
MODULAR FORMS SEMINAR, TALK 2: SPECIAL VALUES,

PART 1.

A. SALCH

Last week we heard about the Riemann zeta-function. As Luca said, I will say
a bit about the special values of the Riemann zeta-function at negative integers,
that is, the values that ζpnq takes when n is an integer. This talk is supposed to
survey some conjectural and some known properties of special values of L-functions.
Sometimes I am going to talk about objects we have not yet defined in the seminar,
like algebraic K-groups, and L-functions of modular forms. I will always try to make
statements in which you can safely, temporarily treat any object not yet defined as
a “black box.” If you want more details on any of these “black boxes,” please speak
up in the seminar and I will gladly say more immediately, instead of putting off
careful definitions until later! Also, I wrote these notes in one day, so I apologize
for all the typos that there probably are; but I did put some care into the table
(0.2), below, and I hope I was successful in stamping out any typos that might be
in there.

By a contour integration argument one shows that, when n is a positive integer,

ζp1´ nq is equal to ´1
n times the nth Maclaurin coefficient of tet

et´1 . (I won’t try to
talk about this contour integration argument today, but I would like to talk about
it in a later talk in this seminar, because it’s an essential point whether one can
make a similar argument, replacing the Riemann zeta-function with the L-function
of a Maass form; the big question is what the Bernoulli numbers would be replaced

by, in that setting.) The Maclaurin coefficients of tet

et´1 have a name: they are called
the Bernoulli numbers, and they arise in many places in mathematics. I will write
Bn for the nth Bernoulli number, so that

(0.1)
ÿ

ně0

Bn
n!
tn “

tet

et ´ 1
.

Historically, the Bernoulli numbers were first studied by Johann Faulhaber and
Jakob Bernoulli, in trying to write a formula for the sum of the jth powers of the
first k positive integers. This led to Bernoulli’s 1713 formula

k
ÿ

n“1

nj “
1

j ` 1

j
ÿ

n“0

ˆ

j ` 1

n

˙

Bnk
j`1´n.

The values of the numbers Bn can be computed easily by power series methods,
from (0.1). The first few values, along with the corresponding special values of
ζp1 ´ nq and ζpnq and, for reasons I haven’t yet explained, the stable homotopy
groups of spheres and the algebraic K-groups of the integers. For the rest of this
talk I would like to sketch what is known and what is conjectured about the curious
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coincidences in this table (and generalizations of those curious coincidences).
(0.2)
n Bn ζp1´ nq ζpnq πst2n´1pS

0q K2n´1pZq K2n´2pZq
0 1 (pole) ´1

2 0 0 0
1 1

2
´1
2 (pole) Z{2Z Zˆ – Z{2Z Z

2 1
6

´1
12

π2

6 Z{24Z Z{48Z Z{2Z
3 0 0 irr. (Apery) 0 Z 0 (Rognes)

4 ´1
30

1
120

π4

90 Z{240Z Z{240Z 0
5 0 0 irr.? Z{2Z‘ Z{2Z‘ Z{2Z Z‘ Z{2Z 0?

6 1
42

´1
252

π6

945 Z{504Z Z{1008Z Z{2Z
7 0 0 irr.? Z{3Z Z 0?

8 ´1
30

1
240

π8

9450 Z{480Z‘ Z{2Z Z{480Z 0
9 0 0 irr.? Z{2Z Z‘ Z{2Z 0?

10 5
66

´1
132

π10

93555 Z{264Z‘ Z{2Z Z{528Z Z{2Z
11 0 0 irr.? 0 Z 0?

12 ´691
2730

691
32760

691π12

638512875 Z{8190Z‘ Z{2Z‘ Z{8Z Z{65520Z‘ Z{3Z Z{691Z

Entries marked with “irr.?” are conjectured (but not known) to be irrational,
and in fact transcendental. Entries marked 0? are conjectured (but not known) to
be trivial; the vanishing of K4npZq for all integers n ą 0 is equivalent to Vandiver’s
conjecture from number theory.

The appearance of 691 in K22pZq and in the numerator of ζp´11q is due to the
irregularity of the prime 691, and Kummer’s work on Fermat’s Last Theorem. This
is a story for another time!

‚ The relationship between the ζpnq and the ζp1 ´ nq columns in (0.2) is
simply given by the functional equation for ζpsq: unwinding the functional
equation Λpsq “ Λp1´ sq from Luca’s talk, we have

(0.3) ζpsq “ 2sπs´1 sin
´πs

2

¯

Γp1´ sqζp1´ sq,

and when s is an odd negative integer, we can use Γp1 ´ sq “ p´sq! and
ζp1´sq “ ´Bs

s and (0.3) to express ζp1´sq as a power of π times a rational

number. When s is an even negative integer, the vanishing of sin
`

πs
2

˘

tells
us about the trivial zeroes of ζpsq, which Luca told us about; but the
vanishing of sin

`

πs
2

˘

also tells us that the functional equation for ζpsq is
not going to give us a formula for ζpsq as a rational number times a power
of π. It remains an open conjecture that ζpsq is transcendental, when s is
a positive integer ą 1; the strongest known result in this direction is the
irrationality of ζp3q, by a theorem of Apery from 1978 (but it is still not
known that ζp3q is transcendental!). (It is also expected that, unlike the
case of even positive integers, ζpsq is probably not be a power of π times a
rational number, when s is an odd positive integer.)

‚ The relationship between the ζp1 ´ nq column and the πst2n´1pS
0q column

is given by Adams’ computation of the image of the J-homomorphism,
from 1965. Before I explain more, maybe I should mention that the nth
stable homotopy group of a pointed topological space X is, by definition,
the direct limit of the sequence

(0.4) πnpXq Ñ πn`1pΣXq Ñ πn`2pΣ
2Xq Ñ . . . ,
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where Σ is the operation on pointed topological spaces given by ΣX “
S1
ˆX

S1_X ; since you have a natural homeomorphism ΣSn – Sn`1, for each

map f : Sn Ñ X you get a map Σf : Sn`1 – ΣSn Ñ ΣX, and that’s
where the maps in (0.4) come from.

There is a certain homomorphism, called the Whitehead J-homomorphism,
from the (unstable, classical) homotopy groups of the infinite special or-
thogonal group SO “ YnSOpnq to the stable homotopy groups of S0. The
J-homomorphism is easy to define: given a continuous basepoint-preserving

map f : Si Ñ SOpnq, let f̂ : Si ˆDn Ñ Dn be given by f̂px, yq “ fpxqpyq,
where fpxq : Dn Ñ Dn is the map given by simply applying the matrix
fpxq P SOpnq to the points in Dn, by matrix multiplication. Now Si ˆDn

sits inside Si`n in a natural geometric way (you just have to glue the “end-
caps” on to Si ˆ Dn to turn it into the smash product Si ^ Sn, which
is homeomorphic to Si`n) and Jpfq : Si`n Ñ Sn is defined to be, on

SiˆDn Ď Si`n, the composite of f̂ : SiˆDn Ñ Dn with the collapse-the-
boundary projection Dn Ñ Sn; and Jpfq sends everything in Si`n outside
of SiˆDn to the basepoint in Sn. (It is true, but not obvious, that Jpfq is
indeed well-defined, and also homotopy-invariant: if f0 is homotopic to f1,
then Jpf0q is homotopic to Jpf1q.) Since spheres are compact, every con-
tinuous map Si Ñ SO factors through one of the subspaces SOpnq Ď SO,
so the above construction in fact gives a map from πipSOq to πi`npS

nq,
and by composing it with the suspension maps

(0.5) πi`npS
nq Ñ πi`n`1pS

n`1q Ñ πi`n`2pS
n`2q Ñ . . .

we get a homomorphism from πipSOq to the direct limit of (0.5), i.e., we
get a homomorphism of abelian groups J : πipSOq Ñ πsti pS

0q.
In 1959, Bott famously computed the homotopy groups of SO, O, and

U : these were the first “geometrically natural” topological spaces with
nonvanishing homotopy groups in arbitrary large degrees for which the
homotopy groups were successfully computed in all degrees. For the special
orthogonal group, Bott’s result is:

πipSOq –

$

&

%

Z if i ” 3 mod 4
Z{2Z if i ” 0, 1 mod 8
0 otherwise.

Since π4n´1pSOq – Z, the image of the J-homomorphism J4n´1 : π4n´1pSOq Ñ
πst4n´1pS

0q in any given degree congruent to 3 mod 4 is a cyclic group which
could, a priori, be of any finite order; it cannot be infinite since Serre proved
already in 1953 that πstn pS

0q is finite for all n ą 0. Adams computed the
order of the image of J in those degrees, up to a factor of 2, and arrived at
the formula

(0.6) #pim J4n´1q “ denom ζp1´ 2nq.

(Adams also made a conjecture about what should happen with that factor
of 2; this was the Adams conjecture, proven in the early 1970s by Quillen
and independently by Sullivan.)

Adams’ proof, however, only involved the Riemann zeta-function inci-
dentally: the von Staudt-Clausen theorem, from 1840, identifies the denom-
inator of Bn as the product of all the primes p such that p ´ 1 divides
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n:

denompBnq “
ź

pp´1q|n

p.

Since ζp1´nq “ ´Bn

n , you get a similar formula for denompζp1´nqq if you
have some control over how factors of p in n could potentially cancel with
factors of p in the numerator of Bn, when you form the quotient Bn

n . You
get this control from an 1845 theorem of von Staudt: if p´1 does not divide
n, then the p-adic valuation of Bn is at least as large as the p-adic valuation
of n. This is exactly what you need, along with the von Staudt-Clausen
theorem, to get the formula

denom ζp1´ nq “
ź

pp´1q|n

p1`νppnq.

(Remember that νppnq is defined as the largest integer N such that pN di-
vides n.) Adams used algebraic methods to calculate the order of im J4n´1

localized at p, for each prime p; since im J4n´1 is a finite abelian group, its
order is simply the product of the order of its p-localization at each prime
p, and Adams calculated that the order of the p-localization of im J4n´1

was p1`νppnq for all odd primes p. So you get formula (0.6), up to a power
of 2.

Adams expressed that he thought that the appearance of the Riemann
zeta-function in this topological context was just a fluke, and not due to
any deep connection between the orders of stable homotopy groups and the
number theory of zeta-functions; while I think Adams was right to take a
skeptical attitude about the possibility of such connections without there
being any further evidence of them, Lichtenbaum’s conjecture from 1973
established a plausible deep link between orders of stable homotopy groups
(as algebraic K-groups, in particular) and special values of zeta-functions
more general than the Riemann zeta-function; I will explain Lichtenbaum’s
conjecture later in this talk. My understanding of the history is that in
1978 Quillen showed that one could reduce Lichtenbaum’s conjecture to
the Iwasawa main conjecture if one had an étale descent spectral sequence
for algebraic K-theory and if one knew that étale K-theory agrees with
algebraic K-theory in a certain range of degrees; this last statement was the
Quillen-Lichtenbaum conjecture. Wiles proved the Iwasawa main conjecture
(at least in the necessary cases: the totally real number fields) in 1990,
Thomason built the spectral sequence in 1985, and Voevodsky, Rost, and
collaborators proved the Quillen-Lichtenbaum conjecture in the mid-2000s,
so the Lichtenbaum conjecture is now a theorem. The speaker has done
work, and continues to do work, in the area of finding connections between
stable homotopy groups of finite CW-complexes (rather than algebraic K-
groups, which are indeed stable homotopy groups, but not stable homotopy
groups of finite CW-complexes, e.g. manifolds) and special values of L-
functions; in particular this has resulted in formulas for the KU -local stable
homotopy groups of all finite CW-complexes with torsion-free homology in
terms of special values of Hasse-Weil L-functions of certain toric varieties,
as well as formulas for KU -local stable homotopy groups of Moore spaces
in terms of special values of Dedekind zeta-functions of certain totally real
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abelian number fields; this then gets you a topological proof of some cases
of the Leopoldt conjecture. (I am sorry that this paragraph is getting too
deep into algebraic topology for how early in the seminar it is. Please
feel free to skip reading it; I am only saying all this stuff at this point to
make it clear that Adams’ formula (0.6) is not a coincidence, but rather a
special case of some deep but currently very poorly-understood connections
between topology and number theory.)

In any case: the image of the J-homomorphism is not the entirety of
πst˚ pS

0q. Homotopical localization methods filter πst˚ pS
0q into infinitely

many periodic families, of which the image of J is only the first. (In the lan-
guage of Bousfield localization, the image of J agrees, up to 2-torsion, with
the KU -local stable homotopy groups of spheres in positive degrees. Here
KU is the spectrum representing complex K-theory.) One wants to be able
to describe the other periodic families in πst˚ pS

0q in terms of special values
of L-functions; this is something the speaker works on, but currently none
of the positive results in this direction are anywhere near as cleanly-stated
as the KU -local results described in the previous paragraph. For reasons
that I hope to explain as the seminar goes on, one expects that some of
the L-functions whose special values will appear in this setting are the L-
functions of eigenvalue 1{4 Maass forms, a generalization of the L-functions
of modular forms, which we haven’t yet defined—but we’re getting there!

‚ The relationship between the ζp1´ nq column and the last two columns in
(0.2) is the subject of the Lichtenbaum conjecture, mentioned above. The
Lichtenbaum conjecture for Z states that

ζp1´ 2nq “ ˘
#pK4n´2pZqq
#pK4n´1pZqq

up to multiplication by powers of 2. For example, reading (0.2), we have

ζp´11q “
691

32760
“ 2 ¨

691

65520
“ 2 ¨

#pK22pZqq
#pK23pZqq

.

More generally, if E is a totally real number field, Galois over Q, with ring
of integers OE , the Lichtenbaum conjecture states that

ζEp1´ 2nq “ ˘
#pK4n´2pOEqq
#pK4n´1pOEqq

,

again up to powers of 2. This version of the Lichtenbaum conjecture is now
(since the mid-2000s) known to be true, as explained above. (People some-
times also consider a more general version of the Lichtenbaum conjecture,
which allows E to have complex embeddings; the statement then is roughly
“the leading Taylor coefficient of ζEpsq at s “ 1 ´ 2n is equal to a certain

transcendental number (a higher regulator) times #pK4n´2pOEqq

#pK4n´1pOEqq
.”)

I should explain at least a little bit what these things mean:
– OE is the set of roots, in E, of monic polynomials with integer coeffi-

cients. This forms a subring of E (in fact, a Dedekind domain in E)
whose fraction field is E. You can think of O as something like an
inverse operation to taking the field of fractions. The most familiar
example is OQ “ Z.
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– ζE , the Dedekind zeta-function of E, is the meromorphic function on
C given to the right of the <psq “ 1 by the formulas

(0.7) ζEpsq “
ÿ

IĎOE

1

#pOE{Iqs
“

ź

mĎOE

1

1´#pOE{mq´s
,

and given on the rest of C by analytic continuation. The sum in (0.7)
is taken over all nonzero ideals I of OE , and the product is taken over
all maximal ideals of OE . You can see from (0.7) that ζQpsq is the
Riemann zeta-function.

– Given a commutative ring R, the algebraic K-groups of R can be
defined in positive degrees as follows: let GLpRq “ YnGLnpRq be the
infinite general linear group of R, and let BGLpRq be the classifying
space of principal GLpRq-bundles, i.e., BGLpRq is a connected CW-
complex such that π1pBGLpRqq – GLpRq and πnpBGLpRqq – 0 for
all n ą 1. (This uniquely characterizes BGLpRq, up to homotopy
equivalence.) Let BGLpRq` be the topological space constructed by
the following two-step process due to Quillen (in 1972):

˚ first, since S1 is the boundary of a 2-cell D2, for any element f of
GLpRq “ π1pBGLpRqq we can attach a 2-cell to BGLpRq along
the image of f , which has the effect of killing off f in π1 (and also
of completely changing the higher homotopy groups). Attach 2-
cells to BGLpRq to kill off the commutators in π1pBGLpRqq.

˚ Attaching those 2-cells has the effect of abelianizing π1, but also
introduces some new homology classes in H2; now attach 3-cells
to kill off those new homology classes. (It is not obvious that
you can do this; you need to know that those homology classes
are in the image of the Hurewicz transformation π2 Ñ H2. But
they indeed are!)

The resulting space—which is just BGLpRq with 2-cells and 3-cells
attached in a particular way—is called BGLpRq`. We define KnpRq
as πnpBGLpRq

`q when n ą 0. By construction, K1pRq is the abelian-
ization of GLpRq. It takes a bit more work but one also has a purely
algebraic account of K2pRq: for n ě 3, let StnpRq be the group with
generating set txi,jprq : r P R, i, j P t1, . . . , nu, i ‰ ju and with rela-
tions

xi,jprqxi,jpsq “ xi,jpr ` sq

rxi,jprq, xk,lpsqs “

$

&

%

1 if j ‰ k and i ‰ l
xi,lprsq if j “ k and i ‰ l
xk,jp´srq if j ‰ k and i “ l.

The second K-group of R, K2pRq, was defined by Milnor in 1967 as the
center of the Steinberg group StpRq “ limnÑ8 StnpRq. (It also agrees
with the kernel of the map StpRq Ñ EpRq obtained by regarding StpRq
as the universal central extension of the group EpRq of elementary
matrices with entries in R.)
So the definition of KnpRq as πnpBGLpRq

`q agrees, when n “ 1 and
n “ 2, with the definitions K1pRq “ GLpRq{rGLpRq, GLpRqs and
K2pRq “ centerpStpRqq of K-groups that people had before 1972,
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when there was no definition of K-groups above K2. Today, there
are many constructions of algebraic K-groups of rings, but all of them
are inescapably as the homotopy groups of some space or spectrum
constructed from the ring. (The only known possible exception is a
recent construction of Grayson which is purely algebraic—it does not
involve explicitly taking the homotopy groups of anything—but the
groups arising from Grayson’s construction have not been proven to
agree with the classical K-groups of a ring.)

The purely algebraic definition of K2 given above, in terms of generators
and relations, actually plays a role in how the Lichtenbaum conjecture was
formulated: before Lichtenbaum’s conjecture, there was the 1970 conjecture
of Birch and Tate: if E is a totally real number field, then ζEp´1q “

˘
#pK2pOEqq

w2pEq
, where w2pEq is the largest integer N such that GalpEpζN q{Eq

is an elementary abelian 2-group. For example, GalpQpζ24q{Qq – Z{2Z ˆ
Z{2Z ˆ Z{2Z but GalpQpζ48q{Qq has an element of order 4, so w2pQq “
24; meanwhile, K2pZq – Z{2Z, so the Birch-Tate conjecture predicts that
ζp´1q “ ˘ 2

24 , while the correct answer is ζp´1q “ ´B2

2 “ ´1
12 . (The Birch-

Tate conjecture was proven, up to a power of 2, as a consequence of Wiles’
1990 proof of the Iwasawa main conjecture.)

‚ Finally, the relationship between the πst˚ pS
0q column in (0.2) and the K˚pZq

columns in (0.2) is that the algebraic K-groups of a commutative ring R
are not just the homotopy groups of BGLpRq`: work of May and Segal in
the 1970s showed that the K-groups of R are in fact the homotopy groups
of an E8-ring spectrum K pRq; these are topological gadgets that behave
very much like commutative rings, but rather than every E8-ring spectrum
being a commutative Z-algebra, every E8-ring spectrum is a commutative
algebra over the sphere spectrum, which we will call S. Consequently we
have a unit map S Ñ K pRq, and on taking homotopy groups, we have a
map of graded rings πst˚ pS

0q Ñ K˚pRq for every commutative ring R.
The map πst˚ pS

0q Ñ K˚pZq is neither injective nor surjective, but it has
a very meaningful image: from calculation, we know that the elements of
K˚pZq that are in the image of the map πst˚ pS

0q Ñ K˚pZq are “essentially”
(that is, up to applying an operation which topologists call “multiplying by
the Bott class” and which number theorists call “twisting by the cyclotomic
character”) the ones which give rise, via the Lichtenbaum conjecture, to
the denominators of ζp1 ´ nq; and these are also “essentially” (that is,
up to 2-torsion) those elements of πst˚ pS

0q which are in the image of the
J-homomorphism.

Natural places to go next would be the factorization of Dedekind zeta-functions
into products of Artin L-functions, the relationship between degree 1 Artin L-
functions and Dirichlet L-functions, special values of Dirichlet L-functions, and
modularity conjectures and theorems for degree ą 1 Artin L-functions; that leads
us to L-functions of modular forms and Maass forms.


