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Abstract. It is well-known that the Steenrod algebra A is self-injective as a

graded ring. We make the observation that simply changing the grading on A
can make it cease to be self-injective. We see also that A is not self-injective

as an ungraded ring.

These observations follow from the failure of certain coproducts of injective
A-modules to be injective. Hence it is natural to ask: which coproducts of

graded-injective modules, over a general graded ring, remain graded-injective?

We give a complete solution to that question by proving a graded generalization
of Carl Faith’s characterization of Σ-injective modules. Specializing again to

the Steenrod algebra, we use our graded generalization of Faith’s theorem to

prove that the covariant embedding of graded A∗-comodules into graded A-
modules preserves injectivity of bounded-above objects, but does not preserve

injectivity in general.

1. Self-injectivity of the Steenrod algebra.

The following is a well-known theorem, originally due to Adams and Margolis
[1] at the prime p = 2, and Moore and Peterson [10] at odd primes p:

Theorem 1.1. The mod p Steenrod algebra is self-injective. More precisely: the
mod p Steenrod algebra A, regarded as a free graded left A-module, is injective in
the category of graded left A-modules.

More generally, any bounded-below free graded left A-module is injective in the
category of graded left A-modules. See Theorem 12 in section 13.3 of [8] for this
result, as well as its converse: a bounded-below graded left A-module is injective if
and only if it is free.

However, using some old results in ring theory, it is also easy to prove the fol-
lowing:

Theorem 1.2. The Steenrod algebra is not self-injective. More precisely: the
Steenrod algebra A, as a free left A-module, is not injective in the category of
ungraded left A-modules.

Proof. Recall that an injective module is said to be Σ-injective if every coproduct
of copies of that module is also injective. The main theorem of Megibben’s paper
[9] establishes that all countable injective modules, over any ring, are Σ-injective. If
A were injective in the category of (ungraded) left A-modules, then by Megibben’s
theorem, the coproduct

∐
n∈ZA would also be an injective left A-module. The

coproduct
∐
n∈ZA is the underlying ungraded left A-module of the graded left A-

module
∐
n∈Z ΣnA, which is known to not be injective in the category of graded

A-modules: this is a special case of Proposition 10 in section 13.2 of Margolis’s
1
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book [8], which establishes that a free graded left A-module cannot be injective in
the graded module category unless it is bounded below.

Finally, the functor U from the graded module category to the ungraded module
category has the property that, if UM is injective, then M is also injective. This
is classical, and holds for any nonnegatively-graded ring: see for example Corol-
lary 3.3.10 of [13]. The argument is now complete: if A were self-injective in the
ungraded module category, then the ungraded direct sum

∐
n∈ZA would also be in-

jective, by Megibben’s theorem; hence
∐
n∈Z ΣnA would be injective in the graded

module category, contradicting Margolis’s result1. �

Despite this paper’s tongue-in-cheek title, there is of course no contradiction
implied by Theorems 1.1 and 1.2 being both true: it is entirely consistent for a
graded ring to be self-injective in the graded sense, but not self-injective in the
ungraded sense.

Corollary 1.3. Changing the grading on the Steenrod algebra, or forgetting the
grading altogether, can change whether or not the Steenrod algebra is self-injective.

Proof. We have just shown that forgetting the grading on the Steenrod algebra
results in a ring which is not self-injective. As a consequence, if we change the
grading on A by putting all its elements in degree 0, then the free A-module A is
not injective in the resulting graded module category. �

2. A graded version of Faith’s criterion for Σ-injectivity.

In the proof of Theorem 1.2, it was useful to consider whether a coproduct of
copies of an injective (graded or ungraded) module remains injective. An injective
module M is called Σ-injective (respectively, countably Σ-injective) if the direct sum∐
s∈SM is injective for all sets S (respectively, all countable sets S). The universal

property of injective modules ensures that injectivity is preserved under products,
but it does not directly imply anything about injectivity of coproducts, i.e., direct
sums. The classical Bass-Papp theorem2 states that, if R is a ring, then R is left
Noetherian if and only if every coproduct of injective left R-modules is injective.
So over a left Noetherian ring, all injective left modules are Σ-injective.

The Steenrod algebra is not Noetherian on either side, so the Bass-Papp theo-
rem does not apply. For non-Noetherian rings, the standard tool for determining
whether a given injective module is Σ-injective is the following theorem of Faith,
from [4]:

Theorem 2.1. Suppose that R is a ring, and that M is an injective right R-module.
Then the following conditions are equivalent:

(1) M is Σ-injective.

1Alternatively, one can prove that the Steenrod algebra is not self-injective, as an ungraded

ring, by simply appealing to the title result of Lawrence’s paper [7] “A countable self-injective

ring is quasi-Frobenius” and observing that the Steenrod algebra is countable and not quasi-
Frobenius. Lawrence’s argument is built upon the results of Faith’s paper [4], whose main theorem
we generalize below, in Theorem 2.4. Our point is that, whether we prove Theorem 1.2 by means

of direct sums of injective modules (as in the argument given here) or by means of chains of
annihilator ideals as in [7], either way we are led to the same investigations in this paper, leading

to Theorem 2.4.

Thanks to Andy Baker and Ken Brown for pointing out Lawrence’s paper to me.
2See Theorem 3.46 of [6] for a textbook treatment.
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(2) M is countably Σ-injective.
(3) R satisfies the ascending chain condition on its right ideals which are an-

nihilators of subsets of M .

Various generalizations of Faith’s criterion are known. The most general that
the author is aware of is Harada’s, from [5]: given a Grothendieck category C with
a generating set G of compact objects and an injective object Q of C , for each
left homC (Q,Q)-submodule N of homC (S,Q), we can form the limit ∩f∈N ker f ,
which is a subobject of S. We call such a subobject of S an annihilator ideal of
S for Q. Harada proves that Q is Σ-injective if and only if, for each S ∈ G, the
partially-ordered set of annihilator ideals of S for Q satisfies the ascending chain
condition.

While the category of graded A-modules is indeed Grothendieck, Harada’s gen-
eralization of Faith’s criterion does not make the fine distinctions that we will need
in order to get a good grasp on the graded analogues of Σ-injectivity. Consider the
following result of Margolis3:

Theorem 2.2. Let M be a bounded-below free graded module over the Steenrod
algebra (with its usual grading). Then M is gr-injective4. Furthermore:

• A direct sum of copies of M , without suspensions, remains gr-injective.
• More generally: a direct sum

∐
s∈S Σd(s)M of suspensions of copies of M

remains gr-injective as long as there is a lower bound on the degrees {d(s) :
s ∈ S} of the suspensions.
• However, if there is no lower bound on the degrees {d(s) : s ∈ S} of the

suspensions, then the direct sum
∐
s∈S Σd(s)M is not gr-injective.

It is clear from Theorem 2.2 that there are several natural but entirely distinct
notions of Σ-injectivity in the graded setting. In the following definition, we give
names to these notions of graded Σ-injectivity.

Definition 2.3. Let R be a graded ring. We say that an gr-injective graded left
R-module M is:

• strictly Σ-injective if the direct sum
∐
s∈SM is gr-injective for all sets S.

• unboundedly Σ-injective if the direct sum
∐
s∈S Σd(s)M is gr-injective for

all sets S and all functions d : S → Z.
• bounded-belowly Σ-injective (respectively, bounded-abovely Σ-injective) if

the direct sum
∐
s∈S Σd(s)M is gr-injective for all sets S and all functions

d : S → Z such that there is a lower bound (respectively, upper bound) on
the values taken by d.
• If N is a set of integers, we say that M is (Σ, N)-injective if the direct sum∐

s∈S Σd(s)M is gr-injective for all sets S and all functions d : S → N .

We have also the countable analogues of the above: for example, we say that M
is countably strictly Σ-injective if

∐
s∈SM is gr-injective for all countable sets S,

and so on.

3See sections 13.2 and 13.3 of [8]. The first two parts of Theorem 2.2 are also consequences
of the Moore-Peterson theorem, Theorem 2.7 from [10], establishing that bounded-below graded
A-modules are free iff they are gr-injective.

4Here and from now on, we use a standard piece of terminology from graded ring theory:
gr-injective means “graded in the injective module category.”
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Harada’s theorem can be used to characterize the gr-injective graded modules
that are strictly Σ-injective, or equivalently, (Σ, {0})-injective. There is another
precedent in the literature for our study of graded Σ-injectivity: the paper [12] is
about one version of graded Σ-injectivity, which its authors call “gr-Σ-injectivity.”
That notion of “gr-Σ-injectivity” is equivalent to what we call “unbounded Σ-
injectivity.” Nǎstǎsescu and Raianu prove in [12] that, if a graded module is un-
boundedly Σ-injective, then its underlying ungraded module is Σ-injective. This is
quite distinct from the notions of bounded-above Σ-injectivity and bounded-below
Σ-injectivity, which as far as we know have not been studied before. In contrast
to unbounded Σ-injectivity, as a consequence of Corollary 2.5, we will see that
bounded-above Σ-injectivity and bounded-below Σ-injectivity are not preserved
upon forgetting down to the ungraded module category.

The aim of this section is to prove a version of Faith’s theorem which gives us
a useful necessary and sufficient criterion for each of the various notions of graded
Σ-injectivity.

In order to state our generalization of Faith’s theorem, we introduce a graded
version of some notation from [4]: given a graded left R-module M and a set X
of homogeneous elements of R, we write X⊥ for the set of homogeneous elements
m ∈ M such that xm = 0 for all x ∈ X. Given a set Y of homogeneous elements
of M , we write Y ⊥ for the set of homogeneous elements r ∈ R such that ry = 0 for
all y ∈ Y .

We introduce two more simple pieces of notation, and one more piece of termi-
nology:

• Given an integer m and a set N of integers, we will write m + N for the
set of integers {m+n : n ∈ N}. Similarly, m−N will of course denote the
set of integers {m− n : n ∈ N}
• Given a set N of integers, a graded ring R, and a graded left R-module
M , we say that an ascending chain of homogeneous left ideals I0 ⊆ I1 ⊆
I2 ⊆ . . . of R is M -annihilator-stable for all degrees in N if there exists
some integer ` such that the submodule inclusions I⊥` ⊇ I⊥`+1 ⊇ I⊥`+2 . . .
are equalities in each grading degree d in N , i.e.,

(I⊥` )d = (I⊥`+1)d = (I⊥`+2)d = . . .

for all d ∈ N .

Now we are ready for the main theorem. It is the graded generalization of
the main theorem of Faith’s paper [4]. Naturally our proof owes much to Faith’s,
although some of the ideas in our approach differ from Faith’s, especially where
care concerning the gradings is required.

Theorem 2.4. Let R be a graded ring, let N be a set of integers, and let M be a
gr-injective graded left R-module. Then the following are equivalent:

(1) M is (Σ, N)-injective.
(2) M is countably (Σ, N)-injective.
(3) For each integer m, each ascending chain

(2.1) I0 ⊆ I1 ⊆ I2 ⊆ . . .
of homogeneous left ideals of R is M -annihilator-stable for all degrees in
m−N .

(4) M is (Σ,m+N)-injective for every integer m.
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(5) M is countably (Σ,m+N)-injective for every integer m.

Proof.

1 implies 2, 4 implies 5, 4 implies 1, and 5 implies 2: Immediate.
2 implies 3: Suppose that m is an integer, suppose that M is countably

(Σ, N)-injective, and suppose we are given an ascending sequence (2.1) of
homogeneous left ideals. Suppose we are given a function d : N→ −m+N .
For each nonnegative integer n, choose a homogeneous element xn ∈ I⊥n
of degree −d(n). For any given homogeneous element r ∈

⋃
n≥0 In, there

exists some integer q such that r ∈ Iq. Since Iq ⊆ Iq+1 ⊆ . . . , we have also
that I⊥q ⊇ I⊥q+1 ⊇ . . . , and consequently rin = 0 for all n > q. Consequently
all but finitely many of the components in

x(r) := (rx0, rx1, rx2, rx3, . . . ) ∈
∏
n≥0

Σd(n)+mM

are zero. That is, x(r) is a homogeneous element of the direct sum∐
n≥0 Σd(n)+mM , not merely the direct product.

The degree of x(r) is equal to m plus the degree of r. Consequently the
right R-module homomorphism

x : Σm

⋃
n≥0

In

→ ∐
n≥0

Σd(n)+mM

r 7→ x(r)

respects the grading. Each of the integers d(n) + m is in the set N , so by
the (Σ, N)-injectivity of M , the graded form of Baer’s criterion5 yields a
graded right R-module homomorphism g : ΣmR →

∐
n≥0 Σd(n)+mM such

that g(r) = x(r) for all r ∈ Σm
(⋃

n≥0 In

)
. Since the element g(1) is

an element of the direct sum
∐
n≥0 Σd(n)+mM , it must be zero in all but

finitely summands. In particular, there must be some integer ` such that

g(1) = (g0, g1, g2, . . . , g`, 0, 0, . . . )

∈
∐
n≥0

Σd(n)+mM,

and consequently

g(r) = (rg0, rg1, rg2, . . . , rg`, 0, 0, . . . )

= (rx0, rx1, rx2, . . . , rx`, 0, 0, . . . )

5The graded Baer criterion is standard; see e.g. I.2.4 of [11]. It is as follows: for any graded
ring R, a graded R-module M is gr-injective if and only if, for every graded left ideal I of R and

every diagram

ΣnI //

##

ΣnR

��
M

in the category of graded R-modules in which the top horizontal map is the canonical inclusion, a
map of graded R-modules exists which fills in the dotted arrow and makes the diagram commute.
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for each r ∈ R. Hence for every n > `, the element xn ∈ M is annihilated
by
⋃
n≥0 In. Hence xn ∈ (

⋃
n≥0 In)⊥, which is a subset of I⊥t for every

integer t.
Now take stock of what we have just shown: we began with an arbitrary

sequence x1, x2, x3, . . . of homogeneous elements of M whose degrees are in
the set m−N , and such that each xn is in I⊥n . We have just shown that, no
matter how these choices are made, there exists some integer ` such that all
the terms x`, x`+1, x`+2, . . . are in the same stage I⊥` . Hence what we have
shown is that the sequence I⊥1 ⊇ I⊥2 ⊇ I⊥3 ⊇ . . . is eventually constant in
each degree in m−N , exactly as we wanted to show.

3 implies 1: We first claim that condition 3 ensures that, for each homo-
geneous left ideal I of R, there exists a finitely generated6 homogeneous
left ideal I1 of R contained in I such that (I⊥)d = (I⊥1 )d for every de-
gree d in the set m − N . The proof is as follows: consider the collection
Ideals(M, I,m − N) of all finitely generated homogeneous left ideals of R
contained in I. Preorder this collection by letting J1 ≥ J2 if and only if
(J⊥1 )d ⊆ (J⊥2 )d for all d in m − N . Consequently the set of elements of
Ideals(M, I,m−N) depends only on I, not on M , not on m, and not on N .
However, the preordering on Ideals(M, I,m−N) does depend on all three
of the variables M ,I, and m−N .

Let π0 Ideals(M, I,m − N) be the partially-ordered set of equivalence
classes in the preordered set Ideals(M, I,m − N). We aim to show that
every ascending sequence in π0 Ideals(M, I,m−N) stabilizes. Given a pair
of ideals J1, J2 ∈ Ideals(M, I,m − N) such that J1 ≤ J2, it is routine to
check that the sum J1 + J2 of the ideals satisfies both J2 ≤ J1 + J2 and
J1+J2 ≤ J2, i.e., we have an equivalence J1+J2 ∼ J2 in Ideals(M, I,m−N).
Consequently, given an ascending sequence

(2.2) J1 ≤ J2 ≤ J3 ≤ J4 ≤ . . .

in Ideals(M, I,m−N), we have a sequence of containments of ideals

J1 ⊆ J1 + J2 ⊆ J1 + J2 + J3 ⊆ J1 + J2 + J3 + J4 ⊆ . . . ,

each of which is in Ideals(M, I,m−N), and which stabilizes if and only if
(2.2) stabilizes.

So we suppose that we have a sequence of containments of ideals as in
(2.1), each of which is an element of Ideals(M, I,m−N). By the assumption
of condition 3, the sequence (2.1) is M -annihilator stable for each degree in
m−N . Consequently (2.1) stabilizes in π0 Ideals(M, I,m−N), as desired.

Since the ascending chains in π0 Ideals(M, I,m−N) all stabilize, Zorn’s
Lemma ensures that π0 Ideals(M, I,m − N) has a maximal element. Let
I ′ be an element of Ideals(M, I,m−N) representing a maximal element of
π0 Ideals(M, I,m−N). If x is a homogeneous element of I, then I ′+Rx is a
member of Ideals(M, I,m−N) containing I ′. By maximality of I ′, we must
have ((I ′+Rx)⊥)d = ((I ′)⊥)d for all d ∈ m−N . Since x ∈ I ′+Rx, we must

have xm = 0 for all m ∈ (I ′ +Rx)
⊥

, hence xm = 0 for all m ∈ ((I ′)⊥)d.

6To be clear, here and throughout this paper, whenever we say that a homogeneous ideal is
“finitely generated,” we shall always mean that it has a finite set of homogeneous generators.
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This argument applies for all homogeneous x ∈ I, so we have (I⊥)d ⊇
((I ′)⊥)d. The reverse containment I⊥ ⊆ (I ′)⊥ follows from I ′ being a
subideal of I, so we have (I⊥)d = ((I ′)⊥)d for all d ∈ m −N . So I ′ is the
desired finitely generated subideal of I.

Now we use the gr-injectivity of M together with the graded Baer crite-
rion. Given a graded leftR-module homomorphism f : ΣmI →

∐
s∈S Σd(s)M

with each d(s) in N , we have a commutative diagram of graded left R-
modules given by the solid arrows depicted below:

(2.3) ΣmI ′ // ΣmI

f

��

// ΣmR

f̃
��vv∐

s∈S Σd(s)M // ∏
s∈S Σd(s)M.

In (2.3), the map f̃ is obtained using the universal property of the gr-
injective module

∏
s∈S Σd(s)M , and I ′ is a finitely generated homogeneous

left ideal of R of the kind just constructed using Zorn’s Lemma, i.e., I ′ is
contained in I, and (I ′)⊥ coincides with I⊥ in every degree in m−N . The
horizontal maps in (2.3) are each the natural subset inclusion maps.

Since I ′ is finitely generated, we may choose a finite homogeneous gen-
erating set r1, . . . , rk for it. The images f̃(r1), . . . , f̃(rk) of r1, . . . , rk land
in the direct sum

∐
s∈S Σd(s)M , so there is a finite subset T of S such that

the image of f̃ |I′ is contained in
∐
s∈T Σd(s)M ⊆

∏
s∈S Σd(s)M .

Given an element z ∈
∏
s∈S Σd(s)M and an element s ∈ S, write zs for

the component of z in the factor Σd(s)M of
∏
s∈S Σd(s)M . Let f̂ : ΣmR→∐

s∈S Σd(s)M be the graded left R-module map determined by

f̂(1)s =

{
f̃(1)s if s ∈ T
0 if s /∈ T.

We have defined f̂ so that ri · f̂(1) = ri · f̃(1) is true for all i = 1, . . . , k.

Since r1, . . . , rk generate I ′, we have (f̂(1)− f̃(1))s ∈ (I ′)⊥ for each s ∈ S.

In particular, (f̂(1) − f̃(1))s is in degree m − d(s) in (I ′)⊥ ⊆ M . Since

m−d(s) ∈ m−N , we have (f̂(1)− f̃(1))s ∈ I⊥ as well. Hence r · f̂ = r · f̃(1)

for all r ∈ I, i.e., f̂ and f̃ agree on I. Consequently f̂ fills in the dotted
arrow in diagram (2.3) and makes the upper-left triangle commute. This
is precisely the condition necessary to obtain gr-injectivity of

∐
s∈S Σd(s)M

from the graded Baer criterion. Hence M is (Σ,m−N)-injective.
1 implies 4, and 2 implies 5: The suspension functor Σ is an automor-

phism of the graded module category, so a graded module is (Σ, N)-injective
if and only if it is (Σ,m+N)-injective for all integers m.

�

Corollary 2.5. Let R be a graded ring, and let M be a gr-injective graded left
R-module. Then:

• M is strictly Σ-injective if and only if, for every integer d and every as-
cending chain

(2.4) I0 ⊆ I1 ⊆ I2 ⊆ . . .
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of homogeneous left ideals of R, the descending chain of graded submodules
of M

(2.5) I⊥0 ⊇ I⊥1 ⊇ I⊥2 ⊇ . . .

is eventually constant in degree d.
• M is unboundedly Σ-injective if and only if, for every ascending chain (2.4)

of homogeneous left ideals of R, the descending chain (2.5) of graded sub-
modules of M is eventually constant7.
• M is bounded-abovely Σ-injective (respectively, bounded-belowly Σ-injective)

if and only if, for every integer m and every ascending chain (2.4) of homo-
geneous left ideals of R, the descending chain (2.5) of graded submodules of
M is eventually constant in all degrees ≥ m (respectively, all degrees ≤ m).

Corollary 2.6. Let R be a graded ring. Every bounded-below gr-injective graded
R-module is bounded-belowly Σ-injective. Furthermore, every bounded-above gr-
injective graded R-module is bounded-abovely Σ-injective.

3. Injective graded A∗-comodules and injective graded A-modules.

One special case of Corollary 2.6 is the theorem of Margolis (see sections 13.2 and
13.3 of [8]): a uniformly bounded-below direct sum of bounded-below gr-injective
modules over a P -algebra (such as the Steenrod algebra) is gr-injective. Corollary
2.6 establishes that this is in fact a general feature of gr-self-injective rings, and
does not require the ground ring to be a P -algebra.

Another special case of interest is the linear dual of the previous case. Let A be
the mod p Steenrod algebra, and let dA denote the Fp-linear dual graded A-module
of A, regarded as a graded left A-module via the adjoint action8 of A. It is easy to
show that dA is gr-injective: this was Margolis’s example of a demonstrably non-
free gr-injective A-module, as in Proposition 12 in section 11.3 of [8]. We can now
address the question of whether direct sums of copies of dA are also gr-injective:

Proposition 3.1. The graded A-module dA is bounded-abovely Σ-injective, but dA
is not bounded-belowly Σ-injective.

Proof. Since dA is bounded above, it is a special case of Corollary 2.6 that dA
is bounded-abovely Σ-injective. So all that remains is to show that dA is not
bounded-belowly Σ-injective.

Consider the ascending chain of homogeneous left ideals

A(Sq1) ⊆ A(Sq1,Sq2) ⊆ A(Sq1,Sq2,Sq4) ⊆ A(Sq1,Sq2,Sq4,Sq8) ⊆ . . .

of A. (Here we work with the mod 2 Steenrod algebra for convenience of exposition,
but an analogous argument works at odd primes.)

7To be clear: the difference between this condition and the previous condition is that, for

unbounded Σ-injectivity, we must have a single integer ` such that the sequence (2.5) is constant,
in all degrees d, starting with the `th stage in the sequence. By contrast, for strict Σ-injectivity,
the sequence (2.5) could stabilize at a different stage for each given degree, without there being a

single stage by which (2.5) is constant in every degree.
8This is a standard construction; see e.g. section 11.3 of [8]. One particularly relevant way to

think about the adjoint action of A on dA is as follows: regard dA as the A∗-comodule A∗, then
apply the adjoint embedding of graded A∗-comodules into graded A-modules, discussed in this

paper, below.
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We consider the graded annihilator submodules of dA for each of these ideals.
The annihilator submodule (A(Sq1,Sq2, . . . ,Sq2n))⊥ ⊆ dA depends only on the

action of Sq1,Sq2, . . . ,Sq2n on dA, i.e., the structure of dA as a graded module
over the subalgebra A(n) of A generated by Sq1,Sq2, . . . ,Sq2n . It follows from
generalities about P -algebras (see Theorem 12 in section 13.3 of [8]) that, for each
n, the underlying A(n)-module of A is free on a set of homogeneous generators
whose degrees are bounded below by zero, but are not bounded above.

Since A(n) is a Frobenius algebra, the F2-linear dual dA of A is also free as an
A(n)-module, but it is free on a set of homogeneous generators whose degrees are
bounded above by zero, but are not bounded below. The upshot is that, for each
integer m, there exists an integer ` such that the sequence
(3.6)(
A(Sq1)

)⊥ ⊇ (A(Sq1,Sq2)
)⊥ ⊇ (A(Sq1,Sq2,Sq4)

)⊥ ⊇ (A(Sq1,Sq2,Sq4,Sq8)
)⊥ ⊇ . . .

is constant after its `th stage in all degrees greater than m. However, there is no
integer ` such that (3.6) is constant after its `th stage in all degrees less than m.

Consequently, by Corollary 2.5, dA is not bounded-belowly Σ-injective. �

There is a good reason to consider the various forms of graded Σ-injectivity
for the specific A-module dA. Recall that the category gr Comod(A∗) of graded
right comodules over the dual Steenrod algebra A∗ admits a covariant embedding
into the category gr Mod(A) of graded left A-modules. This is a purely algebraic
construction, quite classical: I do not know its earliest appearance, but as far as I
know, [2] was its first mention in the context of algebraic topology. Given a graded
right A∗-comodule M with coaction map ψ : M → M ⊗Fp

A∗, identify A with its
double dual A∗∗, and then the action map

A×M
∼=−→ A∗∗ ×M →M

sends a pair (f,m) ∈ A∗∗ ×M to the image of m under the composite

(3.7) M
ψ−→M ⊗Fp A∗

M⊗f−→ M ⊗Fp Fp
∼=−→M.

This action of A on M is called the adjoint action. This construction yields a
covariant, exact, faithful, full functor9 ι : gr Comod(A∗) → gr Mod(A). The book
[3] is an excellent reference for these and other properties of the functor ι, not only
for the dual Steenrod algebra A∗, but also for a general coalgebra in place of A∗.

As the covariant embedding ι of gr Comod(A∗) into gr Mod(A) is exact, one ex-
pects ι to preserve a great deal of cohomological information. If ι were to send
injective objects to injective objects, then it would be easy to prove that right-
derived functors in the category of graded A∗-comodules can be computed by first
embedding the comodule category into graded A-modules, then calculating right
derived functors there. Right derived functors in the comodule category arise in
practice in algebraic topology10, but module categories are far more familiar and

9Our presentation of the functor ι and its properties presumes that we are using cohomological
gradings throughout, so that A is in nonnegative degrees and A∗ is in nonpositive degrees. This

ensures that the adjoint action indeed respects the gradings.
10E.g. the input term of the HFp-Adams spectral sequence for a non-finite-type spectrum,

which generally only has a description in terms of CotorA∗ , the derived functors of the cotensor

product of comodules, rather than ExtA; see chapter 2 of [14]. Also, the input term of the Sadofsky
spectral sequence [15], which is comprised of the right derived functors of product in the category
of graded A∗-comodules.
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understood than comodule categories, so it is of obvious interest to know whether
homological algebra in graded A∗-comodules can be described in terms of homolog-
ical algebra in graded A-modules! Yet it seems this question—of whether ι sends
gr-injective comodules to gr-injective modules—is not addressed in the literature.
As far as the author knows, an answer is not known.

It turns out that the graded Σ-injectivity of dA is precisely the key to answering
that question:

Theorem 3.2. Let A be the mod p Steenrod algebra for any prime p. Then the
covariant embedding ι of graded A∗-comodules into graded A-modules does not send
gr-injectives to gr-injectives.

However, if M is a bounded above graded A∗-comodule, then ι(M) is gr-injective.

Proof. The gr-injective right A∗-comodules are the retracts of the extended graded
right A∗-comodules, i.e., the summands of those of the form V ⊗Fp

A∗ for a graded
Fp-vector space V . Equivalently, the gr-injective right A∗-comodules are the sum-
mands of coproducts of suspensions of A∗. The functor ι sends A∗ to dA, and ι
preserves coproducts since it is a left adjoint11. Hence Proposition 3.1 yields im-
mediately that ι(M) is gr-injective if M is a bounded-above gr-injective comodule,
while ι(M) must fail to be gr-injective for some non-bounded-above gr-injective
comodules. �

To close, here is a related question that the author is curious about, but does
not know an answer to:

Question 3.3. Let A be the mod p Steenrod algebra for any prime p. Suppose
that M is a graded right A∗-comodule which is gr-injective. Is the gr-injective
dimension of the A-module ι(M) at most 1?

While Question 3.3 is motivated by the desire to understand the homological
algebra of A∗-comodules because of their applications in algebraic topology, the
question is also quite close to one that has been considered for other reasons, as
follows. Suppose that R is a left Noetherian nonnegatively-graded ring. A theorem
of van den Bergh ([16], see also [17] for Yekutieli’s elegant proof) establishes that,
given a gr-injective left R-module M , the injective dimension of the underlying
ungraded R-module of M is at most one.

Of course the Steenrod algebra is not left Noetherian! But Yekutieli remarks, in
[17], that “[w]e do not know if the noetherian condition in Theorem 1 is necessary.”
If the theorem of van den Bergh and Yekutieli can be proven without the Noetherian
hypothesis, then the injective dimension of a coproduct of copies of dA is at most 1,
and consequently, for any gr-injective A∗-comodule M , the gr-injective dimension
of ι(M) could not exceed 1, yielding an affirmative answer to Question 3.3.
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