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Abstract. We calculate the mod 2 spinc-cobordism ring up to uniform F -

isomorphism (i.e., inseparable isogeny). As a consequence we get the prime

ideal spectrum of the mod 2 spinc-cobordism ring. We also calculate the mod 2
spinc-cobordism ring “on the nose” in degrees ≤ 33. We construct an infinitely

generated nonunital subring of the 2-torsion in the spinc-cobordism ring. We

use our calculations of product structure in the spin and spinc cobordism rings
to give an explicit example, up to cobordism, of a compact 24-dimensional spin

manifold which is not cobordant to a sum of squares, which was asked about

in a 1965 question of Milnor.

1. Introduction and summary of results

1.1. Spinc cobordism. A spinc-structure on a compact smooth n-dimensional
manifold M is a reduction of its structure group from O(n) to Spinc(n). We find
the following perspective illuminating: a compact smooth manifold is

• orientable if its first Stiefel–Whitney class w1 vanishes
• and admits a spin structure if its first two Stiefel–Whitney classes, w1 and
w2, both vanish.

A spinc-structure is intermediate between an orientation and a spin structure.
Specifically, a compact smooth manifold M admits a spinc structure if its first
Stiefel–Whitney class w1 vanishes, and its second Stiefel–Whitney class w2 is a
reduction of an integral class. That is, w2 ∈ H2(M ;F2) is in the image of the
reduction-of-coefficients map H2(M ;Z) → H2(M ;F2). For these and many other
relevant facts, consult Stong’s book [25].

The spinc-cobordism ring, written ΩSpinc

∗ , is the ring of spinc-cobordism classes
of compact smooth spinc-manifolds. The addition is given by disjoint union of
manifolds, while the multiplication is Cartesian product. There are several rea-
sons to care about spinc-cobordism: aside from its applications to mathematical
physics, e.g. [7] and [29], spinc-cobordism is of particular interest because it is
one of the complex-oriented cobordism theories, and consequently there exists a

one-dimensional group law on ΩSpinc

∗ which describes how the first Chern class in
spinc-cobordism behaves on a tensor product of complex line bundles. See [1] or
[13] for these classical ideas, whose consequences for complex cobordism (as in [21])
have been enormous, but whose consequences for spinc-cobordism have apparently
never been fully explored1.

1In future work, the authors hope to apply the results about the ring structure of the spinc-

cobordism ring obtained in this paper to the problem of describing the formal group law on

the spinc-cobordism ring in formal-group-law theoretic terms, similar to what Quillen did for
complex and unoriented cobordism in [17],[18], what Baker–Morava did for 2-inverted symplectic

bordism in [6], and what Buchstaber did for symplectic bordism [9]. It seems impossible to get

1
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Since spinc-cobordism is an example of a “(B, f)-cobordism theory” in the sense
of Thom, the general results of [26] ensure that there exists a spectrum MSpinc

such that π∗(MSpinc) ∼= ΩSpinc

∗ . The homotopy type of the spectrum MSpinc is
understood as follows.

Away from 2: The map π : BSpinc −→ BSO ×K(Z, 2) is an odd-primary

homotopy equivalence and induces an isomorphism ΩSpinc

∗ [ 12 ]
∼= ΩSO

∗ (K(Z, 2))[ 12 ],
and consequently MSpinc[ 12 ]

∼= MSO[ 12 ] ∧ CP∞.
At 2: In 1966, Anderson, Brown, and Peterson [2],[3] proved that MSpinc

splits 2-locally as a wedge of suspensions of the connective complex K-
theory spectrum ku and the mod 2 Eilenberg-Mac Lane spectrum HF2:

MSpinc
(2) ≃ Z ∨

∐
J

Σ4|J|ku(2)(1)

where the coproduct (i.e., wedge sum) is taken over all partitions (i.e.,
unordered finite tuples of positive integers) J , and |J | denotes the sum of
the entries of J .

Not much is known about the summand Z in (1), other than that
• it is a coproduct of suspensions of copies of HF2,
• and from a Poincaré series [2], it is known how to solve inductively for
the number of copies of ΣnHF2 in Z, for each n.

In that sense, Z is understood additively.

This purely additive understanding of Z, and consequently of 2-local ΩSpinc

∗ , is
not entirely satisfying. To see the problem, consider the following table, which we
reproduce from Bahri–Gilkey [5]:

n dimF2
πnZ n dimF2

πnZ n dimF2
πnZ n dimF2

πnZ
0 0 8 0 16 0 24 2
1 0 9 0 17 0 25 0
2 0 10 1 18 3 26 9
3 0 11 0 19 0 27 0
4 0 12 0 20 1 28 4
5 0 13 0 21 0 29 1
6 0 14 1 22 5 30 14
7 0 15 0 23 0 31 1

Table 1.

The F2-linear dimension of πnZ, as recorded in table 1, is equivalently the num-
ber of copies of ΣnHF2 in 2-local MSpinc, and equivalently the F2-rank of the
2-torsion subgroup of ΩSpinc

n . Hence this table is telling us about the 2-torsion in
the spinc-cobordism ring. One has the sense that some deep pattern is present in
the distribution of the 2-torsion, but whatever it is, it cannot be seen clearly from
these F2-ranks, nor from the Poincaré series used to inductively compute them.

However, since π∗(Z) is precisely the 2-torsion in ΩSpinc

∗ , π∗(Z) is not only a

summand but also an ideal in ΩSpinc

∗ . One wants to understand π∗(Z) multiplica-

tively, i.e., one wants to be able to describe the ring structure on ΩSpinc

∗ , including

much understanding of the formal group law of spinc-cobordism without first coming to some

understanding of the structure of its coefficient ring ΩSpinc

∗ , which is the goal of this paper.
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its 2-torsion elements. A reasonably clear description of ΩSpinc

∗ as a ring would
yield a far more illuminating understanding of π∗(Z) than the inductive formula
for its F2-rank in each degree, which is presently all we have.

Fifty years after the additive structure of MSpinc was described by Anderson–

Brown–Peterson, the problem of calculating the ring structure of ΩSpinc

∗ remains
open. The purpose of this paper is to make progress towards a solution to this
problem, restricting to the 2-local case, which is the most difficult2.

1.2. The mod 2 spinc-cobordism ring in low degrees. A traditional notation
for the unoriented bordism ring ΩO

∗
∼= MO∗ is N∗. In the 1968 book [25, pg. 351],

Stong asks:

Open question: Can one determine these images nicely as subrings
of N∗?

By “these images,” Stong refers to the images of the natural maps ΩSpin
∗ → N∗

and ΩSpinc

∗ → N∗. Our approach to understanding the mod 2 spinc-cobordism
ring begins by answering Stong’s open question in a range of degrees. We use the
Anderson–Brown–Peterson splitting [2], product structure in the Adams spectral
sequences, and Thom’s determination of N∗ using symmetric polynomials [26] to

develop a method for calculating the image of the map ΩSpinc

∗ → N∗ through
degree d, for any fixed choice of integer d. Our method gives a presentation for
ΩSpinc

/(2, β) through degree d, since the map ΩSpinc

/(2, β) −→ N∗ is injective. We
carry out computer calculation using our method to obtain our first main theorem:

Theorem A (Theorem 3.4). The subring of the mod 2 spinc-cobordism ring ΩSpinc

∗ ⊗Z
F2 generated by all homogeneous elements of degree ≤ 33 is isomorphic to

F2[β, Z4, Z8, Z10, Z12, Z16, Z18, Z20, Z22, Z24, Z26, Z28, Z32,

T24, T29, T31, T32, T33]/I

where I is the ideal generated by the relations:

• βZi = 0 for each i ≡ 2 mod 4,
• and βTi = 0 and T 2

i = U2i for i ∈ {24, 29, 31, 32, 33}, where each Ui is a
particular polynomial in the generators Zj with j ≤ i− 20. The polynomial
Ui is described explicitly preceding Theorem 3.3.

The degrees of the generators are as follows: β = [CP 1] is in degree 2, while Zi and
Ti are each in degree i.

With Theorem A in hand, the patterns in table 1 become completely clear: in
each degree in this range, one can see why the F2-linear dimension of the 2-torsion

subgroup of ΩSpinc

∗ takes the particular value it takes, as follows. Since Anderson–

Brown–Peterson proved that the 2-torsion coincides with the β-torsion in ΩSpinc

∗ , in

2In principle, the ring structure on ΩSpinc

∗ away from 2 is understood, although only in a

rather indirect way. Here is how it works: from the complex-orientability of MSO, one gets
an isomorphism of rings MSO[ 1

2
]∗(CP∞) ∼= MSO[ 1

2
]∗[[X]]. The ring MSO[ 1

2
]∗[[X]] is also the

“covariant bialgebra” of the formal group law of MSO[ 1
2
]∗, in the sense of [12, Chapter 36].

Hence one can use the formal group law on MSO[ 1
2
]∗ (whose universal property is given by [6]) to

understand the coproduct on MSO[ 1
2
]∗[[X]], whose dual, in an appropriate sense, is responsible

for the ring structure on MSO[ 1
2
]∗(CP∞) ∼= ΩSpinc

∗ [ 1
2
]. This gives a means of understanding the

ring ΩSpinc

∗ [ 1
2
], although we know of nowhere in the literature where this has been carried out in

any further detail.
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degrees n ≤ 33 the 2-torsion in ΩSpinc

n is simply the F2-linear combinations of the
monomials in the generators Zi, Ti such that at least one of the factors is β-torsion,
i.e., at least one of the factors is either a generator Zi with i ≡ 2 mod 4, or a
generator Ti. Here is the same table as table 1, but augmented with an F2-linear
basis in each degree, using the multiplicative structure from Theorem A. We start

in degree 10 since there is no nontrivial 2-torsion in ΩSpinc

∗ below degree 10.

n dimF2 πnZ F2-linear basis for πnZ
10 1 Z10

11,12,13 0
14 1 Z4Z10

15, 16, 17 0
18 3 Z2

4Z10, Z8Z10, Z18

19 0
20 1 Z2

10

21 0
22 5 Z3

4Z10, Z4Z8Z10, Z12Z10, Z4Z18, Z22

23 0
24 2 Z4Z

2
10, T24

25 0
26 9 Z4

4Z10, Z
2
4Z8Z10, Z

2
8Z10, Z4Z12Z10, Z16Z10,

Z2
4Z18, Z8Z18, Z4Z22, Z26

27 0
28 4 Z2

4Z
2
10, Z8Z

2
10, Z10Z18, Z4T24

29 1 T29

30 14 Z5
4Z10, Z

3
4Z8Z10, Z4Z

2
8Z10, Z

2
4Z12Z10, Z8Z12Z10,

Z4Z16Z10, Z20Z10, Z
3
4Z18, Z4Z8Z18, Z12Z18,

Z2
4Z22, Z8Z22, Z4Z26, Z

3
10

31 1 T31

32 8 Z3
4Z

2
10, Z4Z8Z

2
10, Z12Z

2
10, Z4Z10Z18, Z10Z22,

Z2
4T24, Z8T24, T32

33 2 Z4T29, T33

Table 2.

One can also read off the product structure on the 2-torsion in ΩSpinc

∗ in degrees
≤ 33 from this table, since it is given by multiplication of monomials along with
the relations from Theorem A.

It is evident from Theorem A that, in degrees ≤ 33, ΩSpinc

∗ has a subring gener-
ated by elements Z4, Z8, Z12, Z16, . . . and by elements Z2i with i odd and not one
less than a power of 2, subject to the relations 2Z2i = 0 = βZ2i for all odd i. We
are able to show that this pattern extends into all degrees, and goes some way to

describing the ideal π∗(Z) of 2-torsion elements of ΩSpinc

∗ in multiplicative terms:

Theorem B (Theorem 4.3). Consider the spinc-cobordism ring as a graded algebra
over the graded ring S := Z(2)[β, Z2j : j+1 not a power of 2]/(βZ2j , 2Z2j for odd j).
Let J be the ideal of S generated by all the elements Z2j with j odd. Then J em-
beds, as a non-unital graded S-algebra, into the 2-torsion ideal π∗(Z) of the spinc-
cobordism ring.
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Theorem B describes the multiplicative structure of some, but not all, of the

2-torsion in ΩSpinc

∗ . For example, in degrees ≤ 33, it accounts for precisely those
monomials in table 2 which are not divisible by the elements Ti. In particular, the

lowest-degree 2-torsion element of ΩSpinc

∗ which is not described by Theorem 4.3 is

T24 ∈ ΩSpinc

24 .

1.3. Milnor’s 24-dimensional spin manifold. We also calculate the image of

the map ΩSpin
∗ → N∗ through degree 31 in Proposition 3.2 via a similar method to

the one used to calculate the image of the map ΩSpinc

∗ → N∗ in Theorem A. There
is a noteworthy geometric consequence of Proposition 3.2. In the 1965 paper [15],
Milnor asks this question:

Problem. Does there exist a spin manifold Σ of dimension 24 so
that s6(p1, . . . , p6)[Σ] ≡ 1 mod 2?

Here s6 is a certain symmetric polynomial, and p1, . . . , p6 are Pontryagin classes.
The reason for Milnor’s question is that, in [15], Milnor proves that, for a compact
smooth manifold M of dimension ≤ 23, the following conditions are equivalent:

(1) M is unorientedly cobordant to a spin manifold.
(2) The Stiefel–Whitney numbers of M involving w1 and w2 are all zero.
(3) M is unorientedly cobordant to N × N , with N an orientable compact

manifold.

Milnor points out that, if there exists a compact spin manifold Σ whose Pontryagin
number s6(p1, . . . , p6)[Σ] is odd, then these conditions would fail to be equivalent in
dimension 24. Anderson–Brown–Peterson [2],[3] established that, as a consequence
of their splitting of 2-local MSpin, there does indeed exist such a compact spin
manifold Σ. However, it seems that no explicit description of that 24-dimensional
compact spin manifold has been given in the literature (or anywhere else, as far as
we know).

In Theorem 3.6, we give an explicit formula for the unoriented bordism class of
such a compact spin manifold Σ, as a disjoint union of products of real projective
spaces and squares of Dold manifolds. We refer the reader to the Theorem 3.6 for
a statement of that formula, which is lengthy. The formula is obtained using our

calculation of the image of the map ΩSpin
24 → N24 and the manifold representatives

calculated in Proposition 3.5.

1.4. Determination of the mod 2 spinc-cobordism ring up to inseparable
isogeny. Thom’s famous calculation [26] established that the unoriented bordism
ring ΩO

∗ = N∗ is isomorphic to a polynomial algebra over F2. A theorem of Stong
[24, Proposition 14] shows that the spinc cobordism ring, reduced modulo torsion
and then reduced modulo 2, is also isomorphic to a polynomial F2-algebra.

By contrast, the spinc cobordism ring cannot itself be isomorphic to a polynomial
algebra, since by [2], it has 2-torsion but is not an F2-algebra, hence it has nontrivial
zero divisors. Similarly, since the mod 2 spinc-cobordism ring has nontrivial β-
torsion, it cannot be isomorphic to a polynomial F2-algebra.

It follows as a trivial consequence of Theorem A that the mod (2, β) spinc-
cobordism ring still cannot be a polynomial F2-algebra. One can, with a bit of
calculation, deduce the same fact from the additive structure of 2-local MSpinc, by
verifying that the Poincaré series of the mod (2, β) spinc-cobordism ring is not the
Poincaré series of any polynomial algebra. This avoids the use of our multiplicative
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methods. The advantage of our multiplicative methods is that we are able to prove

that ΩSpinc

∗ /(2, β) is instead uniformly F -isomorphic to a polynomial algebra.
As far as we know, the terms “F -isomorphism” (perhaps better known as “in-

separable isogeny”) and “uniform F -isomorphism” originated with Quillen [20]:

Definition 1.1. Given a prime p, a homomorphism of Fp-algebras f : A → B is
said to be an F -isomorphism if

• for each a ∈ ker f , some power an is zero, and
• for each element b ∈ B, some power bp

n

of b is in the image of f .

The F -isomorphism f is said to be uniform if n can be chosen independently of a
and b.

The notion of F -isomorphism is applied only to algebras over a field of positive
characteristic, so we had better reduce modulo 2 in order to apply this idea to the
spinc-cobordism ring. We get a positive result:

Theorem C (Theorem 4.4). The mod 2 spinc-cobordism ring ΩSpinc

∗ ⊗Z F2 is
uniformly F -isomorphic to the graded F2-algebra

(2) F2 [β, y4i, Z4j−2 : i ≥ 1, j ≥ 1, j not a power of 2] /(βZ4j−2),

with β the Bott element in degree 2, with y4i in degree 4i, and with Z4j−2 in degree
4j − 2.

Corollary D. The mod (2, β) spinc-cobordism ring is uniformly F -isomorphic to
a graded polynomial F2-algebra on

• a generator in degree 4i for all positive integers i,
• and a generator in degree 4j−2 for all positive integers j such that j is not
a power of 2.

An F -isomorphism induces a homeomorphism on prime ideal spectra, so Theo-
rem C yields a description of all prime ideals in the mod 2 spinc cobordism ring.
That is, we have

Corollary E (Corollary 4.5). The topological space SpecΩSpinc

∗ /(2) is homeomor-

phic to Spec of the F2-algebra (2). The topological space SpecΩSpinc

∗ /(2, β) is home-
omorphic to Spec of the F2-algebra described in Corollary D.

1.5. Conventions.

• Given a ring R and symbols x1, . . . , xn, we write R{x1, . . . , xn} for the free
R-module with basis x1, . . . , xn.

• We write β for the Bott element in π2(ku), and also for its corresponding

element β = [CP 1] ∈ ΩSpinc

2 under the Anderson–Brown–Peterson splitting
of 2-local MSpinc.

1.6. Funding. The first author was partially supported by the electronic Computa-
tional Homotopy Theory (eCHT) research community, funded by National Science
Foundation Research Training Group in the Mathematical Sciences grant 2135884.

1.7. Acknowledgements. The first author would like to thank Bob Bruner for
many helpful conversations related to this work, and the Simons Foundation for
providing the license for a copy of Magma [8] used in calculations.
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2. Preliminaries

In this section we present an extended review of some well-known facts about
spin and spinc cobordism, including the relationships various cobordism spectra,
their homotopy groups, homology and cohomology groups, including the Steenrod
algebra action on cohomology and the Pontryagin product in homology. This back-
ground material is necessary in order to understand the proofs of the results in the
rest of the paper. Readers confident in their knowledge of this background material
can skip to section 3, where we begin proving new results.

2.1. Review of the cohomology of the spectra MSpinc and MSpin. There
is an exact sequence of Lie groups

1 −→ U(1) −→ Spinc(n) −→ SO(n) −→ 1

that gives rise to the fiber sequence

BU(1) −→ BSpinc −→ BSO.(3)

Using this fibration, Harada and Kono [11] computed the mod 2 cohomology of the
space BSpinc:

Theorem 2.1. [11]

H∗(BSpinc;F2) ∼= F2(w2, w3, w4, w5, ...)/I(4)

where I is the ideal ⟨w3,Sq
2(w3),Sq

2(Sq4(w3)),Sq
8(Sq4(Sq2(w3)), ...⟩.

The triviality of the ideal I in the cohomology of BSpinc is a consequence of the
first d2 differential in the Serre spectral sequence associated to the fiber sequence (3).
It is not practical to write down a presentation for the F2-algebra H∗(BSpinc;F2)
which is more explicit than (4), since the difficulty of calculating iterated Steenrod
squares applied to the Stiefel–Whitney class w3 grows rapidly as the number of
Steenrod squares grows. For example, Sq8(Sq4(Sq2(w3)) has 38 monomials when
expressed as a polynomial in the Stiefel–Whitney classes.

There is also an exact sequence

1 −→ Z/2Z −→ Spin(n) −→ SO(n) −→ 1

which gives rise to the fiber sequence

BZ/2Z −→ BSpin(n) −→ BSO(n).

Using this, Quillen calculated:

Theorem 2.2. [19]

H∗(BSpin;F2) ∼= F2(w2, w3, w4, w5, ...)/J

where J is the ideal ⟨w2, w3,Sq
2(w3),Sq

2(Sq4(w3)),Sq
8(Sq4(Sq2(w3)), ...⟩.

By the Thom isomorphism, we have thatH∗(MSpinc;F2) ∼= H∗(BSpinc;F2){U}
and H∗(MSpin;F2) ∼= H∗(BSpin;F2){U} as graded F2-vector spaces. Since
H∗(BSpinc;F2) andH∗(BSpin;F2) are quotients ofH

∗(BO;F2) ∼= F2[w1, w2, w3, . . . ],
the action of Steenrod squares onH∗(BSpinc;F2) andH∗(BSpin;F2) is determined

by the Wu formula Sqi wj =
∑i

k=0

(
j+k−i−1

k

)
wi−kwj+k and the Cartan formula.

This, together with the formula Sqn U = wnU for the action of Steenrod squares
on the Thom class U , determines the action of the Steenrod squares on the coho-
mology H∗(MSpinc;F2) of the spinc-bordism spectrum MSpinc.
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2.2. Review of MO∗ and symmetric polynomials in the Stiefel–Whitney
classes. The following definitions are classical (see e.g. chapter 1 of [14]):

Definition 2.3. Let n be a nonnegative integer.

• Suppose λ = (a1, . . . , an) is an unordered n-tuple of nonnegative integers.
The monomial symmetric polynomial associated to λ is the symmetric poly-
nomial

mλ(X1, . . . , Xn) ∈ Z[X1, . . . , Xn]
Σn

which has the fewest nonzero monomial terms among all those which have
Xa1

1 Xa2
2 . . . Xan

n as a monomial term.
• Given a nonnegative integer m ≤ n, the mth elementary symmetric poly-
nomial is the symmetric polynomial

em(X1, . . . , Xn) ∈ Z[X1, . . . , Xn]
Σn

given by

em(X1, . . . , Xn) =
∑

1≤d1<d2<···<dm≤n

Xd1
Xd2

. . . Xdm
.

The monomial symmetric polynomials form a Z-linear basis for the ring of sym-
metric polynomials. The set of all finite products of elementary symmetric poly-
nomials also famously (by Newton) forms a Z-linear basis for the ring of sym-
metric polynomials. Consequently, for each λ, there exists a unique polynomial
Pλ(X1, . . . , Xn) such that

Pλ (e1(X1, . . . , Xn), e2(X1, . . . , Xn), . . . , en(X1, . . . , Xn)) = mλ(X1, . . . , Xn).

For more details about the polynomials Pλ(X1, . . . , Xn), see the material on the
transition matrix M(m, e) and its inverse M(e,m) in section 1.6 of [14], particularly
(6.7)(i).

See [25], particularly pages 71 and 96 and surrounding material, for a nice ex-
position of the following result, which dates back to Thom [26]: let Λ be the set
of unordered finite-length tuples of positive integers, each of which is not equal to
2a− 1 for any integer a. Such integers are called “non-dyadic,” and such partitions
are called “non-dyadic partitions.” For each λ ∈ Λ, write |λ| for the length of λ,
and write ||λ|| for the sum of the elements of λ. Consider the polynomial

Pλ(w1, . . . , w|λ|) ∈ H∗(BO;F2)

∼= F2[w1, w2, . . . ]

in the Stiefel–Whitney classes w1, w2, . . . . Then (see page 96 of [25], or pages
301-302 of [27]) the set

{Pλ(w1, . . . , w|λ|)U) : λ ∈ Λ}
is a homogeneous A-linear basis for the graded free A-module H∗(MO;F2), where
U ∈ H0(MO;F2) denotes the Thom class, and A is the mod 2 Steenrod algebra.
Consequently, for each nonnegative integer n, πn(MO) is the F2-linear dual of the
F2-vector space with basis the set

(5)
{
Pλ(w1, . . . , w|λ|)U : λ ∈ Λ, ||λ|| = n

}
.

Given two tuples (a1, . . . , am) and (b1, . . . , bn), we have their concatenation

(a1, . . . , am)
∐

(b1, . . . , bn) := (a1, . . . , am, b1, . . . , bn).
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The coproduct on H∗(MO;F2) is then given by

∆(Pλ(w1, . . . , w|λ|)U) =
∑

λ′,λ′′∈Λ: λ=λ′ ∐λ′′

Pλ′(w1, . . . , w|λ′|)U ⊗ Pλ′′(w1, . . . , w|λ′′|)U.

Consequently, if we write {Yλ} for the basis of π∗(MO) dual to the basis (5), then
YλYλ′ = Yλ

∐
λ′ , and N∗ ∼= π∗(MO) ∼= F2[Y(2), Y(4), Y(5), Y(6), Y(8), . . . ], with Y(i) in

degree i. We will sometimes write Yi as an abbreviation for Thom’s generator Y(i)

of N∗.

2.3. Maps between bordism theories. The first stages of the Whitehead tower
for the orthogonal group are:

BString = BO⟨8⟩ −→ BSpin = BO⟨4⟩ −→ BSO = BO⟨2⟩ −→ BO.

While BSpinc does not fit into this sequence via a connective cover, the map
BSpin −→ BSO factors through BSpinc. There is a commutative diagram whose
rows and columns are fiber sequences:

K(Z/2Z, 0) Spin(n) SO(n)

K(Z, 1) Spinc(n) SO(n)

K(Z, 1) ∼= U(1) U(1) ∗

On the level of spectra, we have maps

MString −→ MSpin −→ MSpinc −→ MSO −→ MO.(6)

The maps induced in homotopy give the maps of respective cobordism rings. We
will specifically consider the images of MSpinc

∗ and MSpin∗ in MO∗.
By the Anderson–Brown–Peterson splitting of 2-local MSpinc, the cohomology

H∗(MSpinc;F2) splits as a direct sum of suspensions of H∗(ku;F2) ∼= A//E(1)
and of H∗(HF2;F2) ∼= A. Here we are using the standard notation A for the mod
2 Steenrod algebra, and A//E(1) for its quotient A ⊗E(1) F2, where E(1) is the

subalgebra of A generated by Sq1 and by Q1 = [Sq1,Sq2]. Hence the s = 0-line in
the 2-primary Adams spectral sequence for MSpinc,

Es,t
2

∼= Exts,tA (H∗(MSpinc;F2),F2) ⇒ πt−s(MSpinc)∧2(7)

dr : Es,t
r → Es+r,t+r−1

r

is a direct sum of suspensions of F2, with one summand ΣtF2 for each summand
Σtku(2) in MSpinc

(2), and also with one summand ΣtF2 for each summand ΣtHF2

in MSpinc
(2).

Anderson–Brown–Peterson prove in [3] that all differentials in the Adams spec-
tral sequence (7) are zero. Consequently the s = 0-line homA(H

∗(MSpinc;F2),F2)
is the reduction of π∗(MSpinc) modulo the ideal generated by 2 and by the Bott
element β ∈ π2(ku).
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This means we can calculate π∗(MSpinc)/(2, β) simply by calculating
homA(H

∗(MSpinc;F2),F2), i.e., theA∗-comodule primitives F2□A∗H∗(MSpinc;F2).
The advantage of thinking in terms of comodule primitives is that the Adams spec-
tral sequence respects ring structure: if we calculate the homology H∗(MSpinc;F2)
as a ring, then by simply restricting to the comodule primitives in H∗(MSpinc;F2),

we have calculated ΩSpinc

∗ /(2, β).
The same remarks applymutatis mutandis for the spin bordism spectrumMSpin,

the oriented bordism spectrum MSO or for the unoriented bordism spectrum MO
in place of MSpinc. The Anderson–Brown–Peterson splitting for MSpin is as
a wedge of suspensions of ko, ko⟨2⟩, and HF2. The analogue of the Anderson–
Brown–Peterson splitting for MO is Thom’s splitting of MO as a wedge of sus-
pensions of HF2, while MSO(2) splits as a wedge of suspensions of HZ(2) and
HF2; as far as we know, the latter splitting was originally proven by Wall [27].
Since H∗(MSpinc;F2) is a quotient A-module of H∗(MSO;F2), which is in turn
a quotient A-module of H∗(MO;F2), dualizing yields that H∗(MSpinc;F2) is a
subcomodule of H∗(MSO;F2), which is in turn a subcomodule of H∗(MO;F2).

Hence our broad strategy for calculating ΩSpinc

∗ /(2, β) ∼= MSpinc
∗/(2, β) and

ΩSpin
∗ /(2, η, α, β) ∼= MSpin∗/(2, η, α, β), and the natural mapsMSpin∗/(2, η, α, β) →

MSpinc
∗/(2, β) → MO∗, is to calculate theA∗-comodule primitives inH∗(MSpinc;F2)

and in H∗(MSpin;F2), regarding each as A∗-subcomodule algebras of H∗(MO;F2).

The resulting information will describe ΩSpinc

∗ /(2, β) as a subring of N∗. Details of
this strategy are given in the description of the computational method in the proof
of Proposition 3.1.

The relationships between the spin, spinc, oriented, and unoriented cobordism
rings and their homologies is summarized in the following diagram, in which hooked
arrows represent one-to-one maps:

MSpin∗/(2, η, α,B) H∗(MSpin;F2)

MSpinc∗/(2, β) H∗(MSpinc;F2)

MSO∗/(2) H∗(MSO;F2)

MO∗ H∗(MO;F2)

3. The Spinc bordism ring in low degrees

In the statement of Proposition 3.1, we use Thom’s presentation F2[Y2, Y4, Y5, ...]
for the unoriented cobordism ring N∗.
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Proposition 3.1. The image of the map ΩSpinc

∗ −→ N∗ agrees, in degrees ≤ 33,
with the subring of N∗ generated by the elements

Y 2
2 , Y

2
4 , Y

2
5 , Y

2
6 , Y

2
9 , Y

2
10, Y

2
11, Y

2
12, Y

2
13, Y

2
14, Y

2
15, Y

2
16, T24, T29, T31, T32, and T33,

where

T24 = Y14Y
2
5 + Y13Y11 + Y13Y9Y2 + Y13Y6Y5 + Y13Y5Y

3
2 + Y12Y

2
5 Y2 + Y 2

11Y2(8)

+ Y11Y9Y4 + Y11Y8Y5 + Y11Y6Y5Y2 + Y11Y5Y
2
4 + Y11Y5Y4Y

2
2 + Y10Y

2
5 Y4

+ Y10Y
2
5 Y

2
2 + Y 2

9 Y4Y2 + Y 2
9 Y

3
2 + Y9Y8Y5Y2 + Y9Y6Y5Y4 + Y9Y6Y5Y

2
2

+ Y9Y
2
5 + Y9Y5Y

2
4 Y2 + Y 2

6 Y
2
5 Y2 + Y 4

5 Y4 + Y 2
5 Y

3
4 Y2 + Y 2

5 Y
2
4 Y

3
2 ,

T29 = Y19Y
2
5 + Y17Y

2
5 Y2 + Y14Y

3
5 + Y13Y6Y

2
5 + Y13Y

2
5 Y

3
2 + Y11Y

2
9 + Y11Y8Y

2
5

+ Y11Y
2
5 Y4Y

2
2 + Y10Y9Y

2
5 + Y10Y

3
5 Y

2
2 + Y 3

9 Y2 + Y 2
9 Y6Y5 + Y 2

9 Y5Y
3
2

+ Y9Y6Y
2
5 Y

2
2 + Y9Y

4
5 + Y 2

6 Y
3
5 Y2 + Y 5

5 Y4 + Y 3
5 Y

2
4 Y

3
2 ,

T31 = Y21Y
2
5 + Y19Y

2
5 Y2 + Y17Y

2
5 Y4 + Y17Y

2
5 Y

2
2 + Y16Y

3
5 + Y13Y

2
9 + Y13Y8Y

2
5

+ Y13Y
2
5 Y4Y

2
2 + Y12Y9Y

2
5 + Y12Y

3
5 Y

2
2 + Y11Y10Y

2
5 + Y11Y

2
9 Y2 + Y11Y6Y

2
5 Y

2
2

+ Y 3
9 Y4 + Y 3

9 Y
2
2 + Y 2

9 Y8Y5 + Y 2
9 Y5Y

2
4 + Y 2

9 Y5Y4Y
2
2 + Y 2

9 Y5Y
4
2

+ Y9Y8Y
2
5 Y

2
2 + Y9Y

2
6 Y

2
5 + Y9Y

2
5 Y

2
4 Y

2
2 + Y 2

8 Y
3
5 + Y 2

6 Y
3
5 Y4 + Y 3

5 Y
3
4 Y

2
2 + Y 3

5 Y
2
4 Y

4
2 ,

T32 = Y22Y
2
5 + Y21Y11 + Y21Y9Y2 + Y21Y6Y5 + Y21Y5Y

3
2 + Y20Y

2
5 Y2 + Y19Y13

+ Y19Y9Y4 + Y19Y8Y5 + Y19Y6Y5Y2 + Y19Y5Y
2
4 + Y19Y5Y4Y

2
2 + Y18Y

2
5 Y4

+ Y18Y
2
5 Y

2
2 + Y17Y13Y2 + Y17Y11Y4 + Y17Y8Y5Y2 + Y17Y6Y5Y4 + Y17Y6Y5Y

2
2

+ Y17Y
3
5 + Y17Y5Y

2
4 Y2 + Y16Y11Y5 + Y16Y9Y5Y2 + Y14Y13Y5 + Y14Y11Y5Y2

+ Y14Y
2
9 + Y14Y9Y5Y4 + Y14Y9Y5Y

2
2 + Y 2

13Y6 + Y 2
13Y

3
2 + Y13Y11Y6Y2

+ Y13Y10Y9 + Y13Y10Y5Y
2
2 + Y13Y9Y8Y2 + Y13Y9Y6Y4 + Y13Y

2
6 Y5Y2 + Y13Y

3
5 Y4

+ Y12Y11Y9 + Y12Y11Y5Y
2
2 + Y12Y10Y

2
5 + Y12Y9Y6Y5 + Y12Y

4
5 + Y 2

11Y10

+ Y 2
11Y8Y2 + Y 2

11Y6Y
2
2 + Y 2

11Y4Y
3
2 + Y11Y10Y6Y5 + Y11Y9Y8Y4 + Y11Y9Y

2
6

+ Y11Y
2
6 Y5Y4 + Y11Y6Y

3
5 + Y 2

10Y
2
5 Y2 + Y10Y9Y8Y5 + Y10Y9Y5Y

2
4 + Y10Y

2
6 Y

2
5

+ Y 3
9 Y5 + Y 2

9 Y8Y6 + Y 2
9 Y6Y

2
4 + Y 2

9 Y
2
5 Y4 + Y9Y

2
8 Y5Y2 + Y9Y8Y

3
5 + Y9Y

3
6 Y5

+ Y 2
8 Y

2
5 Y4Y2 + Y 2

8 Y
2
5 Y

3
2 , and

T33 = Y23Y
2
5 + Y21Y

2
5 Y2 + Y19Y

2
5 Y4 + Y18Y

3
5 + Y17Y6Y

2
5 + Y14Y9Y

2
5 + Y13Y10Y

2
5

+ Y13Y
2
5 Y

2
4 Y2 + Y12Y11Y

2
5 + Y11Y11Y11 + Y11Y11Y9Y2 + Y11Y11Y6Y5 + Y11Y11Y5Y

3
2

+ Y11Y
2
5 Y

2
4 Y4 + Y10Y

3
5 Y

2
4 + Y 2

9 Y
3
5 + Y9Y6Y

2
5 Y

2
4 + Y 2

8 Y
3
5 Y2 + Y 5

5 Y
2
4 + Y 3

5 Y
4
4 Y2.

Proof. This proposition is proven using computer calculation. We will describe our

method for calculating im (ΩSpinc

∗ → ΩO
∗ ) in degrees ≤ d, for any fixed choice of d.

The first author wrote a Magma [8] program which implements this method, and we
have made its source code available at https://github.com/hassan-abdallah/

spinc_cobordism. Once the reader is convinced of the correctness of the method,
the proof of this proposition consists of simply running the calculation through

https://github.com/hassan-abdallah/spinc_cobordism
https://github.com/hassan-abdallah/spinc_cobordism
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degree 33, either by using our software, or by writing their own software implemen-
tation of the method, if desired.

We freely use the relationship between the spinc-cobordism ring, the unoriented
cobordism ring, and the mod 2 cohomology of BO detailed in section 2. Let λ
be a non-dyadic partition of a nonnegative integer n. We want to know whether
its corresponding element Yλ ∈ MOn is in the image of the map MSpinc

n →
MOn. The element Yλ ∈ MOn has a Hurewicz image, i.e., the image of Yλ under
the Hurewicz map πn(MO) → Hn(MO;F2). In section 2.2, we described the
dual element PλU ∈ Hn(MO;F2) to the Hurewicz image of Yλ, using Thom’s
basis for MO∗. The element PλU can be written as U times a polynomial in the
Stiefel–Whitney classes by applying an appropriate transition matrix3. Once PλU
is calculated, we see that Yλ is in the image if and only if, when reduced modulo w1

and the relations in the H∗(BO;F2)-module H∗(MSpinc;F2), PλU is an A-module
primitive in H∗(MSpinc;F2).

Consequently our method for calculating im (ΩSpinc

∗ → ΩO
∗ ) is merely a method

for building up a basis for the F2-vector space of A-module primitives through some
fixed degree d, in terms of non-dyadic partitions. We work one degree at a time,
but via induction, assuming we have already completed the calculation at all lower
degrees.

The induction begins at degree 0, where there is nothing to say: the empty
partition ∅ yields the unique A-module primitive ∅ · U in H0(MSpinc;F2). For
each integer n ∈ [1, d], the product Sqn ·∅ · U ∈ Hn(MSpinc;F2) is simply wnU
modulo the relations in H∗(MSpinc;F2), by the classical formula Sqn U = wnU
for the action of Steenrod squares on the Thom class in H0(MO;F2). Record

the elements {Sq1 U,Sq2 U, . . . , Sqd U} in an unordered list D. Here the symbol
D stands for “decomposable,” as we will use it to build up a list of A-module
decomposables in H∗(MSpinc;F2) in degrees ≤ d.

We are not done with the initial step in the induction: for each nonzero ele-
ment Sqn U , we calculate {Sq1 Sqn U,Sq2 Sqn U, . . . , Sqd−n Sqn U} using the Thom
formula Sqn U = wnU and the Wu formula ([28], but see [16, pg. 94] for a text-
book reference) for the action of Sqn on Stiefel–Whitney classes, and we include
the results in D. We keep going: calculate all the three-fold composites of Steenrod
squares applied to U landing in degrees ≤ d, then all the four-fold composites of
Steenrod squares applied to U landing in degrees ≤ d, and so on. We emphasize
the phrase “landing in degrees ≤ d” because it is what ensures that this calculation
eventually terminates!

After we are done with that inductive calculation, D now contains an F2-linear
basis for the A-submodule of H∗(MSpinc;F2) generated by the Thom class U , in
all degrees ≤ d.

Now we are ready for the inductive step:

Inductive hypothesis at the nth step: We have produced a list G of F2-
linear combinations of non-dyadic partitions of degree < n, such that the
F2-linear span of {PλU : λ ∈ G} is a basis for the set of A-module primi-
tives in H∗(MSpinc;F2) in all degrees < n. We have also produced a list
D of F2-linear combinations of non-dyadic partitions of degree ≤ d, such

3We remark that the computation of this transition matrix is one of the most computationally
expensive parts of this process, despite its being a simple combinatorial problem. It is in fact the

inverse of a Kostka matrix [23].
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that the F2-linear span of {PλU : λ ∈ D} is precisely the A-submodule of
H∗(MSpinc;F2) generated by G in degrees ≤ d.

Calculation for the nth inductive step: Write Dn for the F2-linear span
of the degree n elements in D. Calculate an F2-linear basis B for
Hn(MSpinc;F2)/Dn. Let G′ be G ∪ B. Use the calculated transition
matrix to convert the members of G′ from the Thom/partition basis to the
Stiefel–Whitney monomial basis, and then use the Thom formula and the
Wu formula to calculate all Steenrod squares on the members of G′, then all
Steenrod squares on those, etc., in degrees ≤ d. Use the transition matrix
to convert back to the partition basis, and D′ for the resulting list of linear
combinations of non-dyadic partitions. Now we are ready to iterate, with
G′ in place of G, and with D′ in place of D.

Once we complete the n = d step, we have an F2-linear basis for the image of

the map ΩSpinc

∗ → N∗ in all degrees ≤ d, expressed in terms of Thom’s partition

basis for N∗. Consequently we have a description of ΩSpinc

∗ /(2, β), in all degrees
≤ d, as a subring of N∗ ∼= F2[Y2, Y4, Y5, Y6, Y8, Y9, . . . ]. □

In principle there is no obstruction to using the same method to make calcu-

lations of products in ΩSpinc

∗ in degrees > 33. We stopped at degree 33 simply
because, around the time we completed degree 33, we could see enough of the

ring structure of ΩSpinc

∗ to prove that the mod (2, β) spinc-cobordism ring is not
a polynomial algebra, and to suggest the right statements for Proposition 4.2 and

Theorem C. The products in ΩSpinc

∗ required for the proof of Theorem 3.6 are
known as soon as one computes the ring structure through degree 24.

The same computational method described in the proof of Proposition 3.1, ap-
plied to MSpin rather than MSpinc, yields:

Proposition 3.2. The image of the map ΩSpin
∗ −→ N∗ agrees, in degrees ≤ 31,

with the subring of MO∗ generated by the elements

⟨Y 4
2 , Y

2
5 , Y

4
4 , Y

2
9 + Y 2

5 Y
2
4 , Y

2
11 + Y 2

9 Y
2
2 + Y 2

5 Y
2
4 Y

2
2 , Y

2
13 + Y 2

11Y
2
2 + Y 2

9 Y
2
4 + Y 2

8 Y
2
5 , Y

4
6

T24 + Y 2
12 + Y 2

10Y
2
2 + Y 2

8 Y
2
4 + Y 2

8 Y
4
2 + Y 2

6 Y
2
4 Y

2
2 + Y 4

5 Y
2
2 + Y 6

4 , T29⟩.

Each of the elements Ti defined in Proposition 3.2 is a linear combination of
monomials in N∗. Those monomials are generally not individually members of

ΩSpinc

∗ : for example, Y14Y
2
5 ∈ N24 does not lift to an element of ΩSpinc

24 , even
though a linear combination of Y14Y

2
5 with other monomials in degree 24 does lift

to the element T24 ∈ ΩSpinc

24 .

However, Y 2
i ∈ N2i lifts to the element Z2i ∈ ΩSpinc

2i , and consequently the

squares of each of the monomials in each of the elements Ti lift to ΩSpinc

∗ . For

i = 24, 29, 31, 32, and 33, let U2i denote the element of ΩSpinc

∗ obtained by taking
the definition of Ti in Proposition 3.1 and replacing each instance of Yn with Z2n.
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For example, (8) yields that

U48 = Z28Z
2
10 + Z26Z22 + Z26Z18Z4 + Z26Z12Z10 + Z26Z10Z

3
4 + Z24Z

2
10Z4 + Z2

22Z4

+ Z22Z18Z8 + Z22Z16Z10 + Z22Z12Z10Z4 + Z22Z10Z
2
8 + Z22Z10Z8Z

2
4

+ Z20Z
2
10Z8 + Z20Z

2
10Z

2
4 + Z2

18Z8Z4 + Z2
18Z

3
4 + Z18Z16Z10Z4 + Z18Z12Z10Z8

+ Z18Z12Z10Z
2
4 + Z18Z

2
10 + Z18Z10Z

2
8Z4 + Z2

12Z
2
10Z4 + Z4

10Z8 + Z2
10Z

3
8Z4

+ Z2
10Z

2
8Z

3
4 .

Then, as a consequence of Proposition 3.1, we have:

Theorem 3.3. The subring of ΩSpinc

∗ /(2, β) generated by all homogeneous elements
of degree ≤ 33 is isomorphic to:

F2[Z4, Z8, Z10, Z12, Z16, Z18, Z20, Z22, Z24, Z26, Z28, Z32, T24, T29, T31, T32, T33]/I,

where I is the ideal generated by T 2
24 − U48, T 2

29 − U58, T 2
31 − U62, T 2

32 − U64, and
T 2
33 − U66.

The relations T 2
i = U2i, with Ti indecomposable in ΩSpinc

i and with U2i a poly-

nomial in the indecomposable elements Zn, immediately implies that ΩSpinc

∗ /(2, β)
is not a polynomial algebra.

Theorem 3.4. The subring of the mod 2 spinc-cobordism ring ΩSpinc

∗ ⊗Z F2 gen-
erated by all homogeneous elements of degree ≤ 33 is isomorphic to:

F2[β, Z4, Z8, Z10, Z12, Z16, Z18, Z20, Z22, Z24, Z26, Z28, Z32, T24, T29, T31, T32, T33]/I,

where I is the ideal generated by

• βZi for each i ≡ 2 mod 4,
• and βTi and T 2

i − U2i for i = 24, 29, 31, 32, 33.

Proof. Let T denote the ideal of ΩSpinc

∗ consisting of 2-torsion elements, and let T̃
denote the kernel of the ring map

ΩSpinc

∗ ⊗Z F2 →
(
ΩSpinc

∗ /T
)
⊗Z F2.

The ring
(
ΩSpinc

∗ /T
)
⊗Z F2 was calculated by Stong [24, Proposition 11]: it is a

polynomial F2[β]-algebra on generators in degrees 4, 8, 12, 16, . . . . Since T̃ is an

ideal in ΩSpinc

∗ , to calculate the product in the ring ΩSpinc

∗ ⊗Z F2, it suffices to
calculate

• the products between generators of T̃ ,

• and the products between generators of T̃ and lifts, to ΩSpinc

∗ ⊗Z F2 of

generators of
(
ΩSpinc

∗ /T
)
⊗Z F2.

Both of these types of products land in T̃ . Since T̃ maps injectively under the map

ΩSpinc

∗ → N∗, we can embed ΩSpinc

∗ /(2, β) into N∗ and bring to bear our calcula-
tions of the image of this map, from Proposition 3.1. All we need to do is to deter-

mine, in our set of generators for ΩSpinc

∗ /(2, β) through degree 33, a maximal set of
linear combinations of products of generators which generate β-torsion elements in

ΩSpinc

∗ /(2), i.e., copies of HF2 rather than ku(2) in the Anderson–Brown–Peterson
splitting.
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As a consequence of the Anderson–Brown–Peterson splitting, generators of

ΩSpinc

∗ /(2, β) that are 2-torsion, and hence β-torsion, in ΩSpinc

∗ are those whose
corresponding A-module primitive in H∗(MSpinc;F2) is not Q0 or Q1 torsion. We
identify such generators by re-running the entire process from the proof of Proposi-
tion 3.1, but with the following modification: at the start of the calculation, before
the induction on degree, we begin by lettingD be a list of all Stiefel–Whitney mono-
mials in H∗(MSpinc;F2) in degrees ≤ d which are (Q0, Q1)-torsion, together with
all words in the Steenrod squares applied to such (Q0, Q1)-torsion Stiefel–Whitney
monomials4, instead of letting D begin as the empty set. Consequently, as we pro-
ceed through the induction, D is not only the set of A-module decomposables, but
also the set of Stiefel–Whitney monomials which generate copies of A//E(1).

Re-running our inductive calculation from Proposition 3.1, but with this initial
list forD, yields a set of A-module generators forH∗(MSpinc;F2)modulo (Q0, Q1)-
torsion. Comparison of the lists produced by the first calculation and the second
calculation, then using the translation matrix to translate back from the basis of
Stiefel–Whitney monomials to the dual basis of partitions (i.e., Thom’s basis for

N∗), gives us a set of generators for im
(
ΩSpinc

∗ → N∗

)
in degrees 0, 1, . . . , n, and

tells us, for each generator, whether it corresponds to a copy of ku(2) or of HF2

under the Anderson–Brown–Peterson splitting.
In degrees ≤ 33, we find that an element Yλ ∈ N∗ which is in the image of the

map ΩSpinc

∗ → N∗ is 2-torsion as long as the partition λ includes an odd number. As

described in section 1.1, the β-torsion elements of ΩSpinc

∗ are exactly the 2-torsion

elements. This yields the presentation for ΩSpinc

∗ in degrees ≤ 33 in the statement
of the theorem. □

4In principle, this step in the calculation could go wrong, failing to identify all the (Q0, Q1)-
torsion in H∗(MSpinc;F2), as follows: suppose there is some F2-linear combination of Stiefel–

Whitney monomials in H∗(MSpinc;F2) which is (Q0, Q1)-torsion, but none of its summands are

(Q0, Q1)-torsion. If this occurs, it would not be noticed by the method we describe, since our
method only checks the (Q0, Q1)-torsion status of Stiefel–Whitney monomials.

We handle this by a very simple idea: we make the calculation as described, and after making
the full calculation, we “check our answer” by comparing to the known additive structure of

ΩSpinc

∗ , as follows. After running our method, we compare the rank of our calculated (Q0, Q1)-
torsion in each degree to the expected rank, using the known Poincaré series for the 2-torsion
in π∗(MSpinc). If our method has failed to notice a linear combination of Stiefel–Whitney
monomials which was (Q0, Q1)-torsion despite its summands not being (Q0, Q1)-torsion, then the

rank of the (Q0, Q1)-torsion from our calculation will be too small.
We have never observed this mismatched rank to happen, i.e., it does not happen through

degree 33 in MSpinc
∗. If the rank mismatch were to ever occur, the fix is conceptually trivial, but

computationally very hard: instead of populating D with all the homogeneous (Q0, Q1)-torsion
Stiefel–Whitney monomials at the start of the torsion calculation, we simply populate D with the

all the (Q0, Q1)-torsion Stiefel–Whitney polynomials at the start of the calculation, then re-run the

calculation. This of course cannot miss any (Q0, Q1)-torsion in H∗(MSpinc;F2)! Its disadvantage
is simply that it is extremely computationally expensive, since the total number of homogeneous
Stiefel–Whitney polynomials (not just monomials) in degrees ≤ d in H∗(MSpinc;F2) grows ex-

tremely quickly as d grows. We carry out the calculations in the way we describe—i.e., initially
populating D by only the (Q0, Q1)-torsion Stiefel–Whitney monomials, rather than polynomials—

to dramatically speed up calculation, and because we are able to check that the resulting answer

in the end agrees with the answer we would have gotten with the much slower calculation using
all the homogeneous Stiefel–Whitney polynomials.
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Our next result determines explicit manifolds that represent some of the bordism

classes whose powers occurs as ring-theoretic generators of ΩSpinc

∗ ⊗Z F2 and of

ΩSpin
∗ ⊗Z F2 in Proposition 3.1 and in Proposition 3.2, respectively. The following

table was calculated through degree 6 by Thom [26]. We extend the calculation
through degree 17. The symbolDi denotes the i-dimensional Dold manifold, defined
in [10].

Proposition 3.5 (Thom [26]). Manifold representatives for elements Yn in Thom’s
partition basis for N∗ are as follows:

Element Manifold Representative
Y2 RP 2

Y4 RP 4 ⊔ RP 2 × RP 2

Y5 D5

Y6 RP 6

Y8 RP 8 ⊔ (RP 4)2 ⊔ RP 4 × (RP 2)2 ⊔ (RP 2)4

Y9 D9 ⊔D5 × RP 4 ⊔D5 × (RP 2)2

Y10 RP 10 ⊔ (RP 2)5

Y11 D11 ⊔ D9 × RP 2

Y12 RP 12 ⊔ (RP 6)2 ⊔ RP 8 × (RP 2)2 ⊔ (D2
5 × RP 2 ⊔ (RP 4)3

Y13 D13 ⊔D11 × RP 2 ⊔D9 × RP 4 ⊔D8 × RP 5 ⊔D5 × RP 4 × (RP 2)2

Y14 RP 14

Y16 RP 16 ⊔ RP 12 × (RP 2)2 ⊔ (RP 8)2 ⊔ RP 8 × (RP 4)2

⊔RP 8 × (RP 2)4 ⊔ (RP 6)2 × RP 4 ⊔ RP 6 × (D5)
2

⊔(D5)
2 × (RP 2)3 ⊔ (RP 4)4 ⊔ (RP 4)2 × (RP 2)4 ⊔ (RP 2)8

Y17 D17 ⊔D13 × RP 4 ⊔D13 × (RP 2)2 ⊔ RP 12 ×D5 ⊔D11 × RP 6

⊔D11 × RP 4 × RP 2 ⊔D11 × (RP 2)3 ⊔D9 × RP 8 ⊔D9 × RP 6 × RP 2

⊔RP 8 ×D5 × (RP 2)2 ⊔ (RP 6)2 ×D5 ⊔ (D5)
3 × RP 2

⊔D5 × (RP 4)2 × (RP 2)2 ⊔D5 × RP 4 × (RP 2)4 ⊔D5 × (RP 2)6

Proof. Routine calculation using Stiefel–Whitney numbers. □

In [15], Milnor investigates whether every spin manifold is unorientedly cobor-
dant to the square of an orientable manifold. He shows it is true for spin manifolds
of dimension ≤ 23. The ambiguity in dimension 24 stems from the existence of an
orientable manifold whose only nonzero Stiefel–Whitney numbers are w4w6w

2
7, w

4
6,

w6
4, w

3
4w

2
6, and w2

4w
2
8. Milnor then poses the problem of whether a spin manifold

of dimension 24 exists with these nonzero Stiefel–Whitney numbers. Anderson–
Brown–Peterson stated two years later [3] that, as a corollary of their main the-

orem, the lowest dimension in which there exists an element of Im(ΩSpin
∗ → N∗)

which is not the square of an orientable manifold is 24 [3]. In Proposition 3.2 we

calculated ΩSpin
∗ in degrees through 31 in terms of Thom’s partition basis, and

in proposition 3.5 we have manifold representatives for ring-theoretic generators

which suffice to generate everything in ΩSpin
24 . Solving for an element of ΩSpin

24 with
Milnor’s prescribed Stiefel–Whitney numbers, we find an explicit manifold of the
kind Milnor asked for:

Theorem 3.6. The cobordism class T24+Y 2
12+Y 2

10Y
2
2 +Y 2

8 Y
2
4 +Y 2

8 Y
4
2 +Y 2

6 Y
2
4 Y

2
2 +

Y 4
5 Y

2
2 +Y 6

4 ∈ Im(ΩSpin
∗ → N∗) has nonzero Stiefel–Whitney numbers w4w6w

2
7, w

4
6,
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w6
4, w

3
4w

2
6, and w2

4w
2
8, and is represented by the manifold:

(RP 2)6 × (RP 6)2 ⊔ (RP 4)6 ⊔ RP 2 × (RP 4)3 × (D5)2 ⊔ (RP 2)2 × (RP 4)2 × (RP 6)2

⊔ (RP 2)4 × (RP 8)2 ⊔ (RP 2)3 × RP 4 ×D5 × (D9) ⊔ (RP 4)2 × (D5)2 × (RP 6)

⊔ (RP 2)2 ×D5 × RP 6 × (D9) ⊔ (RP 6)4 ⊔ (D5)2 × RP 6 × (RP 8)

⊔ (RP 4)2 × (RP 8)2 ⊔ (D5)3 × (D9) ⊔ RP 4 × (D5)2 × (RP 10)

⊔ (RP 2)2 × (RP 10)2 ⊔ (RP 4)2 ×D5 × (D11) ⊔ (RP 2)2 ×D9 × (D11)

⊔ RP 2 × (D5)2 × (RP 12) ⊔ RP 2 × RP 4 ×D5 × (D13) ⊔D5 × RP 6 × (D13)

⊔ (D5)2 × (RP 14) ⊔ (RP 12)2 ⊔ (D11)× (D13) ⊔ (RP 2)6 × (RP 6)2 ⊔ (RP 4)6

⊔ (RP 2)2 × (RP 4)2 × (RP 6)2 ⊔ (RP 2)4 × (RP 8)2 ⊔ (RP 6)4

⊔ (RP 4)2 × (RP 8)2 ⊔ (RP 2)2 × (RP 10)2 ⊔ (RP 12)2.

4. The spinc-cobordism ring in all degrees.

4.1. A nonunital subring of the 2-torsion in the spinc-cobordism ring. In
Theorem 3.4, we showed that, in degrees≤ 33, the cobordism classes Y(5,5), Y(9,9), Y(11,11),
and Y(13,13) ∈ N∗ lift to indecomposable 2-torsion elements Z10, Z18, Z22, and Z26

in ΩSpinc

∗ . The elements Y(5,5), Y(9,9), . . . are precisely those of the form Y 2
i ∈ N∗

with i odd and non-dyadic. It is natural to ask whether this pattern extends above
degree 33 as well. In Proposition 4.2, we show that something of this kind is true,
if we use the Dold manifold Di, from [10], rather than the cobordism class Yi from
Thom’s partition basis for N∗. In low degrees, the algebraic relation between the
Dold manifolds and the Thom generators for N∗ is as follows:

Proposition 4.1. The squares of odd-dimensional Dold manifolds represent the
following polynomials in Thom’s generators Y2, Y4, Y5, Y6, Y8, . . . for N∗:

Element Manifold Representative
Y 2
5 D2

5

Y 2
9 + Y 2

5 Y
2
4 D2

9

Y 2
11 + Y 2

9 Y
2
2 + Y 2

5 Y
2
4 Y

2
2 D2

11

Y 2
13 + Y 2

11Y
2
2 + Y 2

9 Y
2
4 + Y 2

8 Y
2
5 D2

13

Furthermore, each of these elements of ΩO
∗ is in the image of the map ΩSpin

∗ → ΩO
∗ .

Proof. The manifold representatives are straightforwardly calculated from Propo-

sition 3.5. By Proposition 3.2, these elements are in the image of the map ΩSpin
∗ →

ΩO
∗ . □

Proposition 4.2. For each odd integer i such that i+1 is not a power of 2, the Dold
manifold Di has the property that Di ×Di lifts to an indecomposable (2, β)-torsion

element of ΩSpinc

2i . It furthermore lifts to an indecomposable 2-torsion element of

ΩSpin
2i .

Proof. Dold [10] proves that there exists a minimal set of generators for the cobor-
dism ring N∗ whose odd-degree elements are Di = P (2r − 1, s2r), where i + 1 =
2r(2s + 1) and i is odd. Milnor proved that the map ΩU

∗ −→ N∗ maps onto all

squares of elements in N∗. This map factors through ΩSpinc

∗ , so Di × Di lifts to
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ΩSpinc

2i for all non-dyadic i. The mod 2 cohomology of the Dold manifold P (m,n)
is given as a graded ring by

H∗(P (m,n);F2) ∼= F2[c, d]/(c
m+1, dn+1),

with c ∈ H1(P (m,n);F2) and d ∈ H2(P (m,n);F2). The total Stiefel–Whitney
class of P (m,n) is

w(P (m,n)) = (1 + c)m(1 + c+ d)n+1.

Setting m = 2r − 1 and n = s2r, the total Stiefel–Whitney class of Di as in the
statement of the theorem is then given by:

w(Di) = (1 + c)2
r−1(1 + c+ d)s2

r

,

and in particular, w1 = 0. Hence Di is orientable.
To show that Di × Di lifts to the spin cobordism ring, one can carry out an

algebraic calculation to show that none of the nonzero Stiefel–Whitney numbers of
Di × Di are divisible by w2. This is not a difficult calculation, but it is simpler
to invoke the main result of Anderson’s paper [4]: the square of any orientable
compact manifold is unorientedly cobordant to a spin manifold. Since w1 vanishes

on Di, its square Di ×Di must be in the image of the map ΩSpin
2i → N2i.

It follows easily from the structure of ko∗, and the Anderson–Brown–Peterson
splitting of MSpin into a wedge of suspensions of ko, ko⟨2⟩, and HF2, that all

elements of ΩSpin
∗ in degrees ≡ 2 mod 4 are 2-torsion. Hence, for odd i, any

spin-cobordism class that lifts Di ×Di ∈ N2i must be 2-torsion.

Let D̃2
i be a lift of Di × Di ∈ N2i to ΩSpin

2i . The image of D̃2
i under the map

ΩSpin
2i → ΩSpinc

2i is then a lift of D2
i to ΩSpinc

2i , and it is 2-torsion since it is the

image of a 2-torsion element. It is furthermore β-torsion in ΩSpinc

∗ , since by the
Anderson–Brown–Peterson splitting of 2-local MSpinc, every 2-torsion element of

ΩSpinc

∗ is also β-torsion.

To see that D2
i ∈ ΩO

2i lifts to an indecomposable element of ΩSpin
∗ , it is enough

to observe that ΩSpin
∗ /(2, η, α, β) embeds into N∗, and since Di has second Stiefel–

Whitney class d ̸= 0, Di does not lift to ΩSpin
∗ . Hence the unique lift of D2

i to

ΩSpin
∗ /(2, η, α, β) is indecomposable, hence any lift of D2

i to ΩSpin
∗ is indecompos-

able. A completely analogous argument establishes that any lift of D2
i to ΩSpinc

∗ is
also indecomposable. □

Since Dold [10] showed that Di ∈ Ni can be written as Thom’s generator Yi

plus decomposables in the same degree, Proposition 4.2 tells us that some of the
patterns exhibited in table (2) are not limited to degrees ≤ 33, and indeed extend to
all degrees. Namely, for odd non-dyadic i, if we write Z2i for a lift ofDi×Di ∈ N2i to

an indecomposable 2-torsion element of ΩSpinc

2i (guaranteed to exist by Proposition

4.2), and for even i we write Z2i for a lift of Y 2
i ∈ N2i to an element of ΩSpinc

2i , then
we have:

Theorem 4.3. Consider the spinc-cobordism ring as a graded algebra over the
graded ring S := Z(2)[β, Z2j : j ≥ 2, j non-dyadic]/(βZ2j , 2Z2j for odd j). Then
the ideal (Z2j : j odd) of S embeds, as a non-unital graded S-algebra, into the 2-
torsion ideal π∗(Z) of the spinc-cobordism ring.
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4.2. Mod 2 spinc-cobordism, up to uniform F -isomorphism. There is a

subring of the mod 2 spinc-cobordism ring ΩSpinc

∗ ⊗Z F2 which is generated by

• the large nonunital subring of the 2-torsion in ΩSpinc

∗ constructed in Theo-
rem 4.3,

• and Stong’s generators y4, y8, y12, y16, . . . of the mod-torsion mod-2 spinc-

cobordism ring (ΩSpinc

∗ /tors)⊗Z F2.

This subring of ΩSpinc

∗ ⊗Z F2 is strictly smaller than ΩSpinc

∗ ⊗Z F2 itself. However,

we will now show that this subring is uniformly F -isomorphic to ΩSpinc

∗ ⊗Z F2. See
Definition 1.1 for the definition of a uniform F -isomorphism.

Theorem 4.4. The mod 2 spinc-cobordism ring is uniformly F -isomorphic to the
graded F2-algebra

(9) F2 [β, y4i, Z4j−2 : i ≥ 1, j ≥ 1, 2j not a power of 2] /(βZ4j−2),

with β the Bott element in degree 2, with y4i in degree 4i, and with Z4j−2 in degree
4j − 2.

Proof. Write tors for the ideal of ΩSpinc

∗ consisting of the 2-torsion elements. Stong

[24, Proposition 14] proved that
(
ΩSpinc

∗ /tors
)
⊗ZF2 is a polynomial F2-algebra on

generators y2 and y4, y8, y12, . . . . Since Ω
Spinc

2
∼= Z generated by β = [CP 1], Stong’s

generator y2 agrees modulo 2 with the Bott element β. Hence
(
ΩSpinc

∗ /tors
)
⊗Z F2

is isomorphic as a graded F2-algebra to F2 [β, y4i : i ≥ 1].

Now let B denote the graded subring of ΩSpinc

∗ ⊗Z F2 generated by β, by y4i for

all i > 1, and by the mod 2 reductions of the (2, β)-torsion elements in ΩSpinc

∗ from
Theorem 4.2 which lift Di ×Di for all odd non-dyadic i. Since B contains all the

squares of elements in ΩSpinc

∗ ⊗Z F2, the graded F2-algebra map

B ↪→ ΩSpinc

∗ ⊗Z F2

is a uniform F -isomorphism.

Let T̃ denote the kernel of the ring map ΩSpinc

∗ ⊗Z F2 →
(
ΩSpinc

∗ /tors
)
⊗Z F2.

Filter B by powers of the ideal B∩ T̃ , i.e., equip B with the (B∩ T̃ )-adic filtration.
By the Anderson–Brown–Peterson splitting and by Theorem 4.2, the associated
graded ring E0B is isomorphic to F2[β] tensored with the image of B in N∗ and

reduced modulo the relations β · x = 0 for all x ∈ B ∩ T̃ , i.e., E0B is isomorphic to
(9).

We claim that B itself is isomorphic to (9). The (B ∩ T̃ )-adic filtration on B
is additively split, so B ∼= E0B as graded F2-vector spaces. In principle, the ring
structure on E0B could differ from the ring structure on B if the multiplication on
B were to exhibit (B∩ T̃ )-adic filtration jumps, i.e., when we multiply two elements

x, y of B, with x of B ∩ T̃ -adic filtration i and with y of (B ∩ T̃ )-adic filtration j,

we could perhaps get an element of (B ∩ T̃ )-adic filtration > i+ j.
However, even if filtration jumps occur, E0B is still isomorphic to the graded

F2-algebra with presentation (9). This is by a freeness argument similar to the clas-
sical argument that, if the associated graded of a filtered commutative k-algebra
is a polynomial (i.e., free commutative) k-algebra, then the original filtered com-
mutative k-algebra must also have been free commutative. The argument is as
follows. Let C be the category of pairs (A,S), where A is a graded-commutative
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F2[β]-algebra, and S is a set of homogeneous elements of A such that β · x = 0 for
all x ∈ S. There is a forgetful functor from C to the category Sub of pairs (S0, S1)
in which S0, S1 are sets and S1 ⊆ S0. The forgetful functor C → Sub sends (A,S)
to the underlying sets of A and of S. The graded F2[β]-algebra (9) is the free object
of C on the pair

({y4, y8, y12, y16, . . . } ∪ {Z2, Z6, Z10, Z18, Z22, . . . }, {Z2, Z6, Z10, Z18, Z22, . . . }) .
By Proposition 4.2, the elements {Z2, Z6, Z10, Z18, Z22, . . . } are β-torsion in B, not
merely in E0B. Hence there are no relations on E0B except those which make it an
object of the category of C, and B lives in C as well, i.e., E0B and B are isomorphic
in the category C. Hence E0B and B are isomorphic as graded F2-algebras, and

hence ΩSpinc

∗ ⊗ZF2 is uniformly F -isomorphic to the F2-algebra (9), as claimed. □

In section 3, we showed that ΩSpinc

∗ ⊗Z F2 is not isomorphic to a polynomial
algebra. Nevertheless, since an F -isomorphism induces a homeomorphism on the
prime spectra (see [20, Proposition B.8] or [22, Lemma 29.46.9]), we have:

Corollary 4.5. The topological space Spec
(
ΩSpinc

∗ /(2, β)
)

is homeomorphic to

Spec of a polynomial F2-algebra on countably infinity many generators.

Furthermore, the topological space Spec
(
ΩSpinc

∗ ⊗Z F2

)
is homeomorphic to Spec

of the ring (9).

The last two sentences in Stong’s 1968 book [25] before the appendices begin
are:

One may relate the pair (Spin, Spinc) through exact sequences in
precisely the same way as (SU,U) are related (or as (SO,O) are
related). Computationally this is not of much use since one has no

way to nicely describe the torsion in ΩSpinc

∗ .

We regard Theorems 4.3 and 4.4 as progress toward nicely describing the torsion

in ΩSpinc

∗ by means of ring structure.
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