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1. Differential 1-forms on algebraic curves.

Let k be a field and let C Ď Pnk be a smooth projective curve. Then the function

field of C, written kpCq, is the field of fractions of the ring of regular functions on
Ank X C for any copy of Ank Ď Pnk which intersects C nontrivially. (Although this
definition involves a choice of Ank Ď Pnk , the function field of C is well-defined up to
isomorphism.) Then ΩC , the space of meromorphic differential 1-forms on C, is the
kpCq-vector space with basis the set of symbols

 

df : f P kpCq
(

and with relations

‚ dpx` yq “ dx` dy for all x, y P kpCq,
‚ dpxyq “ xdy ` ydx for all x, y P kpCq,
‚ dpcq “ 0 for all c P k Ď kpCq.

The kpCq-vector space ΩC is always one-dimensional.

Example 1.1. ‚ Suppose we consider the curve in A1
k given by the vanishing

of x2 ` y2 ´ 1. Let C be the projectivization of this curve, i.e., C is the
vanishing locus of x2`y2´z2 in P2

k. The function field kpCq is the fraction

field of the ring of functions of C’s intersection with A1
k
, i.e., kpCq is the

field of fractions of krx, ys{px2 ` y2 ´ 1q. We have dpy2q “ 2y dy, so if k
has characteristic ‰ 2, then dy “ 1

2ydpy
2q “ 1

2ydp1 ´ x2q “ ´x
y dx, so you

can see that ΩC is a free k-vector-space generated by, for example, dx; of
course dy works just as well.

What about when char k “ 2? Then the Jacobian of our original affine
curve is r2x 2ys “ r0 0s, so the curve is singular (in fact, every point on
the curve is singular), so the above discussion doesn’t apply.

‚ Suppose we consider the curve in A1
k given by the vanishing of x3` x´ y2.

Let C be the projectivization of this curve, i.e., C is the vanishing locus of
x3`xz2´y2z in P2

k. The function field kpCq is the fraction field of the ring

of functions of C’s intersection with A1
k
, i.e., kpCq is the field of fractions

of krx, ys{px3 ` x ´ y2q. We have dpy2q “ 2y dy, so if k has characteristic

‰ 2, then dy “ 1
2ydpy

2q “ 1
2ydpx

3 ` xq “
´

3
2yx

2 ` 1
2y

¯

dx, so you can see

that ΩC is a free k-vector-space generated by, for example, dx.
What about when char k “ 2? Then the Jacobian of our original affine

curve is
“

3x2 ` 1 ´ 2y
‰

“
“

x2 ` 1 0
‰

, so the curve is singular at the point
p1, 0q, so the above discussion doesn’t apply.

Remember that a divisor on a curve C is simply a formal Z-linear combination
of points on C, and the divisor group of C, DivpCq, is simply the free abelian group
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on the set of points of C. The purpose of DivpCq is to be a home for the divisors
of functions: we have a map div : kpCqˆ Ñ DivpCq which sends each function
f P kpCqˆ to the formal sum

ř

pPC ordppfqp, i.e., divpfq simply records the orders
of the poles and zeroes of f . The degree of a divisor is the sum of its coefficients.

Example 1.2. Again, let C be the projectivization of the affine curve given by the
vanishing of x2 ` y2 ´ 1. Assume char k ‰ 2, so that C is smooth. The function
x´ y P kpCqˆ vanishes when x “ y, which happens on the affine curve when x “ y

and x2`y2 “ 1, i.e., when x “ y “ ˘
a

1{2. The function x´y clearly has no poles
on the affine curve, but we need to check its behavior at the “points at infinity,”
i.e., the points in C which aren’t in the affine curve. To do this, we intersect the
vanishing locus of x2 ` y2 ´ z2 in P2

k with a copy of A2
k in P2

k other than the z ‰ 0
copy of A2

k in P2
k; for example, if we choose the y ‰ 0 copy of A2

k in P2
k, then CXA2

k

is the vanishing locus of x2` 1´ z2 in A2
k and our function x´ y on C agrees with

x´1
z on this affine curve. We have poles at x “ ˘

?
´1, z “ 0. If k is algebraically

closed, then
?
´1 and ˘

?
´1 exist and are distinct in k (remember we assumed

char k ‰ 2!), so

divpx´ yq “ r
a

1{2,
a

1{2, 1s ` r´
a

1{2,´
a

1{2, 1s ´ r
?
´1, 1, 0s ´ r´

?
´1, 1, 0s,

which has degree 1` 1´ 1´ 1 “ 0, which is not a coincidence: degpdivpfqq “ 0 for
all f P kpCqˆ, again assuming that k is algebraically closed.

Differential 1-forms also have divisors, but this requires slightly more explana-
tion. Assume k “ k. If ω P ΩC and P P C, we let ordP pωq be the order of vanishing
of g at P , where g P kpCq is the unique function such that ω “ g dt for t P kpCq a
uniformizer at P (i.e., t generates the maximal ideal of the ring of functions of C
localized at P ). While g depends on a choice of t, the order of vanishing of g at P
doesn’t, so ordP pωq is well-defined. We let divpωq be the divisor

ř

P ordP pωq ¨ P .
We say that a 1-form ω on a projective curve C is holomorphic if ω has nonneg-

ative order at every point of the curve (i.e., no poles), and is nonvanishing if ω has
nonpositive order at every point of the curve (i.e., no zeroes).

Example 1.3. Again, let C be the projectivization of the affine curve given by the
vanishing of x2 ` y2 ´ 1. Assume char k ‰ 2, so that C is smooth. Let’s compute
the divisor of dx. Given a point P “ px “ a, y “ bq on the affine curve, we have
px ´ a, y ´ bq2 “ ppx ´ aq2, px ´ aqpy ´ bq, py ´ bq2q “ px2 ´ 2ax ` a2, px ´ aqpy ´
bq, 1 ´ x2 ´ 2by ` b2q “ px2 ´ 2ax ` a2, px ´ aqpy ´ bq, 1 ´ 2ax ` a2 ´ 2by ` b2q,
i.e., modulo px´ a, y ´ bq2 we can rewrite every element of krx, ys{px2 ` y2 ´ 1q in
terms of 1 and x, and in particular, the function x´ a generates the maximal ideal
of the local ring of krCs at P , so we want to write dx as g dpx ´ aq. But since d
vanishes on constants, we can simply let g “ 1. So ordP pdxq “ 0. For points at
infinity, we intersect C with the y ‰ 0 copy of A2

k in P2
k: dx becomes dpx{zq on the

curve x2`1 “ z2, the points at infinity with respect to the original affine curve are
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x “ ˘
?
´1 and z “ 0, and

dpx{zq “ p1{zq dx´ px{z2q dz

“ p1{zq dx´ px2{z3q dx

“ ppz2 ´ x2q{z3q dx

“ 1{z3 dx

“ 1{z3 dpx˘
?
´1q,

since dpx{zq z ` px{zq dz “ dx and dpx2 ` 1q “ 2xdx “ 2zdz. So the order of
vanishing of dpx{zq at each of the points at infinity is ´3. So the divisor of dx on
C is ´3r

?
´1, 1, 0s´ 3r´

?
´1, 1, 0s, and divpdxq has degree 6, if I haven’t managed

to mess this calculation up. So dx is nonvanishing but not holomorphic.

Example 1.4. Again, let C be the projectivization of the affine curve given by the
vanishing of x3 ` x ´ y2. Assume char k ‰ 2, so that C is smooth. The function
y uniformizes every point P on the affine curve, and dx has divisor r0, 0, 1s `
r´
?
´1, 0, 1s ` r

?
´1, 0, 1s ´ 3r0, 1, 0s, the same divisor as divpyq. So 1{y dx has

divisor 0. So 1{y dx is a nonvanishing holomorphic differential on C.

2. Formal group laws.

Given a commutative ring R, a (one-dimensional, commutative) formal group
law over R is a power series F pX,Y q P RrrX,Y ss such that:

‚ F pX,F pY, Zqq “ F pF pX,Y q, Zq,
‚ F pX,Y q “ F pY,Xq,
‚ F p0, Xq “ X “ F pX, 0q, and
‚ there exists ipXq P RrrXss such that F pipXq, Xq “ F pX, ipXqq “ 0.

In other words: F puts the structure of a group object in formal schemes on
Spf RrrXss. If you ask for just a group structure on Â1

R without specifying an

isomorphism Â1
R – Spf RrrXss, that’s a formal group over R. FGs differ from

FGLs only in that an FGL comes equipped with a canonical choice of coordinate
for Â1

R.
Given FGLs F,G over R, a morphism φ : F Ñ G is a power series φpXq P RrrXss

such that φpF pX,Y qq “ GpφpXq, φpY qq. We say φ is strict if φpXq ” X modulo
X2.

A logarithm for an FGL F over R is a power series logF pXq P RrrXss such
that log´1

F plogF pXq ` logF pY qq “ F pX,Y q and such that logF pXq ” X modulo
X2. Every FGL is the reduction, modulo some ideal, of an FGL with a logarithm
defined over a larger ring; so it usually does no harm to assume all FGLs have
logarithms.

Here is the connection to elliptic curves: the Riemann-Roch theorem establishes
that a smooth algebraic curve of genus g has a g-dimensional vector space of holo-
morphic 1-forms, and the degree of a holomorphic 1 form on a curve is 2g ´ 2. So
a smooth algebraic curve has a nonvanishing holomorphic 1-form if and only if its
genus is 1, and every elliptic curve has a one-dimensional vector space of nonva-
nishing holomorphic 1-forms. In Example 1.4, we saw that 1{y dx generates this
vector space, for the elliptic curve y2 “ x3 ` x; in fact 1{y dx generates this vector
space for all elliptic curves with Weierstrass equations y2 “ x3 `Ax`B.
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If ω “ gpXq dX is a holomorphic differential 1-form on an elliptic curve E
over a ring R of characteristic zero, then the formal power series logF pXq “
ş

ω “
ş

gpXq dX P RrrXss is the logarithm of a formal group law F pX,Y q “

log´1
F plogF pXq ` logF pY qq, called the formal group law of the elliptic curve E.

It is true, but not immediately obvious, that F pX,Y q is defined over R. (The
reason it isn’t obvious is that formal integration introduces denominators, so un-
less R is a field of characteristic zero, the logarithm logF pXq “

ş

ω is only de-
fined over R bZ Q. The “miracle”—not really a miracle, and explained nicely by
Hazewinkel’s functional equational lemma—is that these denominators disappear
when you form log´1

F plogF pXq ` logF pY qq, so that log´1
F plogF pXq ` logF pY qq “

F pX,Y q P RrrX,Y ss.)
There are other ways to construct and/or describe the formal group law of an

elliptic curve; here is one other way. Elliptic curves are, a priori, smooth projective
algebraic curves of genus 1; something that is true, but not obvious, is that every
elliptic curve also has the additional structure of an abelian variety, that is, every
elliptic curve E also admits a multiplication map EˆE Ñ E and inverse map E Ñ
E which are both morphisms of varieties and which endow E with the structure of
an abelian group. So elliptic curves are “like” Lie groups, in an algebraic (rather
than simply smooth) setting; in fact when the ground field is C, every elliptic curve
is a Lie group, but it’s a special kind of Lie group, one whose transition maps are not
only smooth or analytic but actually polynomial. (As ordinary, smooth Lie groups,
elliptic curves over C are all tori of the same dimension, so they are isomorphic
to one another; it is only in the category of varieties (or abelian varieties), rather
than the category of manifolds (or Lie groups), that any two elliptic curves can be
non-isomorphic.) Over R, a nice way to define the group structure on a Weierstrass
elliptic curve E is by declaring any three (counting multiplicity) collinear points to
sum to zero. This makes the (unique) point at infinity of the Weierstrass curve into
the identity element of the group structure. A more conceptual approach to the
group structure is to observe that every elliptic curve E is canonically isomorphic
(via Abel-Jacobi) to the connected component Pic0pEq of the identity in its Picard
group scheme PicpEq, so transporting the group structure on Pic0pEq along that
isomorphism yields a canonical group structure on E.

Once you have a group structure on E, the tangent space to the identity of E
inherits a Lie algebra structure, from taking the commutator of tangent vectors
using the multiplication on E. You can tell this isn’t a very useful thing to do,
because in the smooth category every elliptic curve is just a torus, and the Lie
algebra of an analytic (or algebraic) Lie group only depends on its underlying Lie
group in the smooth category, which is an abelian Lie algebra for a torus. So
for elliptic curves the Lie bracket is just zero. The purpose of studying an elliptic
curve’s formal group law is that, since an elliptic curve E is not just a Lie group but
is an analytic Lie group, you have a well-defined multiplication not only of tangent
vectors to the identity element on E, you also have some algebraic structure defined
on higher-order (quadratic, cubic, etc.) infinitesimal data near the identity element.
Scheme-theoretically, if E is an elliptic curve over a field k, we let η : Spec k Ñ E
be the map sending the point Spec k to the identity element of E, and we take a
formal completion of E along the inclusion map η to get an affine formal scheme
Êη. Since E is smooth, ΓpÊηq is a regular, adically-complete local k-algebra whose

unit map k Ñ ΓpÊηq admits a left inverse in k-algebras, so by the Cohen structure
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theorem, ΓpÊηq – krrx1, . . . , xnss for some n; since E is a curve, n “ 1. The group

structure on E induces a group structure ÊηˆÊη Ñ Êη on Êη, and on taking global

sections, a cogroup structure ∆ : ΓpÊηq – krrzss Ñ krrx, yss – Γp ˆE ˆ Eηq, i.e., the
structure of a Hopf algebra on krrxss. The formal power series ∆pzq P krrx, yss is
the formal group law of the elliptic curve E: it agrees with the one you can get by
integrating a nonvanishing holomorphic differential.

3. Height, supersingularity.

Given a prime p, an FGL with a logarithm is called p-typical if logF pXq “
ř

ně0 `iX
pi , i.e., all the coefficients in logF pXq vanish except the ones for powers

of p. If R is a Zppq-algebra, then every formal group law is canonically strictly
isomorphic to a p-typical one (its Cartier typicalization), so if we p-localize, it
again usually do no harm to assume that our formal group laws are p-typical. The
p-height of a p-typical FGL is the least n such that the coefficient `n in the logarithm
ř

ně0 `nX
pn is nonzero modulo p. Over Fp, FGLs are classified up to isomorphism

by their height P t1, 2, . . . ,8u.
If E is an elliptic curve over Q, we can clear denominators in a Weierstrass

equation presenting E to get a set of defining equations for E over Z, and regard
E as an “elliptic curve over Z.” (Note that we didn’t really define elliptic curves
over rings that aren’t fields, hence the scare quotes.) But really there are many
possible proper schemes over Z with generic fibre (i.e., Q-points) isomorphic to E,
and some may have nicer properties than others. Let’s call such a proper scheme
over Z an integral model for E. For a given prime p, there are four possibilities for
what happens when you reduce modulo p the equations for an integral model for
E:

‚ You might get a singular curve over Fp in which the singularity is a cusp.
This happens when the formal group law of the integral model has infinite
p-height, i.e., its reduction modulo p is isomorphic to the additive formal
group law F pX,Y q “ X ` Y . We then say that this integral model for E
has additive reduction at p.

‚ You might get a singular curve over Fp in which the singularity is a node.
When this happens, the formal group law of the integral model has p-height
1, i.e., its reduction modulo p is isomorphic to a multiplicative formal group
law F pX,Y q “ X`Y `uXY with u a unit. We then say that this integral
model for E has multiplicative reduction at p.

‚ You might get a smooth curve over Fp, and the (Cartier p-typicalization of
the) formal group law has p-height 2. We then say that this integral model
for E has good reduction at p and is supersingular at p. (This terminology
isn’t good: supersingular curves aren’t singular! But it has the weight of
tradition behind it.)
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‚ You might get a smooth curve over Fp, and the (Cartier p-typicalization
of the) formal group law of E has p-height 11. We say that E has good
reduction at p and is ordinary at p.

Whether a Weierstrass equation over Q with good reduction at p is ordinary or
supersingular is determined by the vanishing of the Hasse invariant, Ep´1, which
is a polynomial in the Weierstrass coefficients; however, this polynomial Ep´1 is a
different polynomial for each prime p, so we can’t conclude that the vanishing locus
of Ep´1 (i.e., the set of Weierstrass curves which are supersingular at p) is a finite
subset of Z by some easy argument about Zariski-closed subsets of Z. Instead,
what happens is that, for a CM elliptic curve E (i.e., an elliptic curve over Q whose
endomorphism ring contains the ring of integers in a quadratic extension of Q),
the asymptotic density of supersingular primes for E is 0.5, so “half the primes
are supersingular,” while for a non-CM elliptic curve E over Q, a deep theorem of
Elkies is that there are infinitely many supersingular primes for E, but that set of
primes has asymptotic density 0.

There is another perspective on the distinction between ordinary and supersin-
gular primes for an elliptic curve. Given an elliptic curve E over Q and a prime
p of good reduction for E, choose a prime ` ‰ p, and write pE{pqet for the small
étale site on E reduced modulo p, i.e., the category of affine schemes over E bZ Fp
that are members of some étale covering family of E bZ Fp, equipped with the
Grothendieck topology given by étale covers. Let Z{`mZ : pE{pqopet Ñ Ab be the
sheafification of the constant presheaf of abelian groups taking the value Z{`mZ.
We can take the right-derived functors RnΓ of the functor of global sections Γ on
the category of sheaves of abelian groups on pE{pqet, and we define Hn

etpE;Q`q as

Hn
etpE;Q`q “ Q` bẐ`

lim
m
pRnΓqpZ{`mZq.

Grothendieck’s de Rham theorem identifies the dimension of the Q`-vector space
Hn

etpE;Q`q with the dimension of the R-vector space of the de Rham cohomology
Hn
dRpE bZ Cq, regarding E bZ C as an ordinary, classical manifold. So, since de

Rham cohomology agrees with singular cohomology and E bZ C is topologically
just a torus, we have

Hn
etpE;Q`q –

$

&

%

Q` if n “ 0, 2
Q` ‘Q` if n “ 1
0 otherwise.

1Note that, if the FGL has p-height 1, this doesn’t immediately tell you whether the given

integral model for your curve has multiplicative reduction, or ordinary good reduction: for that,
you also need to know if the curve has singular reduction modulo p. You might ask: is there a way

of augmenting the FGL with additional “FGL-like” data, such that we can tell whether an integral

model for E has multiplicative reduction or ordinary good reduction, just from the FGL with that
extra data? The answer is yes: this is what the p-divisible group of an integral model, also called

its Barsotti-Tate group, provides. Without defining what p-divisible groups are, here is how the

story plays out: the p-divisible group of an integral model for E with multiplicative reduction is
isomorphic (over Fp) to G1, the slope 1 indecomposable p-divisible group in the Dieudonné-Manin

classification, while the p-divisible group of an integral model for E with ordinary good reduction
is G0 ‘ G1, a direct sum of indecomposable slope 0 and an indecomposable slope 1. The formal

group of a p-divisible group (over Fp) captures just the positive-slope summands, which is one way

of saying why the FGL alone doesn’t distinguish between multiplicative reduction and ordinary
good reduction. For what it’s worth, integral models with supersingular reduction have p-divisible
group isomorphic to G1{2, an indecomposable slope 1{2 p-divisible group.
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So the Q`-vector space dimension of Hn
etpE;Q`q actually does not depend on the

choice of prime p, as long as p ‰ `.
The reason to use étale cohomology in this setting, and not simply de Rham

cohomology, is that étale cohomology has a special operator acting on it: every
object in pE{pqet is, in particular, a scheme over Fp, so there is a well-defined
Frobenius (pth power) morphism Frp on the étale cohomology of E{p. In particular,
we have an Qp-linear operator Frp on H1

etpE;Q`q – Q`‘Q`. That operator is known

to be semisimple, i.e., after base-change to Q`, it’s diagonalizable, even when its two
eigenvalues coincide. (More generally, this is conjectured to be true even when E
isn’t an elliptic curve: the action of Frp on Hn

etpX;Q`q is expected to be semisimple
for all smooth varieties over Z with good reduction at p (this is Tate’s conjecture),
and it’s known to be true for X an abelian variety, e.g. when X is an elliptic curve.

The reason this matters is that the Hasse-Weil zeta-function of E is

(3.1) ζEpsq “
ź

p good red.

ź

ně0

det
`

id´p´s Frp | |Hn
etpE;Q`q

˘p´1qn`1

¨
ź

p bad red.

??,

which converges for complex s with sufficiently large real part, and which conjec-
turally admits meromorphic continuation to C. (Perhaps the meromorphic contin-
uation is known now: the modularity theorem relates the good-reduction factors
in (3.1) to the L-function of modular forms, which are known to be admit mero-
morphic continuations to C.) In (3.1) I have left off the Euler factors at primes of
bad reduction of E, because I don’t remember what you’re supposed to do there
(sorry, I’m writing these notes from memory; you get degree 0 and 1 Euler factors2

at primes of bad reduction, rather than degree 2.). It’s not hard to see that E can
have only finitely many primes of bad reduction: for example, if you write E in the
form of a Weierstrass equation, then its Jacobian is a one-by-two matrix of polyno-
mials, so bad reduction of E is equivalent to simultaneous vanishing of Weierstrass
equation and the two (polynomial) entries in the Jacobian, for some px, yq, i.e.,
bad reduction of E happens in a Zariski-closed subset of Z, so E has either finitely
many primes of bad reduction, or all primes are primes of bad reduction for E.
With a bit more you can rule out the second possibility, and E consequently has
only finitely many primes of bad reduction, so (3.1) gives you ζXpsq up to finitely
many factors corresponding to the primes of bad reduction.

One part of the (now proven) Weil conjectures was that the eigenvalues of the
action of Frp on Hn

etpE;Q`q have complex norm pn{2, under a fixed choice of embed-
ding of fields Q` ãÑ C. In particular, if Hn

etpE;Q`q is a one-dimensional Q`-vector
space, then Frp acts on Hn

etpE;Q`q simply by multiplication by pn{2.
The previous two paragraphs actually apply equally well to all smooth curves E

over Q, after clearing denominators to get a curve over Z—E doesn’t actually have
to be elliptic. (Of course, the relationship between Frobenius semisimplicity and the
height of the formal group relies on E being elliptic: if E is a non-elliptic curve, it’s
not even clear what kind of formal group we can associate to E, much less that there
is one whose p-height governs the semisimplicity of action of Frp on H1

etpE;Q`q.
But the stuff on p-height was more than two paragraphs ago.) Those ideas are
enough to let us calculate the Hasse-Weil zeta-function of the projective line, P1:

2The degree of an Euler factor
`

a0 ` a1p´s ` a2p´2s ` ¨ ¨ ¨ ` anp´ns
˘p´1qm

with an ‰ 0 is

defined to be n. In other words: if you treat an Euler factor as a polynomial in p´s, the degree

of an Euler factor is just the degree of that polynomial.
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by Grothendieck’s de Rham theorem, dimQ`
Hn

etpP1;Q`q “ dimRpH
n
dRpCP 1qq, which

is 1 if n “ 0, 2 and which is zero otherwise. So Weil’s description of the norm of
the Frobenius eigenvalues actually determines the Frobenius eigenvalues:

ζP1psq “
ź

p

1

p1´ p´sq p1´ p1´sq

“ ζpsqζps´ 1q,

so the meromorphic continuation of the Riemann zeta-function ζpsq to C, with
its only pole at s “ 1, gives you the meromorphic continuation of ζP1psq to C
as well, with its only poles at s “ 1 and s “ 0. Notice that the nice formula
ζp1 ´ nq “ ´Bn

n for the values of the Riemann zeta-function at negative integers
gets totally lost when you pass to ζP1psq, since ζp1 ´ nq vanishes for odd n, so in
the product ζpsqζps ´ 1q, whenever s is an integer ă ´1, one of the two factors
is necessarily zero. So the only nonvanishing special value of ζP1psq at a negative
integer is ζP1p´1q “ ζp´1qζp0q “ ´1

12
´1
2 “ 1

24 .
I shouldn’t forget to mention the formula

ź

ně0

det
`

id´p´s Frp | |Hn
etpE;Q`q

˘p´1qn`1

“ e
ř

mě0

#pEpFpm qq

m p´ms

,

which holds at primes p of good reduction for E. Here #pEpFpmq is the number
of points on E over Fpm , i.e., the number of solutions to the defining equations for
E over the field Fpm . This tells you why people actually care about Hasse-Weil
zeta-functions: if p is a prime of good reduction for E, then the p-local Euler factor
of ζEpsq records some very concrete and important arithmetic data, the number
of points on E over each finite field of characteristic p. So the Hasse-Weil zeta-
function relates arithmetic data (points counts of a variety over finite fields) to
topological data (de Rham cohomology of the complex points of the variety) and
to analytic number-theoretic data (factorizations of the resulting Hasse-Weil zeta-
function into copies of Riemann, Dirichlet, etc. zeta- and L-functions, and resulting
asymptotics).

That whole train of thought about the Hasse-Weil zeta-function of P1—using
the topology of the complex points to make a cohomological calculation, deducing
something about the Frobenius action, then rewriting the Hasse-Weil zeta-function
as a product of L-functions of a number-theoretic origin (e.g. the Riemann zeta-
function), and drawing conclusions about meromorphic continuation and behavior
in the left half-plane—is all a pretty standard train of thought for Hasse-Weil zeta-
functions of more general varieties, too. Let’s try it for an elliptic curve. If α, β are
the eigenvalues of Frp, then of course det

`

id´p´s Frp | |Hn
etpE;Q`q

˘

is just

p1´ αp´sqp1´ βp´sq “ 1´ pα` βqp´s ` αβp´2s “ 1´ pα` βqp´s ˘ p1´2s,

with the last equality due to the complex norm of each eigenvalue being
?
p. (More

about that below.) The number α ` β is, of course, the trace of Frp; this number
is often called ap. If p ą 2, there aren’t many ways a sum of two complex numbers
of norm

?
p can be divisible be p, so if p is a prime of good reduction with p | ap,

then the p-local Euler factor in ζEpsq is just 1´p1´2s

1´p´s 1´ p1´s, i.e., it’s the same as

in the p-local Euler factor of ζp2sq
ζpsqζps´1q . The primes p of good reduction for E for

which p | ap turn out to be exactly the supersingular primes for E! That’s the
relationship between supersingular primes and ζEpsq.
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Now if you’ve done some number theory in the past, maybe you’re thinking you
might be able to write ζEpsq as a product of degree 1 L-functions: classically that’s
what you do with the Dedekind zeta-functions of abelian number fields, using class
field theory to rewrite the Artin L-functions of the characters of the Galois group
of the number field as Dirichlet (or at least Hecke) L-functions:

ζKpsq “
ÿ

0‰mĎOK

1

#pOK{mqs
(3.2)

“
ź

ρ:GK{QÑGLnpCq

1

pdet pid´p´s Frp |ρqq
degpρq2

(3.3)

“
ź

ρ:GK{QÑCˆ

1

det pid´p´s Frp |ρq
(3.4)

“
ź

χ1,χ2,...,χn

1

1´ χppqp´s
(3.5)

where (3.2) is a definition, (3.3) is an Euler product expansion combined with
Artin’s factorization, (3.4) is because we assumed K is abelian so its Galois group
has only one-dimensional representations, and (3.5) is a consequence of global class
field theory: the splitting of primes in (a representation of) an abelian number
field is governed by a reciprocity law, and the reciprocity law can be encoded by a
Dirichlet character of modulus equal to the modulus of the reciprocity law.

When it comes to the zeta-function of an elliptic curve, that same logic applies to
the supersingular primes (as above, since the Euler factor for every supersingular

prime is just ζp2sq
ζpsqζps´1q ), but not very well to the ordinary primes. Here is an

example: let E be the projectivization of the curve y2 “ x3 ` x, and let p ě 5.
Then E is supersingular at p if and only if p ” 3 modulo 4. (That’s not supposed
to be an obvious fact, but it’s true: section 4.6 in Washington’s book on elliptic
curves is a nice reference.) So, at ordinary primes p ě 5, the p-local Euler factor

of ζEpsq is
1´app

´s
˘p1´2s

p1´p´sqp1´p1´sq
, while at supersingular primes p ě 5, the p-local Euler

factor of ζEpsq is 1´p1´2s

p1´p´sqp1´p1´sq
. So the Euler factors of ζEpsq at supersingular

primes are easily expressed in familiar terms. But the Euler factors of ζEpsq at
ordinary primes are much harder to express in terms of degree 1 L-functions, like
the Riemann zeta-function or Dirichlet L-functions. For example, take a look at
this table of values of ap, for the curve y2 “ x3`x, that I produced in SAGE (very
easily—this is good software!):

print "p, p mod 4, a_p"

for p in range(3,500):

if is_prime(p):

E = EllipticCurve(GF(p),[1,0])

print p, p % 4 , E.cardinality() - p - 1

Output:

p, p mod 4, a_p

3 3 0

5 1 -2
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7 3 0

11 3 0

13 1 6

17 1 -2

19 3 0

23 3 0

29 1 -10

31 3 0

37 1 -2

41 1 -10

43 3 0

47 3 0

53 1 14

59 3 0

61 1 -10

67 3 0

71 3 0

73 1 6

79 3 0

83 3 0

89 1 -10

97 1 -18

101 1 -2

103 3 0

107 3 0

109 1 6

113 1 14

127 3 0

131 3 0

137 1 22

139 3 0

149 1 14

151 3 0

157 1 22

163 3 0

167 3 0

173 1 -26

179 3 0

181 1 -18

191 3 0

193 1 14

197 1 -2

199 3 0

211 3 0

223 3 0

227 3 0

229 1 30

233 1 -26
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239 3 0

241 1 30

251 3 0

257 1 -2

263 3 0

269 1 -26

271 3 0

277 1 -18

281 1 -10

283 3 0

293 1 -34

307 3 0

311 3 0

313 1 -26

317 1 22

331 3 0

337 1 -18

347 3 0

349 1 -10

353 1 -34

359 3 0

367 3 0

373 1 14

379 3 0

383 3 0

389 1 -34

397 1 38

401 1 -2

409 1 6

419 3 0

421 1 30

431 3 0

433 1 -34

439 3 0

443 3 0

449 1 14

457 1 -42

461 1 38

463 3 0

467 3 0

479 3 0

487 3 0

491 3 0

499 3 0
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So:

ζEpsq “
1´ 31´2s

p1´ 3´sqp1´ 31´sq

1` 2 ¨ 5´s ´ 51´2s

p1´ 5´sqp1´ 51´sq

1´ 71´2s

p1´ 7´sqp1´ 71´sq

1´ 111´2s

p1´ 11´sqp1´ 111´sq

1´ 6 ¨ 13´s ´ 131´2s

p1´ 13´sqp1´ 131´sq

1` 2 ¨ 17´s ´ 171´2s

p1´ 17´sqp1´ 171´sq

1´ 191´2s

p1´ 19´sqp1´ 191´sq
. . . .

You can see how ap is vanishing for the primes congruent to 3 modulo 4: those are
the supersingular primes for this curve! But you can also see that the value of ap,
for p ” 1 mod 4, is hard to predict: ap isn’t a root of unity in general, so there’s no
way ζEpsq could be equal to a product of Dirichlet L-functions. If it’s periodic like
how Dirichlet L-functions and degree 1 Artin L-functions are (in other words: if
there is a reciprocity law which says that ap “ a` whenever p ” ` modulo
N for some particular N ; this is precisely the analogue, for ζEpsq, of what
quadratic and cubic and Jacobi and Hilbert etc. etc. reciprocity says
about ζKpsq for abelian number fields K), then it must be periodic of very
long period.

In fact I think we find that this function p ÞÑ ap isn’t periodic; the methods
for proving this are something that I am just now learning myself, so I won’t say
I’m positive that it’s true. However, it happens that there is a modular form E of
weight 2 and level 64 (the numerology here is that 64 is the conductor of E) such
that the q-expansion of E is a1q`a2q

2`a3q
3`. . . , i.e., the coefficients ap appearing

in ζEpsq are the prime-degree Fourier coefficients of a modular form! In fact, this
always happens, by Wiles’ proof of the Shimura-Taniyama conjecture, now called
the modularity theorem: the factor

ś

p good red.p1 ´ app
´s ` p´2sq “

ř

ně1
an
ns in

ζEpsq coming from H1
et, for E an elliptic curve of conductor N , is always the L-

series of a cusp form of weight 2 and level N , i.e., the cusp form has q-expansion
a1q ` a2q

2 ` a3q
3 ` . . . .


