

sPS I0 is cofinal. Second, we assumed that HmpI0q – 0 for all m, i P N
such that m ă 0, and, by Definition 3.5.1, a connective generalized homology theory,
satisfies HmpX ^ Yq – 0 for m ă m1 ` m2 whenever HipXq – H jpYq – 0 for all i ă m1
and all j ă m2.

Suppose#pS q “ 2. In the case i “ 1, the diagram F S
i pI‚q contains the pushout diagram

I1 ^ I1

��

// I0 ^ I1

I1 ^ I0

as a cofinal subdiagram. This colimit, which is M S
1 pI‚q, is a homotopy pushout by Lemma

3.4.1 and can therefore be written as the cofiber in the cofiber sequence

I1 ^ I1ÝÑ I0 ^ I1 _ I1 ^ I0ÝÑpI0 ^ I1 _ I1 ^ I0q{pI1 ^ I1q – pI0{I1 ^ I1q _ pI1 ^ I0{I1q.

Since HmpI1 ^ I1q – 0 for m ă 2 and HmppI0 ^ I1q _ pI1 ^ I0qq – 0 for m ă 1, by
the long exact sequence in H˚, Hmpcolim F S

i pI‚qq – 0 for m ă 1. This proves the claim
for i “ 1. When i ą 1, we consider the cofinal subdiagram ES

i pI‚q : pES
i q

op Ñ C
of F S

i pI‚q. By filling in vertices with pushouts, which we denote Pp j,kq, we can write
colim F S

i pI‚q – colim ES
i pI‚q as an iterated pushout; for example, when n “ 2,

...

��

...

��
. . . //

��

I1 ^ I2 //

��

I0 ^ I2

��
. . . // I2 ^ I1 //

��

I1 ^ I1

��

// Pp0,1q

��
. . . // I2 ^ I0 // Pp1,0q // Pp0,0q.

Note that the colimit of a pushout diagram agrees with the homotopy colimit of that di-
agram when the maps are all cofibrations and the objects are all cofibrant as is the case
here.

On each of the objects ES
i pI‚qpxq and the objects Pp j,kq where 0 ď j` k ă i, the functor

Hmp´q evaluates to zero whenever m ă i. The same is true about colim F S
i pI‚q – Pp0,0q,

completing the case #pS q “ 2.
Now assume

HmpM S
i pI‚qq – 0

for all m, i P N such that m ă i, whenever #pS q ă n. By the same method of filling
vertices in cubes that we use in the case #pS q “ 2, we just need to prove the case i “ 1
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and the case i ą 1 will follow by the fact that the colimit colim F S
i pI‚q “ M S

i pI‚qq can be
written as an iterated n-cube. It therefore remains to prove that

HmpM S
1 pI‚qq – 0

for all m P Z such that m ă 1, whenever #pS q “ n. We consider a single directed n-cube
missing a single terminal vertex, i.e. a functor

ES
1 pI‚q : pES

1 q
opÝÑ C

which is a cofinal diagram in F S
1 pI‚q so that colim ES

1 pI‚q – M S
1 pI‚q.

We then consider the subdiagrams of ES
1 pI‚q that are pn ´ 1q-cube shaped diagrams of

C containing the object ES
1 pI‚qpxq such that xpsq “ 1 for all s P S . We then remove the

terminal vertex in each of these n´ 1-cubes and denote the k-th truncated pn´ 1q-cube

ES
1 pI‚q

pkq

where k P t1, ..., nu runs over all truncated sub pn´ 1q-cubes of this type.
We then construct a diagram, which we call B, which is the same as ES

1 except that all
the vertexes removed as in the process above are replaced with the colimits colim ES

1 pI‚q
pkq.

By universality of the colimit we get maps

ES
1 pI‚q

pkqÝÑ I0 ^ ...^ I0 ^ I1 ^ I0 ^ ...^ I0

for each k, where I1 is in the k-th position, and by iterated use of the pushout product
axiom, this map is a cofibration. We can therefore consider the map of diagrams

B ÝÑES
1 pI‚q

and take levelwise cofibers. We call the resulting diagram Cof . By examination of the
levelwise cofibers, we see that

colim Cof –
n
ł

k“1

pIδ1k ^ . . .^ Iδnkq {E
S
1 pI‚q

pkq

where δ jk “ 0 if j ‰ k and δkk “ 1. We also observe that colim Cof – hocolim Cof since
it can be written as an iterated pushout of cofibrant objects along cofibrations [10, Prop.
13.10]. The object colim Cof is therefore a model for the homotopy cofiber of the map

colim B ÝÑ colim ES
1 pI‚q

even though this map is not necessarily a cofibration. We therefore get a long exact se-
quence in H˚ so HmpF S

1 pI‚qq – 0 for m ă mintm1,m2u where H jpcolim Bq – 0 for
j ă m1 and H jpcolim Cof q – 0 for k ă m2. We know H jpcolim Cof q – 0 for all j ă 1
since for each k P t1, . . . , nu there is an isomorphism H j pIδ1k ^ . . .^ Iδnkq – 0 for all
j ă 1, and by the inductive hypothesis there is an isomorphism H jpES

1 pI‚q
pkqq – 0 for all

j ă 1.
To prove H jpcolim Bq – 0 for j ă 1, first note that colim B “ colim ES

1,2 as defined. We
observe that the object colim ES

1,2 can be written as a colimit of n truncated pn ´ 1q-cubes
whose pairwise intersections are pn ´ 2q-cubes. We repeat the process and form B1 by
eliminating terminal vertices in each pn´ 1q-cube and replacing each one with the colimit
of that pn´ 1q-cube. Observe that colim B1 – colim ES

1,3. We produce another sequence

colim B1ÝÑ colim B ÝÑ colim Cof 1

and as before H jpCof 1q – 0 for j ă 1. This begins an inductive procedure that ends with
Bn´2 such that colim Bn´2 – colim ES

1,n and since #pS q “ n, colim ES
1,n – ^sPS I1. Since
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H jp^sPS I1q – 0 for j ă 1 and H jpCof mq – 0 for j ă 1 and all 1 ď m ď n ´ 2, we have
shown that H jpBq – 0 for all j ă 1.

The colimit colim ES
1 pI‚q therefore has the property that H jpcolim ES

1 pI‚qq – 0 for
j ă 1 and, thus, we have proven our claim. �

Theorem 3.5.5. Suppose I‚ is a Hausdorff cofibrant decreasingly filtered commutative
monoid in C , X‚ is a simplicial finite set, and H˚ is a connective generalized homology
theory on C . Suppose H˚p´q – rΣ˚Z,´^Hs for some objects Z and H in C . Suppose the
following connectivity axiom:

‚ (Connectivity axiom.) HmpInq – 0 for all m ă n.
Then the topological Hochschild-May spectral sequence is strongly convergent, its differ-
ential satisfies the graded Leibniz rule, and its input and output and differential are as
follows:

E1
s,t – Hs,tpX‚ b E˚0 I‚q ñ HspX‚ b I0q

dr : Er
s,t Ñ Er

s´1,t`r

Proof. It is standard (see e.g. the section on Adams spectral sequences in [6]) that the
H-homology spectral sequence of a tower of cofiber sequences of the form 3.5.1 converges
to H˚

`
ˇ

ˇM X‚
0 pI‚q

ˇ

ˇ

˘

as long as
“

Σ˚Z, holimi
`

H ^
ˇ

ˇM X‚
i pI‚q

ˇ

ˇ

˘‰

is trivial. By Lemma 3.5.4
Hm

`
ˇ

ˇM X‚
i pI‚q

ˇ

ˇ

˘

– 0 for all m ă i, so by Lemma 3.5.3,
“

ΣnZ, holimi
`

H ^
ˇ

ˇM X‚
i pI‚q

ˇ

ˇ

˘‰

– 0

for all n, as desired. Hence the spectral sequence converges to

H˚
`
ˇ

ˇM X‚
0 pI‚q

ˇ

ˇ

˘

– H˚pX‚ b I0q.

That the differential has the stated bidegree is a routine and easy computation in the
spectral sequence of a tower of cofiber sequences.

The sequence

. . . //
ˇ

ˇM X‚
2 pI‚q

ˇ

ˇ //
ˇ

ˇM X‚
1 pI‚q

ˇ

ˇ //
ˇ

ˇM X‚
0 pI‚q

ˇ

ˇ

is a cofibrant decreasingly filtered commutative monoid in C as observed in Remark 3.4.7
and therefore, in particular, it produces a “pairing of towers” in the sense of [11] and there-
fore by Proposition 5.1 of [11] the differentials in the spectral sequence satisfy a graded
Leibniz rule.

The statements about convergence are also standard: the connectivity axiom and the
“connectivity of smash products” axiom from Definition 3.5.1 together imply that our
spectral sequence has a nondecreasing upper vanishing curve already at the E1-term, so
the spectral sequence converges strongly.

�

Remark 3.5.6. Another construction of our T HH-May spectral sequence

(3.5.4) E1
˚,˚ – H˚pX‚ b E˚0 I‚q ñ H˚pX‚ b I0qq

is possible using the Day convolution product. This construction is conceptually cleaner,
but it does not, to our knowledge, simplify the process of proving that the resulting spectral
sequence has the correct input term, output term and convergence properties.

Recall from Remark 3.1.4 that a cofibrant decreasingly filtered commutative monoid
in C is equivalent to a cofibrant object in Comm CN

op
where Comm CN

op
has the model
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structure created by the forgetful functor to CN
op

and the category CN
op

is equipped with the
projective model structure.

Now fix a simplicial finite set X‚. A cofibrant commutative monoid object I in CN
op

is a cofibrant decreasingly filtered commutative monoid object I‚ in C , and we can form
the pretensor product X‚b̃I‚, a simplicial object in Comm CN

op
. For example, if X‚ is the

usual minimal simplicial model p∆r1s{δ∆r1sq‚ for the circle, then X‚b̃I‚ is the cyclic bar
construction using the Day convolution as the tensor product:

p∆r1s{δ∆r1sq‚b̃I “

˜

I // I bDay Ioo
oo //

// I bDay I bDay I
oo

oo
oo

//

//
// . . .

oo

oo

oo
oo

¸

Since I is a functor Nop Ñ C , we will write Ipnq for the evaluation of this functor at
a nonnegative integer n. (If we instead think of I as a decreasingly filtered commutative
monoid, as in most of the rest of this paper, we would write In instead of Ipnq.) We write
pp∆r1s{δ∆r1sq‚b̃Iq piq for the the simplicial object in C

pp∆r1s{δ∆r1sq‚b̃Iq piq “

˜

Ipiq // pI bDay Iqpiqoo
oo //

// pI bDay I bDay Iqpiq
oo

oo
oo

//

//
// . . .

oo

oo

oo
oo

¸

Applying geometric realization to pp∆r1s{δ∆r1sq‚b̃Iq piq, we get a cofibrant decreasingly
filtered object in in C (assuming Running Assumption 2.0.3)

|pp∆r1s{δ∆r1sq‚b̃Iq p0q| Ð |pp∆r1s{δ∆r1sq‚b̃Iq p1q| Ð |pp∆r1s{δ∆r1sq‚b̃Iq p2q| Ð . . .

and the spectral sequence obtained by applying a generalized homology theory E˚ to this
cofibrant decreasingly filtered object in C is precisely the spectral sequence 3.5.4, the spec-
tral sequence constructed and considered throughout this paper. (It is an easy exercise in
unwinding definitions to check that this spectral sequence agrees with the one constructed
in Definition 3.5.2, but to verify that the resulting spectral sequence has the expected input
term, output term, and convergence properties amounts to exactly the same proofs already
found in this paper which aren’t expressed in terms of Day convolution.)

4. Decreasingly filtered commutative ring spectra.

4.1. Whitehead towers. Let R be a cofibrant connective commutative monoid in C . For
this section and the next, let C be a model for the homotopy category of spectra such as
symmetric spectra, S -modules, or orthogonal spectra. The goal of this section is to pro-
duce a cofibrant decreasingly filtered commutative monoid in C as a specific multiplicative
model for the Whitehead tower of a connective commutative monoid in C . Part of the
proof uses a Postnikov tower of a commutative ring spectrum constructed as a tower of
square-zero extensions, so first we define square-zero extensions in this context.

Definition 4.1.1. By a square-zero extension in C , we mean a fiber sequence

IÝÑ ÃÝÑ A

where Ã is the pullback in Comm C of

Ã //

��

A

ε

��
A d // A˙ ΣI,

the map ε is defined to be the inclusion of A into A ˙ ΣI and d represents a class rds P
T AQ0

S pA,ΣIq. (For a definition of T AQ˚S pA,ΣIq, see [5] or [22].) Note that, a priori, A
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must be a commutative monoid in C and I must be a A-bimodule. By A ˙ ΣI we mean
the trivial square-zero extension of A by ΣI; that is, additively A ˙ ΣI :“ A _ ΣI and its
multiplication is the map

µ : A^ A_ A^ I _ I ^ A_ I ^ IÝÑ A_ I

determined by the maps
µA : A^ A Ñ A ãÑ A_ I
ψ` : A^ I Ñ I ãÑ A_ I
ψr : I ^ A Ñ I ãÑ A_ I
sq : I ^ I Ñ 0 ãÑ A_ I

where µA is the multiplication on A, ψr and ψ` are the right and left action maps of I as an
A-bimodule and sq is the usual map I^ I Ñ I ãÑ A_ I, which in this case factors through
the zero object.

Definition 4.1.2. Let R be a connective commutative monoid in C . By a Postnikov tower
of square-zero extensions associated to R, we mean a tower

. . . // τď3R // τď2R // τď1R // τď0R

Σ3Hπ3R

OO

Σ2Hπ2R

OO

Σ1Hπ1R

OO

Hπ0R

OO

of fiber sequences where πkpτďnRq “ πkpRq for k ď n and πkpτďnRq “ 0 for k ą n, such
that the fiber sequences

ΣnHπnRÝÑ τďnRÝÑ τďn´1R
are square-zero extensions.

As defined it is not clear that such Postnikov towers of square-zero extensions actually
exist for a given commutative monoid in C , but it is a theorem that they do.

Theorem 4.1.3. Let R be a connective commutative monoid in C . Then there exists a
model for the Postnikov tower associated to R which is a Postnikov tower of square-zero
extensions.

Proof. See Theorem 4.3 and the comments after in [17] and Theorem 8.1 in [5]. Also, see
Lurie’s Corollary 3.19 from [19] for the result in the setting of quasi-categories. �

Recall from Remark 3.1.4 that a cofibrant object in the category Comm CN
op

equipped
with the projective model structure is a cofibrant decreasingly filtered commutative monoid.
We may define certain n-truncated decreasingly filtered commutative monoids in the fol-
lowing way.

Definition 4.1.4. Let Jn Ă N be the sub-poset of the natural numbers consisting of all
i P N such that i ď n. We give this poset the structure of a symmetric monoidal category
pJn, 9̀ , 0q by letting

i 9̀ j “ minti` j, nu.

We may consider lax symmetric monoidal functors in pC Jop
n q for each n again as a conse-

quence of [9, Ex. 3.2.2] these are equivalent to the commutative monoids in the functor
category under a Day convolution symmetric monoidal product. We may also consider the
model structure on CommpC Jop

n q created by the forgetful functor to pC Jop
n q, where pC Jop

n q has
the projective model structure. In this model structure, it is an easy exercise to show that
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the cofibrant objects are objects Iďn in pC Jop
n q such that each Iďn

i is cofibrant in C for i ď n
and each map fi : Iďn

i Ñ Iďn
i´1 is a cofibration in C for each i ď n.

Theorem 4.1.5. Let R be a cofibrant connective commutative monoid in C , then there
exists a cofibrant decreasingly filtered commutative monoid in C

. . . // τě2R // τě1R // τě0R

with structure maps
ρi, j : τěiR^ τě jR ÝÑ τěi` jR

such that πkpτěnRq – πkpRq for k ě n and πkpτěnRq – 0 for k ă n. This cofibrant
decreasingly filtered commutative monoid in C is denoted τě‚R.

Proof of Theorem 4.1.5. Let R be a cofibrant connective commutative monoid in C and let

. . . // τď2R // τď1R // τď0R

Σ2Hπ2pRq

OO

ΣHπ1pRq

OO

Hπ0pRq

OO

be a Postnikov tower of square-zero extensions of R in the sense of Definition 4.1.2. To
prove the theorem we need to do the following:

(1) Construct τěnR.
(2) Construct maps ρi, j : τěiR^ τě jRÝÑ τěi` jR.
(3) Show that the maps ρi, j satisfy associativity, commutativity, unitality and compat-

ibility.
The procedure will be inductive. First, define τě0R :“ R where R was assumed to be a
cofibrant connective commutative monoid in C and is therefore an object in Comm C Jop

0 .
To construct τě1R, we consider the map of commutative ring spectra RÝÑHπ0R. We can
assume this map is a fibration, since if it wasn’t we could factor the map in commutative
ring spectra into an acyclic cofibration and a fibration. We then define τě1R to be the fiber
of this map. By design, we have constructed an object Iď1

‚ in Comm C Jop
1 . Commutativity,

associativity and unitality follow by the definition of a symmetric R-bimodule action of R
on τě1R. This completes the base step in the induction.

Suppose we have a object Iďn´1
‚ P ob Comm C Jn´1

op
for an arbitrary n ě 1. As before,

we define τěiR to be Iďn´1
i for all i ď n´ 1. Define

Pn :“ colimDn τěiR^ τě jR

where Dn is the full subcategory of Nop ˆ Nop with objects pi, jq such that 0 ă i ď j ă n
and i` j ě n. Since Iďn´1

‚ is in Comm C Jn´1
op

, there is a unique map PnÝÑ τěn´1R.
The fact that the fiber sequence ΣkHπkRÝÑ τďkRÝÑ τďk´1R is a square-zero exten-

sion for each k implies that the natural maps

ΣiHπiR^ Σ jHπ jRÝÑΣn´1Hπi` jR,

factor through 0 for each pi, jq P Dn. We get an induced map on fibers by considering the
diagrams

τěkR

��

// R //

��

τďk´1R

��
ΣkHπkR // τďkR // τďk´1R
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for k ă n. There are therefore commutative diagrams

τěiR^ τě jR //

��

ΣiHπiR^ Σ jHπ jR

0
��

τěn´1R // Σn´1HπnR

for each pi, jq P Dn, hence, the map

τěiR^ τě jRÝÑ τěnRÝÑΣn´1HπnR

factors through zero for each pi, jq P Dn.
We need the map τěn´1R Ñ Σn´1HπnR to be a fibration, so we use the factorization

τěn´1R

$$

// Σn´1HπnR

τěn´1R

99

into a trivial cofibration followed by a fibration.
We can define τěnR to be the pullback, in the category of R-modules in C , of the diagram

τěnR //

��

0

��
τěn´1R

f // Σn´1HπnR.

We then also need to replace Pn by Pn where Pn is the same colimit as Pn except that
each instance of τěn´1R is replaced by τěn´1R. There is therefore a map Pn Ñ Pn and
there is a map Pn Ñ Σn´1Hπn´1R that factors through the zero map by the same consider-
ations as above.

Therefore, by the universal property of the pullback, there exists a unique map g

Pn

**

��

g

""
τěnR //

��

0

��
τěn´1R // Σn´1Hπn´1R.

By composing the maps τěiR^ τě jR Ñ Pn and τěn´1R^ τěiR Ñ Pn with the map g, we
produce the necessary maps ρi, j : τěiR^τě jRÝÑ τěminti` j,nuR where 0 ă i ď j ă n. This
also proves, by construction, that they satisfy the compatibility axiom (that is, naturality of
the lax symmetric monoidal functor Jop

n Ñ Cq. The factor swap map produces all the maps

ρi, j : τěiR^ τě jRÝÑ τěminti` j,nuR

where i ą j and the commutativity and compatibility necessary for those maps as well.
The maps ρ0,n and ρn,0 are the R-module action maps that we produced by working in the
category of R-modules and and again by construction these maps satisfy commutativity
and compatibility with the other maps. Unitality is also easily satisfied for each ρi, j with
i, j P t0, ..., nu, since all these maps are R-module maps.



34 G. ANGELINI-KNOLL AND A. SALCH

We just need to check associativity. By assumption, we have associativity for all the
maps ρi, j where i, j ă n, we therefore just need to show that the associativity diagrams
involving the maps ρi, j for i or j equal to n. Since the symmetric monoidal product on
R-modules is assumed to be associative, we know that, for i, j, k P t0, nu, the diagrams

τěiR^ τě jR^ τěkR //

��

τěiR^ τě j`kR

��
τěi` jR^ τěkR // τěi` j`kR

commute. We also know, by construction, that the diagram

(4.1.1) τěiR^ τě jR

�� &&
τěn´1R τěnRoo

commutes for all i` j ě n. The diagram

(4.1.2) τěiR^ τěnR //

��

τěnR

��

τěnR^ τěiRoo

��
τěiR^ τěn´1R // τěn´1R τěn´1R^ τěiRoo

also commutes by construction.
We need to show that for i, j, k P t0, 1, ..., nu with either i, j, or k equal to n, then

(4.1.3) τěiR^ τě jR^ τěkR //

��

τěiR^ τě j`kR

��
τěi` jR^ τěkR // τěnR

commutes. This follows by combining the commutativity of Diagram 4.1.1, Diagram 4.1.2,
and the diagrams of the form of Diagram 4.1.3 when i, j, k ă n, and using the fact that
τěnR Ñ τěn´1R is a monomorphism, since it is the pullback of a monomorphism in C by
construction, and hence it is retractile.

We have therefore produced an object in Comm C Jop
n . By induction, we can therefore

produce an object in Comm CN
op

and then cofibrantly replace it to produce a cofibrant
decreasingly filtered commutative monoid in C , denoted τě‚R, as desired. �

Remark 4.1.6. Since we have functorial factorizations of maps and functorial cofibrant
replacement in our setting, the above theorem is entirely functorial, in other words, a
map of connective commutative ring spectra A Ñ B induces a map of Whitehead tow-
ers τěnA Ñ τěnB compatible with the multiplication maps ρA

i, j and ρA
i, j. This induces a

map of associated graded commutative monoids in C

E˚0 pτě‚Aq ÝÑ E˚0 pτě‚Bq.
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and a map of THH-May spectral sequences

H˚pX‚ b E˚0 pτě‚Aqq

��

+3 H˚pX‚ b Aq

��
H˚pX‚ b E˚0 pτě‚Bqq +3 H˚pX‚ b Bq.

Example 4.1.7. Let R be a commutative ring spectrum with homotopy groups πkpRq – Ẑp

for k “ 0, n and πkpRq – 0 otherwise. Then one can build

0ÝÑΣnHẐpÝÑR

as a cofibrant decreasingly filtered commutative ring spectrum using Theorem 4.1.5. Since
one can construct a Postnikov truncation of a commutative ring spectrum as a commutative
ring spectrum [5], we can produce an example of this type by considering the truncation of
the connective p-complete complex K-theory spectrum

Σ2Hπ2kupÝÑ kuď2
p ÝÑHπ0kup.

The results of this subsection naturally leads to the question of whether topological
Hochschild homology commutes with Postnikov limit; i.e the question of whether the map

T HHpRq Ñ holim T HHpRďnq

is an equivalence. In the following section, we prove this result in the more general case of
tensoring with a simplicial set. One could therefore try to compute T HHpRq for some ring
spectrum by computing T HHpRďnq for each n using the THH-May spectral sequence and
then computing the limit. As an example, we carry this out in the case R “ k̂up and n “ 2
in the next subsection.

4.2. Tensoring with simplicial sets commutes with the Postnikov limit.

Lemma 4.2.1. Let X‚ be a simplicial pointed finite set. Let E be a spectrum and let R be
an E8-ring spectrum. Suppose that EnpRq is finite for all integers n. Then EnpX‚ b Rq is
finite for all integers n.

Proof. We will make use of the “pretensor product” b̃ defined in Definition 3.3.1. The
Bousfield-Kan-type spectral sequence obtained by applying E˚ to the simplicial object
X‚b̃R has E1-term E1

s,t –
š

Xs
EtpRq, differentials dr : Er

s,t Ñ Er
s´r,t`r´1, and converges to

Es`tpX‚bRq. Consequently, this spectral sequence is half-plane with exiting differentials,
in the sense of [6]. Hence, the spectral sequence is strongly convergent, by Theorem 6.1
of [6], and finiteness of E1

s,t for all s, t such that s ` t “ n implies finiteness of EnpX‚ b
Rq. �

Definition 4.2.2. Let R be an E8-ring spectrum and let n be an integer. We will write Rďn

for the n-th Postnikov truncation of R, that is, Rďn is R with E8-cells attached to kill all
the homotopy groups of R above dimension n. Consequently we have a map of E8-ring
spectra R Ñ Rďn which induces an isomorphism πipRq Ñ πipRďnq for all i ď n, and such
that πipRďnq – 0 if i ą n.

In the statements of Theorems 4.2.3 and 4.2.4, the homotopy limit in 4.2.1 and 4.2.4 can
be taken in E8-ring spectra or in spectra; since the forgetful functor from E8-ring spectra
to spectra commutes with homotopy limits, the maps 4.2.1 and 4.2.4 are weak equivalences
either way.
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Theorem 4.2.3. Let R be a connective E8-ring spectrum. Let p be a prime number such
that the i-th mod p homotopy group pS {pqipRq is finite for each integer i. Let X‚ be a
simplicial pointed finite set. Then the natural map of E8-ring spectra

(4.2.1) pX‚bRq̂p Ñ
`

holimn X‚ b pRďnq
˘ˆ

p

is a weak equivalence.

Proof. Since we assumed that pS {pqipRq is finite for each i and since we assumed that X‚
is a simplicial finite set, Lemma 4.2.1 implies that pS {pqipX‚ b Rďnq is finite for all i and
all n. So the first right-derived limit limn

1pS {pqipX‚ b Rďnq vanishes, by the well-known
vanishing of lim 1 for inverse sequences of finite abelian groups.

For each nonnegative integer n, the map of Bousfield-Kan-type spectral sequences

(4.2.2) E1
s,t –

š

Xs
pS {pqtpRq +3

��

pS {pqs`tpX‚ b Rq

��
E1

s,t –
š

Xs
pS {pqtpRďnq +3 pS {pqs`tpX‚ b Rďnq

is an isomorphism on the portion of the E1-page satisfying t ă n ´ 1. The differential
in these Bousfield-Kan-type spectral sequences is of the form dr : Er

s,t Ñ Er
s´r,t`r´1, and

consequently both of these Bousfield-Kan-type spectral sequences are half-plane spectral
sequences with exiting differentials, in the sense of [6]. Consequently both spectral se-
quence are strongly convergent, by Theorem 6.1 of [6].

Furthermore, since the map of spectral sequences 4.2.2 is an isomorphism at E1 in
bidegrees ps, tq satisfying t ă n´ 1, and since elements in total degree u can only interact,
by supporting differentials or being hit by differentials, with elements in bidegrees ps, tq
such that t ď u ` 1, the map of spectral sequences 4.2.2 is an isomorphism of spectral
sequences when restricted to total degrees ă n ´ 1. Hence the map of abelian groups
pS {pqupX‚bRq Ñ pS {pqupX‚bRďnq is an isomorphism when u ă n´ 1. Hence the map
of graded abelian groups

pS {pq˚pX‚ b Rq Ñ lim
n
pS {pq˚pX‚ b Rďnq

is an isomorphism. Vanishing of lim 1 then tells us that the map

pS {pq˚pX‚ b Rq Ñ pS {pq˚pholimn X‚ b Rďnq

is an isomorphism, i.e., that

(4.2.3) X‚ b R Ñ holimn X‚ b Rďn

is a S {p-local weak equivalence, i.e., that 4.2.3 is a weak equivalence after p-completion.
�

Theorem 4.2.4. Let R be a connective E8-ring spectrum. Suppose that, for each integer
i, the Q-vector space πipRqbZQ is finite-dimensional. Let X‚ be a simplicial pointed finite
set. Then the natural map of E8-ring spectra

(4.2.4) LHQpX‚bRq Ñ LHQ
`

holimn X‚ b pRďnq
˘

is a weak equivalence. (Here we are writing LHQ for Bousfield localization at the Eilenberg-
Mac Lane spectrum HQ, i.e., LHQ is rationalization.)
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Proof. Essentially the same proof as that of Theorem 4.2.3; the only substantial difference
is that, rather than lim 1 vanishing being a consequence of finiteness of the mod p homotopy
groups, in the present situation we have vanishing of

lim
n

1 `π˚pX‚ b Rďnqq bZ Q
˘

due to the fact that lim 1 vanishes on any inverse sequence of finite-dimensional vector
spaces over a field; see [27]. �

Corollary 4.2.5. Let p be a prime, and let R be a p-local connective E8-ring spectrum.
Suppose that, for each integer i, the Zppq-module πipRq is finitely generated. Let X‚ be a
simplicial pointed finite set. Then the natural map of E8-ring spectra

(4.2.5) X‚bR Ñ holimn X‚ b pRďnq

is a weak equivalence.

Proof. It follows from the pullback square in rings

Zppq //

��

Q

��
Ẑp // Qp

that a map of connective finite-type p-local spectra which is both a p-complete weak equiv-
alence and a rational weak equivalence is also a weak equivalence. �

Corollary 4.2.6. Let R be a connective E8-ring spectrum. Suppose that, for each integer
i, the abelian group πipRq is finitely generated. Let X‚ be a simplicial pointed finite set.
Then the natural map of E8-ring spectra

X‚bR Ñ holimn X‚ b pRďnq

is a weak equivalence.

Proof. Again, it is classical that a map of connective finite-type spectra which is a rational
equivalence and a p-complete weak equivalence at each prime p is also a weak equivalence.

�

5. Applications

We now present two calculations: first, we calculate pS {pq˚T HHpRq when R has the
property that π˚pRq – Ẑprxs{x2 where |x| ą 0; second, we provide a bound on topo-
logical Hochschild homology of a connective commutative ring spectrum R in terms of
T HHpHπ˚pRqq and we give an explicit bound in the case π˚pRq – Ẑprxs where |x| “ 2n
for n ą 0.

5.1. Topological Hochschild homology of Postnikov truncations. Let R be a commuta-
tive ring spectrum with the property that π˚pRq – Ẑprxs{x2 with |x| ą 0. We will consider
the THH-May spectral sequence

pS {pq˚pT HHpHẐp ˙ ΣnHẐpqq ñ pS {pq˚pT HHpRqq

produced using the short filtration of a commutative ring spectrum R given in Example
4.1.7. First, we compute the input of the S {p-THH-May spectral sequence for this exam-
ple.
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Proposition 5.1.1. Let p be an odd prime, then

pS {pq˚pT HHpHẐp ˙ ΣnHẐpqq – Epλ1q bFp Ppµ1q bFp HH˚pEpxqq

where |x| “ n. The grading of HH˚pEpxqq is given by the sum of the internal and homo-
logical gradings.

Proof. Due to Bökstedt [7], there is an isomorphism

π˚pS {p^ T HHpHẐpqq – Epλ1q bFp Ppµ1q.

Let S ˙ ΣnS be the trivial split square-zero extension of S by ΣnS . Then HZ and S ˙ ΣnS
are commutative S -algebras and HẐp ˙ ΣnHẐp » HẐp ^ S ˙ ΣnS . By [29, Thm. 3.1],
there are equivalences

T HHpHẐp ˙ ΣnHẐpqq » T HHpHẐp ^ pS ˙ ΣnS qq
» T HHpHẐpq ^ T HHpS ˙ ΣnS q

of commutative ring spectra. Since S {p^ HẐp » HFp and the spectrum T HHpHẐpq is a
HẐp-algebra, the spectrum S {p^T HHpHẐpq naturally has the structure of a HFp-module.
Hence, there are isomorphisms

π˚pS {p^ T HHpHẐpq ^ T HHpS ˙ ΣnS qq –

π˚pS {p^ T HHpHẐpq ^HFp HFp ^ T HHpS ˙ ΣnS qq –

π˚pS {p^ T HHpHẐpqq bFp HFp˚pT HHpS ˙ ΣnS qq.

Now, we apply the Bökstedt spectral sequence

HH˚pHFp˚pS ˙ ΣnS qq ñ H˚pT HHpS ˙ ΣnS qq

where the input is HH˚pEpxqq. If |x| is odd, then HH˚pEpxqq – Epxq bFp Γpσxq, which

can be seen from the standard fact that TorEpxq
˚ pFp,Fpq – Γpσxq and a change of rings

argument, for example see [26]. If |x| is even, then one easily computes

HHnpEpxqq –

$

&

%

Epxq ˚ “ 0
Σ|x|p2i´1qkt1u n “ 2i´ 1
Σ|x|p2i`1qktxu n “ 2i

for i ě 1. There is an isomorphism of bigraded rings

HH˚,˚pEpxqq – Epxqrxi, y j : i ě 1, j ě 0s{ „

where the degrees are given by |xi| “ p2i, 2|x|i` |x|q and |y j| “ p2 j` 1, 2 j|x| ` |x|q, and
the equivalence relation is the one that makes all products zero. The representatives in the
cyclic bar complex for xi and y j are xb2i`1 and 1 b xb2 j`1 respectively. Whether |x| is
even or odd, the Bökstedt spectral sequence collapses for bi-degree reasons. (Also see [4,
Prop. 3.3] for the more general calculation of HH˚pFprxs{xnq when |x| “ 2n and n ą 0
and p - n.) �

Corollary 5.1.2. (Rigidity of S {p^T HH for Postnikov truncations ) Let R be a connective
E8-ring spectrum with π˚pRq – Ẑprxs{x2, πipRq – 0 for i ‰ 0, k. Suppose that

p ı k ` 1 mod 2k ` 1.

Then π˚pS {p^ T HHpRqq depends only on π˚pRď2kq; i.e only on p and k.
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Proof. The THH-May spectral sequence

pS {pq˚,˚pT HHpHẐp ˙ Σ2kHẐpqq ñ pS {pq˚pT HHpRqq

collapses since there are no possible differentials for bidegree reasons under the assump-
tions on k with respect to p. �

Remark 5.1.3. Corollary 5.1.2 can be considered a rigidity theorem in the sense that S {p^
T HH does not see the first Postnikov k-invariant in the cases given by the congruences
above.

Corollary 5.1.4. Let p be a prime such that p ı 2 mod 3, then

π˚pS {p^ T HHpkuď2
p qq – Epλ1q bFp Ppµ1q bFp HH˚pEpxqq,

where |x| “ 2 and the degree of HH˚pEpxqq in π˚ is given by the sum of the internal and
homological degree.

5.2. Upper bounds on the size of T HH. Many explicit computations are possible us-
ing the T HH-May spectral sequence; for example, G. Angelini-Knoll’s computations of
topological Hochschild homology of the algebraic K-theory of finite fields, in [1]. These
computations are sufficiently lengthy that they merit their own separate paper.

In lieu of explicit computations using the T HH-May spectral sequence, we point out
that the mere existence of the T HH-May spectral sequence implies an upper bound on
the size of the topological Hochschild homology groups of a ring spectrum: namely, if
R is a graded-commutative ring and X‚ is a simplicial finite set and E˚ is a generalized
homology theory, then for any E8-ring spectrum A such that π˚pAq – R, E˚pX‚ b Aqq is
a subquotient of E˚pX‚ bHRq. Here HR is the generalized Eilenberg-Mac Lane spectrum
of the graded ring R.

In particular:

Theorem 5.2.1. For all integers n and all connective E8-ring spectra A, the cardinality
of T HHnpAq is always less than or equal to the cardinality of T HHnpHπ˚pAqq.

Below are more details in a more restricted class of examples, namely, the E8 ring
spectra A such that π˚pAq – Ẑprxs.

Definition 5.2.2. We put a partial ordering on power series with integer coefficients as
follows: given f , g P Zrrtss, we write f ď g if and only if, for all nonnegative integers n,
the coefficient of tn in f is less than or equal to the coefficient of tn in g.

Lemma 5.2.3 is surely not a new result:

Lemma 5.2.3. Suppose that A is a connective E8-ring spectrum such that the abelian
group πnpAq is finitely generated for all n. Suppose that X‚ is a simplicial finite set. Then
πnpX‚ b Aq is finitely generated for all n.

Proof. First, a quick induction: if we have already shown that the abelian group πnpA^mq

is finitely generated for all n, then the Künneth spectral sequence

Torπ˚pS q˚,˚ pπ˚A, πnpA^mqq ñ π˚pA^m`1q

is finitely generated in each bidegree and is a first-quadrant spectral sequence (with differ-
entials according to the Serre convention), hence strongly convergent and has E8-page a
finitely generated abelian group in each total degree. So the abelian group πnpA^m`1q is
also finitely generated for each n.
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Consequently in the Bousfield-Kan-type spectral sequence

E1
s,t – πtpA^#pXsqq ñ π˚pX‚ b Aq

dr : Er
s,t Ñ Er

s´r,t`r´1

obtained by applying π˚ to the simplicial ring spectrum X‚b̃A (here we are using the pre-
tensor product, of Definition 3.3.1), each bidegree is a finitely generated abelian group,
and the spectral sequence is half-plane with exiting differentials, hence also strongly con-
vergent by Theorem 6.1 of [6]. Consequently πnpX‚ b Aq is a finitely generated abelian
group for each integer n. �

Theorem 5.2.4. Let n be a positive integer, p a prime number, and let E be an E8-ring
spectrum such that π˚pEq – Ẑprxs, with x in grading degree 2n. Then the Poincaré series
of the mod p topological Hochschild homology pS {pq˚pT HHpEqq satisfies the inequality

ÿ

iě0

`

dimFppS {pq˚pT HHpEqq
˘

ti ď
p1` p2p´ 1qtqp1` p2n` 1qtq

p1´ 2ntqp1´ 2ptq
.

Proof. It is a classical computation of Bökstedt (see [7]) that

pS {pq˚pT HHpHẐpqq – Epλ1q bFp Ppµ1q,

with λ1 and µ1 in grading degrees 2p´ 1 and 2p respectively.
Now we use the splitting theorem of Schwänzl, Vogt, and Waldhausen, Lemma 3.1 of

[29]: if K is a commutative ring, and W is a q-cofibrant S -algebra (i.e., up to equivalence,
an A8-ring spectrum), then there exists a weak equivalence of S -modules (not necessarily
a weak equivalence of S -algebras!):

T HHpW ^ HKq » T HHpWq ^ T HHpHKq » T HHpWq ^ HK ^HK T HHpHKq.

In our case, W is the free A8-algebra on a single 2n-cell, and K “ Ẑp. Hence T HHpWq^
HK satisfies

pS {pq˚pT HHpWq ^ HKq – pHFpq˚pT HHpWqq – Ppxq bFp Epσxq,

by collapse of the Bökstedt spectral sequence for bidegree reasons. Hence pS {pq˚pT HHpHẐprxsqq
is isomorphic, as a graded Fp-vector space (but not necessarily as an Fp-algebra!), to

Epλ1, σxq bFp Ppµ1, xq,

which has Poincaré series p1`p2p´1qtqp1`p2n`1qtq
p1´2ntqp1´2ptq . �

Here are a few amusing consequences:

Corollary 5.2.5. Let n be a positive integer, p a prime number, and let E be an E8-ring
spectrum such that π˚pEq – Ẑprxs, with x in grading degree 2n.

‚ If p does not divide n, then T HH2ipEq – 0 for all i congruent to ´p modulo n
such that i ď pn´ p´ n, and T HH2ipEq – 0 for all i congruent to ´n modulo p
such that i ď pn´ p´ n. In particular, T HH2ppn´p´nqpEq – 0.

‚ If p divides n, then T HHipEq – 0, unless i is congruent to ´1, 0, or 1 modulo 2p.

Proof. We split the proof into two cases: the case where p - n and the case where p|n.
‚ If p does not divide n, then the largest integer i such that the graded polynomial

algebra Ppµ1, xq is trivial in grading degree 2i is 2ppn ´ p ´ nq. (This is a stan-
dard exercise in elementary number theory. In schools in the United States it is
often presented to students in a form like “What is the largest integer N such that
you cannot make exactly 5N cents using only dimes and quarters?”) Triviality of
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Ppµ1, xq in grading degree 2ppn´ p´nq also implies triviality of Ppµ1, xq in grad-
ing degree 2ppn´ p´nq´2pp`nq, hence the triviality of Epλ1, σxqbFp Ppµ1, xq
in grading degree 2ppn ´ p ´ nq, hence (multiplying by powers of x or µ1) the
triviality of Epλ1, σxq bFp Ppµ1, xq in all grading degrees ď 2ppn´ p´ nq which
are congruent to ´2p modulo 2n or congruent to ´2n modulo 2p.

So pS {pq2ipT HHpEqq vanishes if i ď pn ´ p ´ n and i ” ´p modulo n or
i ” ´n modulo p. The long exact sequence

¨ ¨ ¨ Ñ pS {pq2i`1pT HHpEqq Ñ T HH2ipEq
p
ÝÑ T HH2ipEq Ñ pS {pq2ipEq Ñ . . .

then implies that T HH2ipEq is p-divisible. By Lemma 5.2.3, T HH2ipEq is finitely
generated. Since π0pEq – Ẑp, T HH2ipEq is a Ẑp-module. The only finitely gener-
ated abelian group which is p-divisible and admits the structure of a Ẑp-module is
the trivial group.

‚ If p divides n, then Epλ1, σxq bFp Ppµ1, xq is concentrated in grading degrees
congruent to ´1, 0 and 1 modulo 2p. An argument exactly as in the previous part
of this proof then shows that, if i is not congruent to ´1, 0, or 1 modulo 2p, then
T HHipEq must be a p-divisible finitely generated abelian group which admits the
structure of a Ẑp-module, hence is trivial.

�

6. Appendix: construction of the spectral sequence with coefficients.

In this appendix, we construct the spectral sequence of Theorem 3.5.5 with coefficients
in a symmetric bimodule. This has proven computationally useful in the paper [1] by G.
Angelini-Knoll on topological Hochschild homology of KpFqq.

For clarity of exposition, we gave the construction of the topological Hochschild-May
spectral sequence without coefficients (i.e., with coefficients in the commutative monoid
object itself) in section 3. The essential ideas in the construction of the spectral sequence
are clearer in that case. Now we build the more general version of the spectral sequence in
which we allow coefficients in a symmetric bimodule object. Since the necessary construc-
tions are all quite similar to those of section 3, and the reader who understands section 3
will find no surprises here, we have relegated this material to an appendix.

We begin by extending Definition 3.3.1 to include coefficients. For the following def-
initions, let f Sets` be the category of pointed finite sets and basepoint preserving maps.
Let C be a model category satisfying Running Assumptions 2.0.2.

Definition 6.0.6. For a cofibrant commutative monoid object A in C , we define a functor

´b̃pA;´q : s f Sets`ˆA-mod Ñ sA-mod,

which we call the pretensor product with coefficients, as follows. If Y‚ is a pointed simpli-
cial finite set with basepoint t˚Y‚u, A is a commutative monoid in C and M is a symmetric
A-bimodule, then the simplicial object in C is given by:

‚ For all n P N, the n-simplex object pY‚b̃pA; Mqqn is defined as

pY‚b̃pA; Mqqn :“ M ^
ľ

yPYn´t˚Ynu
A,

i.e, the smash product of M and a copy of A for each n-simplex y P Yn ´ t˚Ynu.
‚ For all positive n P N and all 0 ď i ď n, the i-th face map

di : pY‚b̃pA; Mqqn Ñ pY‚b̃pA; Mqqn´1



42 G. ANGELINI-KNOLL AND A. SALCH

is a smash product of two maps. The first map is defined as follows: for each
n-simplex y P Yn ´ ty P Yn : δipyq ‰ ˚Yn´1u, we associate a map

A Ñ
ľ

tyPYn´1´t˚Yn´1uu
A

which is inclusion into the coproduct in Comm(C ) of the smash factor correspond-
ing to the n ´ 1-simplex δipyq P Yn´1 ´ t˚Yn´1u. The first map is then defined
using the universal property of the coproduct in Comm(C ) and then applying the
forgetful functor to C . The second map

M ^
ľ

tyPYn´t˚Ynu:δipyq“˚Yn´1u
A Ñ M

is given by composing the action map of A on M with itself in the evident way.
‚ For all positive n P N and all 0 ď i ď n, the i-th degeneracy is a smash product of

two maps. On the component corresponding to a n-simplex

y P Yn ´ ty P Yn : σipyq ‰ ˚Yn`1u

we define the map
A Ñ

ľ

tyPYn`1´t˚Yn`1uu
A

as the inclusion of the smash factor corresponding to the pn ` 1q-simplex σipyq
in the coproduct in CommpCq. The first map is then defined using the universal
property of the coproduct in Comm(C ) and then applying the forgetful functor to
C . The second map, corresponding to the i-th degeneracy on t˚Ynu, is the map

M ^
ľ

ty1PYn:σipy1q“˚Yn`1u
A Ñ M

which is given by composing the action map of A on M with itself in the evident
way.

The pretensor product is defined on morphisms in the evident way as in Definition 3.3.1.
For A a commutative monoid in C , we define the tensor product with coefficients

´b pA;´q : s f Sets`ˆA-mod Ñ sA-mod

to be the geometric realization of the pretensor product:

Y‚ b pA; Mq “ |Y‚b̃pA; Mq|.

One can check that when M is a commutative symmetric A-bimodule algebra; i.e., the
multiplication map is a map of A-bimodules and the unit S Ñ M factors through the unit
S Ñ A, then Y‚ b pA; Mq is an object in Comm C .

As one would expect, if Y‚ “ p∆r1s{δ∆r1sq‚ where the basepoint is ∆r0s Ă ∆r1s, then
Y‚ b pA; Mq is identified with T HHpA; Mq; i.e. usual topological Hochschild homology
with coefficients. We note that T HHpA; Mq will be a module over T HHpAq.

Definition 6.0.7. (Some important colimit diagrams with coefficients I.)
‚ – Let S and T be finite sets with distinguised basepoints ˚S and ˚T respectively,

and suppose there is a basepoint preserving map f : T Ñ S . We can equip
NS with the strict direct product order as in Definition 3.4.2 and define a
function of partially-ordered sets N f

` : NT Ñ NS by

pN
f
`pxqqpsq “

ÿ

ttPT : f ptq“su

xptq
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as before. (The only way in which this differs from Definition 3.4.2 is that
we are assured that pN f

`pxqqp˚S q has xp˚T q as a summand.) This defines a
functor

N
p´q

` : f Sets` Ñ POSets .

– As in Definition 3.4.2, N f
` will preserve the evident L1 norm.

Definition 6.0.8. (Some important colimit diagrams with coefficients II.)
‚ – When S is a pointed set, let DS

n be the subposet of NS consisting of x P NS

such that |x| ě n.
– A basepoint preserving function between finite pointed sets, T Ñ S , induces

a map DT
n

Dn
f
`

ÝÑ DS
n of partially-ordered sets by restriction of N f

`.
– For each n P N, this defines a functor

D´n ` : f Sets` Ñ POSets

from the category of finite pointed sets to the category of partially-ordered
sets.

‚ – Let S be a pointed finite set. For each x P NS and each n P N, let DS
n;x denote

the following sub-poset of NS :

DS
n;x “

 

y P NS : y ě x, and |y| ě n` |x|
(

as in Definition 3.4.3.
– If T

f
ÝÑ S is a basepoint preserving function between finite pointed sets and

x P NT and n P N, let DT
n;x

D f
n;x`
ÝÑ DS

n;D f
n pxq

be the function of partially-ordered

sets defined by restricting N f
` to DT

n;x.
For each n P N and each x P NT , this defines a functor

D´n;x` : f Sets` Ñ POSets

from the category of finite pointed sets to the category of partially-ordered
sets.

Definition 6.0.9. (Some important colimit diagrams with coefficients III.)
‚ Let S be a finite pointed set and let n be a nonnegative integer. Write En

S for the
set

En
S “

#

x P t0, 1, . . . , nuS :
ÿ

sPS

xpsq ě n

+

.

We partially-order En
S by the strict direct product order, i.e., x1 ď x if and only if

x1psq ď xpsq for all s P S .

‚ The definition of En
S is natural in S in the following sense: if T

f
ÝÑ S is a base-

point preserving map of finite pointed sets and x P NT , we have a map of partially-
ordered sets

E f
n;x` : ET

n Ñ ES
n

´

E f
n;xpyq

¯

psq “ min

$

&

%

n, ypsq ´
ÿ

ttPT, f ptq“su

pxptq ` yptqq

,

.

-

Note that this functor depends on the choice of x P NT . Functoriality follows in
the same way as in Definition 3.4.4.
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(The only way in which this differs from Definition 3.4.4 is that when we evalu-
ate on the basepoint of S ,

´

E f
n;x`pyq

¯

p˚S q “ min

$

&

%

n, yp˚S q ´
ÿ

ttPT`, f ptq“˚S u

pxptq ` yptqq

,

.

-

the sum will be nonempty because it contains xp˚T q ` yp˚T q.)

Definition 6.0.10. (Some important colimit diagrams with coefficients IV.)
‚ – Let pI‚,M‚q be a pair with I‚ a cofibrant decreasingly filtered commutative

monoid in C and M‚ a cofibrant decreasingly filtered symmetric I‚-module.
Let S be a pointed set with basepoint ˚S . In this case, let

F S pI‚,M‚q :
`

NS ˘op
Ñ C

be the functor sending x to

Mxp˚S q ^^sPS´t˚S uIxpsq,

and let
F S

n pI‚,M‚q :
`

DS
n

˘op
Ñ C

be the composite of F S pI‚,M‚q with the inclusion of DS
n into NS :

`

DS
n

˘op
ãÑ

`

NS ˘op F S pI‚,M‚q
ÝÑ C .

– For x P DS
n , we write F S

n;xpI‚,M‚q for the restriction of the diagram F S pI‚,M‚q

to DS
n;x, i.e. F S

n;xpI‚,M‚q is the composite

pDS
n;xq

op ãÑ
`

NS ˘op F S pI‚,M‚q
ÝÑ C .

– Finally, let M S
n pI‚,M‚q denote the colimit

M S
n pI‚,M‚q “ colim

`

F S
n pI‚,M‚q

˘

in C . We get a sequence in C induced by the natural inclusion of DS
n into

DS
n´1,

(6.0.1) ¨ ¨ ¨ Ñ M S
2 pI‚,M‚q Ñ M S

1 pI‚,M‚q Ñ M S
0 pI‚,M‚q – M0 ^^sPS´t˚S uI0.

We refer to the functor Nop Ñ C given by sending n to M S
n pI‚,M‚q as the

May filtration with coefficients.
– The May filtration with coefficients is functorial in S in the following sense:

if T
f
ÝÑ S is a basepoint preserving function of finite pointed sets, we have

a functor

D f
n` : DT

n Ñ DS
n

´

D f
n`pxq

¯

psq ÞÑ
ÿ

ttPT : f ptq“su

xptq

and a map of diagrams from F T
n pI‚,M‚q to F S

n pI‚,M‚q given by sending the
object

F T
n pI‚,M‚qpxq “ Mxp˚T q ^

ľ

tPT´t˚T u
Ixptq

by the map

Mxp˚T q ^
ľ

tPT´t˚T u
Ixptq Ñ MΣttPT : fptq“˚S uxptq ^

ľ

sPS´t˚S u
IΣttPT´t˚T u: fptq“suxptq
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given as the smash product, across all s P S , of the maps

^ttPT´t˚T u: f ptq“suIxptq Ñ ^IΣttPT´t˚T u: fptq“suxptq

given by multiplication via the maps ρ of Definition 3.1.2 and the maps

Mxp˚T q ^^ttPT´t˚T u: f ptq“˚S uIxptq Ñ MΣttPT : fptq“˚S uxptq

given by module maps ψ of Definition 3.2.1.

To really make Definition 6.0.7 precise, we should say in which order we multiply the
factors using the maps ρ and ψ; but the purpose of the associativity and commutativity
axioms in Definition 3.1.2 and Definition 3.2.1 is that any two such choices commute, so
any choice of order of multiplication will do.

Definition 6.0.11. (Definition of May filtration with coefficients.) Let pI‚,M‚q be a
pair with I‚ a cofibrant decreasingly filtered commutative monoid in C and M‚ a filtered
symmetric I‚-bimodule in C . Let Y‚ be a pointed simplicial finite set. By the May filtration
with coefficients on Y‚b̃pI0; M0q we mean the functor

M Y‚pI‚,M‚q : Nop Ñ sC

given by sending a natural number n to the simplicial object of C

M Y0
n pI‚,M‚q // M Y1

n pI‚,M‚qoo
oo //

// M
Y2

n pI‚,M‚qoo

oo
oo

//

//
// . . .

oo
oo
oo
oo

with M Yi
n pI‚,M‚q defined as in Definition 6.0.7, and with face and degeneracy maps defined

as follows:
‚ The face map

di : M Y j
n pI‚,M‚q Ñ M Y j´1

n pI‚,M‚q

is the colimit of the map of diagrams

F Y j
n pI‚,M‚q Ñ F Y j´1

n pI‚,M‚q

induced, as in Definition 6.0.7, by δi : Y j Ñ Y j´1.
‚ The degeneracy map

si : M Y j
n pI‚,M‚q Ñ M Y j`1

n pI‚,M‚q

is the colimit of the map of diagrams

F Y j
n pI‚,M‚q Ñ F Y j`1

n pI‚,M‚q

induced, as in Definition 6.0.7, by σi : Y j Ñ Y j`1. The only way in which this
differs from Definition 3.4.5 is that the maps δi and σi are now the basepoint
preserving structure maps of the pointed simplicial object Y‚.

Remark 6.0.12. Note that the maps ρ of Definition 3.1.2 and ψ of Definition 3.2.1 yield,
by taking smash products of the maps ρ and ψ associative and symmetric bimodule maps,

F S
m pI‚q ^ F S

n pI‚,M‚q Ñ F S
n`mpI‚,M‚q

hence after taking colimits, we produce maps

M S
m pI‚q ^M S

n pI‚,M‚q Ñ M S
n`mpI‚,M‚q;

i.e. the functor
Nop Ñ C

n ÞÑ M S
n pI‚,M‚q
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is a cofibrant decreasingly filtered symmetric M S
n pI‚q-bimodule in the sense of Defini-

tion 3.2.1. The same considerations as in Remark 3.4.7 give |M X‚pI‚,M‚q| the structure
of a cofibrant decreasingly filtered symmetric |M X‚pI‚q|-bimodule in the sense of Defini-
tion 3.2.1.

We now need to adapt Lemmas 3.4.8, 3.4.9, and 3.4.10 to our situtation.

Lemma 6.0.13. Let I‚ be a cofibrant decreasingly filtered commutative monoid in C and
let M‚ be a cofibrant decreasingly filtered symmetric I‚ bimodule. Let S be a pointed set
and n P N. There is a monomorphism ι : DS

n`1 Ñ DS
n . We write

Kan : C pD
S
n q

op
Ñ C pD

S
n`1q

op

for the left Kan extension of F S
n`1pI‚,M‚q induced by ιop and define

F̃ S
n`1pI‚,M‚q :“ Kan

`

F S
n`1pI‚,M‚q

˘

.

The universal property of the Kan extension produces a canonical map

c : F̃ S
n`1pI‚,M‚q Ñ F S

n`1pI‚,M‚q.

With these definitions, the cofiber of the map

colimpF̃ S
n`1pI‚,M‚qq

colim c
ÝÑ colimF S

n pI‚,M‚q,

where colimits are computed in C , is isomorphic to the coproduct in C
ž

txPNS :|x|“nu

``

Mxp˚S q ^^sPS´t˚S uIxpsq
˘

{
`

colimF S
1;xpI‚,M‚q

˘˘

.

This isomorphism is natural in the variable S .

Proof. We omit the proof because it follows from an evident generalization of Lemma 3.4.8.
�

Lemma 6.0.14. Let S be a finite pointed set. Suppose the map Y˚S ,1 Ñ Y˚S ,0 is a cofi-
bration and for s P S ´ t˚S u the maps Zs,1 Ñ Zs,0 are cofibrations. Suppose the objects
Y˚S ,1 and Y˚S ,0 are cofibrant and that, for s P S ´ t˚S u, Zs,1 and Zs,0 are cofibrant. Let
G`S : pES

1 q
op Ñ C be the functor given on objects by

G`S pxq “ Y˚S ,xp˚sq ^^sPS Zs,xpsq

and given on morphisms in the obvious way. Then the smash product

Y˚S ,0 ^^sPS´t˚S uZs,0 Ñ Y˚S ,0{Y˚S ,1 ^^sPS´t˚S uZs,0{Zs,1

of the cofiber projections Zs,0 Ñ Zs,0{Zs,1 and Y˚S ,0 Ñ Y˚S ,0{Y˚S ,1 fits into a cofiber
sequence:

colimG`S Ñ Y˚S ,0 ^^sPS´t˚S uZs,0 Ñ Y˚S ,0{Y˚S ,1 ^^sPS´t˚S uZs,0{Zs,1.

Proof. Letting Z˚S ,i “ Y˚S ,i for i “ 0, 1, we can prove this lemma in almost the same way
as Lemma 3.4.9. The only difference is that in the proof we need to choose s0 P S ´ t˚S u

so that ˚S is in S 1 “ S ´ ts0u.
�

Lemma 6.0.15. Suppose S is a pointed finite set and n P N. Let x P NS and ES
n and DS

n;x
be as in Definition 6.0.7 Let JS

n;x be the functor defined by

JS
n;x : ES

n Ñ DS
n;x

pJn;xpyqq psq “ xpsq ` ypsq.
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Then Jn;x has a right adjoint. Consequently Jn;x is a cofinal functor; i.e. for any functor
defined on DS

n;x such that the limit limF exists, the limit limpF ˝ JS
n;xq also exists, and the

canonical map limpF ˝ JS
n;xq Ñ limF is an isomorphism.

Proof. The proof follows easily from the evident generalization of the proof of Lemma 3.4.10.
�

Theorem 6.0.16. (Fundamental theorem of the May filtration with coefficients.) Let
I‚ be a cofibrant decreasingly filtered commutative monoid in C , let M‚ be a cofibrant
decreasingly filtered symmetric I‚-bimodule, and let Y‚ be a simplicial pointed finite set.
Then the associated graded commutative monoid E˚0

ˇ

ˇM Y‚pI‚,M‚q
ˇ

ˇ of the geometric real-
ization of the May filtration is weakly equivalent to the tensoring Y‚ b pE˚0 I‚; E˚0 M‚q of
Y‚ with the associated graded commutative monoid of I‚ with coefficients in the associated
graded symmetric E˚0 I‚-bimodule:

(6.0.2) E˚0
ˇ

ˇM Y‚pI‚,M‚q
ˇ

ˇ » Y‚ b pE˚0 I‚; E˚0 M‚q.

Proof. Since geometric realization commutes with cofibers, there is an equivalence

|M Y‚
n pI‚,M‚q|{|M

Y‚
n`1pI‚,M‚q| » |M Y‚

n pI‚,M‚q{M
Y‚

n`1pI‚,M‚q|

and we would like to identify this cofiber. Each Yi is some finite pointed set, so we will
compute the cofiber of the map

M Y‚
n`1pI‚,M‚q Ñ M Y‚

n pI‚,M‚q

on each simplicial level as follows. We claim that for any finite pointed set S
(6.0.3)
M S

n`1pI‚,M‚q Ñ M S
n pI‚,M‚q Ñ

ž

xPNS ;|x|“n

Mxp˚S q{Mxp˚S q`1 ^
ľ

sPS´t˚S u
Ixpsq{Ixpsq`1

is a cofiber sequence. To prove this claim, first note that M S
n`1 is defined to be colimF S

n`1pI‚,M‚q.
By Lemma 6.0.13, we can identify the cofiber of the left map in Equation 6.0.3 as the
cofiber of the left map in the diagram:

colimF̃ S
n`1pI‚,M‚q ÝÑ colimF S

n pI‚,M‚q ÝÑ
ž

txPNS ;|x|“nu

´

M˚S ^
ľ

sPS´t˚S u
Ixpsq

¯

{
`

colim F S
1;xpI‚,M‚q

˘

.

Lemma 6.0.13 also demonstrates naturality in the variable S . By Lemma 6.0.15, the func-
tor J1;x is cofinal and hence the map

colim pF S
1,xpI‚,M‚q ˝ J1;xq Ñ colim pF S

1;xpI‚,M‚q

is an isomorphism. (We are applying the dual of the statement of Lemma 6.0.15, which
also holds.) By Lemma 6.0.14, we identify
`

Mxp˚S q ^^sPS´t˚S uIxpsq
˘

{colim pF1;xpI‚; M‚q˝J1;xq »
`

Mxp˚S q{Mxp˚S q`1 ^^sPS´t˚S uIxpsq{Ixpsq`1
˘

as we needed to prove the cofiber sequence of Equation 6.0.3. The same considerations as
in the proof of Theorem 3.4.11 apply, producing naturality in S.
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We have a sequence of simplicial objects in C

...

��

...

��

...

��
M Y0

2 pI‚,M‚q //

��

M Y1
2 pI‚,M‚qoo

oo //
//

��

M Y2
2 pI‚,M‚qoo

oo
oo

//

//
//

��

. . .

oo
oo
oo
oo

M Y0
1 pI‚,M‚q //

��

M Y1
1 pI‚,M‚qoo

oo //
//

��

M Y2
1 pI‚,M‚qoo

oo
oo

//

//
//

��

. . .

oo
oo
oo
oo

M Y0
0 pI‚,M‚q // M Y1

0 pI‚,M‚qoo
oo //

// M
Y2

0 pI‚,M‚qoo

oo
oo

//

//
// . . .

oo
oo
oo
oo

and geometric realization commuting with cofibers implies that the comparison map

(6.0.4) Y‚ b pE˚0 I‚; E˚0 M‚q Ñ E˚0 |M
Y‚pI‚,M‚q|

of objects in C is a weak equivalence. If M‚ “ I‚, then we recover Equation 3.4.7. �

Remark 6.0.17. One can show that the weak equivalence of Equation 6.0.2 in Theo-
rem 6.0.16 is an equivalence of symmetric E˚0 |M

Y‚pI‚q|-bimodules. Also, in the cases
when both sides are objects in Comm(C ) and M‚ is a cofibrant decreasingly filtered com-
mutative monoid in C as well as a cofibrant decreasingly filtered symmetric I‚-bimodule,
one can show that the equivalence is an equivalence of commutative monoids in C .

Definition 6.0.18. Suppose I‚ is a cofibrant decreasingly filtered commutative monoid
object in C , M‚ is a cofibrant decreasingly filtered symmetric I‚-bimodule, and Y‚ is a
simplicial pointed finite set. Let H˚ be a connective generalized homology theory on C as
defined in Definition 3.5.1, then by the topological Hochschild-May spectral sequence for
Y‚ b pI‚; M‚q, we mean the spectral sequence in C obtained by applying H˚ to the tower
of cofiber sequences in C

...

��
ˇ

ˇM Y‚
2 pI‚,M‚q

ˇ

ˇ //

��

ˇ

ˇM X‚
2 pI‚,M‚q

ˇ

ˇ {
ˇ

ˇM X‚
3 pI‚,M‚q

ˇ

ˇ

ˇ

ˇM Y‚
1 pI‚,M‚q

ˇ

ˇ //

��

ˇ

ˇM X‚
1 pI‚,M‚q

ˇ

ˇ {
ˇ

ˇM X‚
2 pI‚,M‚q

ˇ

ˇ

ˇ

ˇM Y‚
0 pI‚,M‚q

ˇ

ˇ //
ˇ

ˇM X‚
0 pI‚,M‚q

ˇ

ˇ {
ˇ

ˇM X‚
1 pI‚,M‚q

ˇ

ˇ .
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The spectral sequence we refer to is the one associated to the exact couple

D1
˚,˚ –

À

i, j Hi

ˇ

ˇ

ˇ
M Y‚

j pI‚,M‚q

ˇ

ˇ

ˇ

//À
i, j Hi

ˇ

ˇ

ˇ
M Y‚

j pI‚,M‚q

ˇ

ˇ

ˇ
– D1

˚,˚

��

E1
˚,˚ –

À

i, j Hi

ˇ

ˇ

ˇ
M Y‚

j pI‚,M‚q

ˇ

ˇ

ˇ
{

ˇ

ˇ

ˇ
M Y‚

j`1pI‚,M‚q

ˇ

ˇ

ˇ

kk

.

Theorem 6.0.19. Given I‚, M‚, Y‚ and H˚ as in Definition 6.0.18. Suppose that I‚ and M‚

are Hausdorff as cofibrant decreasingly filtered objects in C . Suppose I‚ and M‚ satisfy
Connectivity axiom: HmpInq – 0 for all m ă n and HmpM`q – 0 for all m ă `.

Then the topological Hochschild-May spectral sequence is strongly convergent, and its
input and output and differential are as follows:

E1
s,t – Hs,tpY‚ b pE˚0 I‚, E˚0 M‚qq ñ HspY‚ b pI0,M0qq

dr : Er
s,t Ñ Er

s´1, t`r´1

Proof. We need to check that
“

Σ˚Z, holimi
`

H ^
ˇ

ˇM Y‚
i pI‚,M‚q

ˇ

ˇ

˘‰

is trivial, but by an evi-
dent generalization of Lemma 3.5.4 Hm

`ˇ

ˇM Y‚
i pI‚,M‚q

ˇ

ˇ

˘

– 0 for all m ă i, so by Lemma
3.5.3,

“

Σ˚Z, holimi
`

H ^
ˇ

ˇM Y‚
i pI‚,M‚q

ˇ

ˇ

˘‰

– 0 as desired. Thus, the spectral sequence
converges to H˚

`
ˇ

ˇM Y‚
0 pI‚,M‚q

ˇ

ˇ

˘

– H˚pX‚ b I0q. A routine computation in the spectral
sequence of a tower of cofibrations implies the bidegree of the differential.

The sequence

. . . //
ˇ

ˇM Y‚
2 pI‚,M‚q

ˇ

ˇ //
ˇ

ˇM Y‚
1 pI‚,M‚q

ˇ

ˇ //
ˇ

ˇM Y‚
0 pI‚,M‚q

ˇ

ˇ

is a cofibrant decreasingly filtered commutative monoid in C whenever M‚ is a cofibrant
decreasingly filtered commutative monoid in C compatible with the I‚-action as observed
in Remark 3.4.7 and therefore, in particular, there is a pairing of towers in the sense of [11]
under these conditions. Therefore by Proposition 5.1 of [11] the differentials in the spec-
tral sequence satisfy a graded Leibniz rule when M‚ is a cofibrant decreasingly filtered
commutative monoid in C compatible with the I‚-action.

Convergence is standard and follows as stated in the proof of Theorem 3.5.5. �

We conclude with an example. Suppose I‚ is a trivially filtered commutative monoid in
C ; i.e., In » 0 for n ě 1. Suppose M‚ is a cofibrant decreasingly filtered symmetric I‚-
bimodule object in C with Mn » 0 for n ě 2. Then the sequence of simplicial commutative
monoids becomes

M Y0
1 pI‚,M‚q //

��

M Y1
1 pI‚,M‚qoo

oo //
//

��

M Y2
1 pI‚,M‚qoo

oo
oo

//

//
//

��

. . .

oo
oo
oo
oo

M Y0
0 pI‚,M‚q // M Y1

0 pI‚,M‚qoo
oo //

// M
Y2

0 pI‚,M‚qoo

oo
oo

//

//
// . . .

oo
oo
oo
oo

where the realization of M Y‚
0 pI‚,M‚q is Y‚ b pI0; M0q, the realization of M Y‚

1 pI‚,M‚q is
Y‚bpI0; M1q and the realization of the quotient M Y‚

0 pI‚,M‚q{M
Y‚

1 pI‚,M‚q is M Y‚pI0,M0{M1q.
The spectral sequence collapses to produce a long exact sequence coming from the cofiber
sequence

Y‚ b pI0; M1q Ñ Y‚ b pI0; M0q Ñ Y‚ b pI0,M0{M1q.
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When Y‚ “ ∆r1s{δ∆r1s with the obvious basepoint, this specializes to a cofiber sequence,

T HHpI0,M1q Ñ T HHpI0; M0q Ñ T HHpI0,M0{M1q

which recovers a folklore result; i.e., a cofiber sequence in coefficient bimodules induces a
cofiber sequence in topological Hochschild homology. This seems to be well known, but
we do not know where it appears explicitly in the literature.
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