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Abstract

fMRI is the preeminent method for collecting signals from the human brain in vivo, for using

these signals in the service of functional discovery, and relating these discoveries to ana-

tomical structure. Numerous computational and mathematical techniques have been

deployed to extract information from the fMRI signal. Yet, the application of Topological

Data Analyses (TDA) remain limited to certain sub-areas such as connectomics (that is,

with summarized versions of fMRI data). While connectomics is a natural and important

area of application of TDA, applications of TDA in the service of extracting structure from the

(non-summarized) fMRI data itself are heretofore nonexistent. “Structure” within fMRI data

is determined by dynamic fluctuations in spatially distributed signals over time, and TDA is

well positioned to help researchers better characterize mass dynamics of the signal by rigor-

ously capturing shape within it. To accurately motivate this idea, we a) survey an established

method in TDA (“persistent homology”) to reveal and describe how complex structures can

be extracted from data sets generally, and b) describe how persistent homology can be

applied specifically to fMRI data. We provide explanations for some of the mathematical

underpinnings of TDA (with expository figures), building ideas in the following sequence:

a) fMRI researchers can and should use TDA to extract structure from their data; b) this

extraction serves an important role in the endeavor of functional discovery, and c) TDA

approaches can complement other established approaches toward fMRI analyses (for

which we provide examples). We also provide detailed applications of TDA to fMRI data col-

lected using established paradigms, and offer our software pipeline for readers interested

in emulating our methods. This working overview is both an inter-disciplinary synthesis of

ideas (to draw researchers in TDA and fMRI toward each other) and a detailed description

of methods that can motivate collaborative research.
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Introduction

Functional magnetic resonance imaging (fMRI) is the preeminent method for a) reaching

inferences regarding brain function, b) charactering the organization of macroscopic brain

networks and c) understanding the brain’s structure-function relationships [1–3]. fMRI data

are high dimensional and complex, and inference is fraught with uncertainty regarding signal

origins and their relationship to underlying neurophysiology. Virtually all novel developments

in the analyses of fMRI signals rely on mining the temporal properties of time series data in the
service of functional discovery. Discovery is almost always motivated by the desire to under-

stand structure-function relationships, or to “. . .understand functional anatomy on the basis

of its structural substrates, namely neuronal circuits and connections [4].”

Traditionally, the word “structure” in MRI research denotes anatomical structure, and the

search for anatomical functional units has remained a vibrant research domain for more than

a century [5]; the phrase “function-structure relationships” generally refers to how brain anat-

omy (structure) constrains or predicts brain responses (function) [6]. However, fMRI data

(like other classes of high dimensional data, and particularly neurobiological data) has struc-

ture within the acquired signal data itself, present in the form of meaningful organization, and

symmetric patterns. Topological data analysis (TDA) is optimized to search for specific classes

of structure within data, and its application to fMRI may provide researchers with concepts

and methods that complement existing approaches.

The maturing field of TDA is now at the leading envelope of attempts to understand and

characterize structure within data [7, 8]. The presumption is that recovery of structure(s) using

TDA will reveal important information about the functional properties of the system that gen-

erated that data. The most significant general idea that we motivate in this paper is that fMRI

researchers can and should consider the perspective that a) their data itself has structure, and

b) that characterizing this structure is an important endeavor in the service of discovery. We

buttress this proposal with a working overview of many of the ideas and methods of the rapidly

evolving field of TDA, and explain how these ideas are ideally suited for discovering structure

in fMRI data. By way of review we present a) the intuitive motivations behind the methods of

TDA, b) some ways in which these methods are relevant to fMRI data, and c) some discussion

of how TDA complements traditional statistical methods.

Within TDA, we restrict our attention to persistent homology, a suite of data-analytic tech-

niques, each of which has the virtue of having essentially no free hyperparameters. While per-

sistent homology is the most heavily researched analytic tool within TDA, others, such as

Mapper [9], also exist (though a comprehensive discussion is outside the scope of this paper).

By way of application, we present and implement a practical workflow for applying TDA to

reveal dynamics of topological and geometric structure in fMRI data. Our implementation

builds on prior conceptual demonstrations and includes code that permits users to emulate

our work, as well as examples demonstrating the results of applying this workflow to our own

fMRI data.

Throughout, we emphasize that TDA does not replace the many mature statistical

approaches for fMRI analysis. Rather, TDA is tuned to asking different questions of the data

because its established tools allow for the discovery of patterns and structure in fMRI data that

has implications for the study of structure-function relationships in the brain. We attempt this

motivation with explanations of the mathematical underpinnings of TDA (accompanied by

expository figures), and examples of how TDA can be applied to observed fMRI data.

Some exceptions notwithstanding, fMRI researchers and TD analysts have worked inde-

pendently of each other. Our position is that fMRI researchers need to be aware of the power

of TDA, and TD analysts need to be aware of the complexity and the value of fMRI in
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neuroscience, and endeavor to see fMRI as an important target for application. This position

motivates us to explain abstract mathematical ideas, and their practical application to fMRI

data, and our exposition necessarily alternates between these dual motives. To facilitate incre-

mental understanding, we frequently reiterate concepts throughout.

This paper is intended as a primer on TDA. It is specific enough to describe a particular

workflow for application of a certain topological data-analytic method (“persistence vine-

yards”) to fMRI, and to describe what kind of organization in fMRI that method is designed to

reveal. Given these intentions, we do not attempt validation of our method. It would make this

paper much more technical and less reader-friendly—and quite a bit longer—to present the

ideas in enough detail to offer a careful validation of the method. Detailed and technical expo-

sition of persistence vineyards are widely accessible for interested readers [10].

Discussion

Functional discovery in fMRI

Functional discovery is a challenge for any field in which the analyses of overt and observable

signals must be used to recover the functionality of a complex system that generated those sig-

nals [11]. The problem of functional discovery with fMRI is exacerbated by at least two physical
limitations of the signal (spatial and temporal resolution), and multiple sources of indetermi-

nacy regarding the signals’ origins [2, 12].

The non-specific origins of the hemodynamic signal constitute a specific challenge. The

most proximate drivers of the hemodynamic signal are not neuronal, but metabolic in origin.

The polarization and depolarization of cells that underpins neuronal activity generates meta-

bolic demand that effects flow dynamics in the underlying vasculature. [13]. These dynamics

in turn leave a magnetic contrast based on the relative concentration of para and di-magnetic

oxy (Hb) and deoxy-hemoglobin (dHb) in areas of activated tissue [14, 15]. The most proxi-

mate neurophysiological correlates of BOLD are neural oscillations in the low γ range [16–20],

though this relationship is weak and not universally observed [21, 22]. BOLD appears to be

driven by metabolic demands related to peri-synaptic activity [23], rather than neuronal out-

puts of projection neurons. This rules out some neuronal related inferences that can be drawn

from fMRI signals. Despite co-acquisition of hemodynamic and electrophysiological signals, it

is widely accepted that the neurophysiological drivers of the signal are multi-faceted. This

“many-to-one” mapping from the putative origins of the signal to its observed properties

means that fMRI data do not permit specific inferences about neuronal process [12].

These limitations are, however, not fundamentally problematic. fMRI signals credibly

agglomerate across neuronal processes, and embed within them, state representations (at both

the local and global scales), of system constituents as they evolve [24]. These state representa-

tions readily permit the assessment of macroscopic brain network interactions that can be

modelled using an array of mathematical or statistical models [25, 26]. Thus, time series in the

rest state can be treated as stochastic fluctuations, that may (or may not) loosely track struc-

tural connections between regions [27, 28] and/or that may potentiate networks for cognitive

or sensorimotor action [1, 29, 30]. Alternatively, state changes can be experimentally induced,

using well-constructed tasks with systematically manipulated experimental conditions within

them. Task-based manipulations are highly suited for discovering network interactions

because sensorimotor inputs can be treated and modeled as drivers of, or inputs to the system;

then, variations in task conditions contextually modulate the intrinsic connectivity of brain

networks [31]. These approaches for functional discovery are explicitly motivated by concepts

in control theory [32], and how these concepts apply to functional inference in brain networks

[33].
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More generally, the many-to-one mapping from anatomy to signal is likely to underpin a

wide variety of types and scales of organization and patterns. This reinforces the value of

studying the structural features in fMRI data on their own terms, and independent of anatomy.

TDA provides a powerful set of tools for carrying out such study.

Relationships with existing work on TDA and fMRI

The earliest allusion to the issue of topology and fMRI data can be found in a compelling

review by Worsley [34]. In it, he provided a skillful summary of a) the use of Gaussian Random

Fields (a staple representation of all subsequent fMRI analyses), b) the transformation of fMRI

(or PET) data in a smoothed Gaussian Random Field into a statistical space, and finally c) how

the expected Euler characteristic from a population of t-scores in statistical space can be com-

pared against the observed Euler characteristic in the service of solving the problem of statisti-

cal thresholding for conducting multiple comparisons. This paper preceded the development

of TDA but was perhaps the first to explicitly link concepts in topology with properties of

fMRI and PET data.

Since Worsley’s review, there have been a variety of other studies of brain networks using

topological methods, including persistent homology. However, extant applications of TDA to

functional neuroimaging data have generally been restricted to quantitative descriptions of the

connectivity properties of networks. Given any network, a geometric space can be constructed

out of the combinatorial properties of the same network and its sub-networks. The topological

invariants (a term we will describe in more detail shortly) of this geometric space reflect con-

nectivity properties of the network. In particular, topological properties of the constructed

space in high dimensions reflect “higher-order” relationships between sub-networks of the

given network. We briefly summarize some of these works. For example, Stolz et al. [35] con-

sidered the persistent homology of functional brain networks constructed from task-based

fMRI data. The work of Anderson et al. [36] explored functional connectivity of resting state

fMRI data using persistent homology. Potential pipelines for understanding resting state fMRI

using both persistent homology and Mapper have been proposed by Phinyomark et al [37].

Understanding higher order correlations and coherence using simplicial complexes in place of

networks has been carried out in [38]. See also [39] for a different approach to TDA and net-

work properties of the fMRI signal, where the relevant network is a “shape graph” consisting

of clusters of time indices, rather than clusters of voxels. Giusti et al. [40] study correlations

among neurons using persistent homology at a much finer scale compared to the typical fMRI

scale used by previous authors. There has also been extensive work by Lee, Chung, and collab-

orators [41–45]. The study of Lord et. al. [46] investigating the resting state structure of fMRI

data using ‘persistent homology scaffolds’ is particularly noteworthy. Other peripheral refer-

ences include [47, 48]. Rather than apply persistent homology to analyze graphical structures

derived from summarized data, we apply these topological methods to fMRI data directly with-

out relying on intermediate graphical structure. This is because we are interested in studying

the geometry of the fMRI signal itself and drawing inferences from this geometry. To our

knowledge, the only study that applied TDA directly to unsummarized fMRI data is [49]. The

authors use summary statistics of persistence diagrams in dimension 2 for an age prediction

task, as well as vectorized descriptors (via persistence images) to develop cohort brain state tra-

jectories based on age.

Thus, rather than fashioning a geometric space out of combinatorial properties of networks

within the brain, we propose using TDA along with the intrinsic geometry of the fMRI data,

which is already relatively high-dimensional (five-dimensional: three spatial dimensions in

real stereotactic space, one time dimension, and one fMRI signal dimension). TDA will allow
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us to characterize a) the actual fMRI signal itself, b) correlations between signal amplitudes

across voxels/regions, c) the shape of those activated regions, and of activated pathways and d)

the dynamics of how those shapes change over time with changes in the experimental condi-

tions of the task. As far as we are aware, the only paper in the extant literature which applies

TDA to understand the geometry of the fMRI signal, along the lines we propose, is Ellis et.al

[50]. The authors considered the efficacy of TDA for use in fMRI studies, specifically event-

related fMRI, using simulated data. They embedded a geometric loop into an ROI (442 voxels),

together with simulated baseline data. Using persistent homology, they could detect the loop,

even for relatively low signal change.

We note that our focus tracks closely with the original geometric motivations for the devel-

opment of the ideas and techniques of algebraic topology: topological methods are used in

mathematics to understand the shape and organization of the geometric spaces that arise in

differential geometry and differential equations, which in turn arise from mechanical systems

in physics and engineering [51, 52]. Our suggestion is that the fMRI signal can be analyzed on

the same terms as any other system whose dynamics and geometry we want to understand.

Thus, the topology of the fMRI signal itself is the avenue for functional discovery.

A brief primer on topological data analysis

The field of topological data analysis (TDA) (see [7, 53, 54] for a general overview of the sub-

ject, including some history) can be traced back to the 1990s [55, 56]. Initial studies involved

researchers in computer science and mathematics applying tools from algebraic topology,

originally intended for the study of geometric problems in pure mathematics, to study shapes

and dynamical systems from experimental data.

What is topology? Topology is what remains of geometry after forgetting about notions of

angle and distance, leaving only considerations of continuity, connectedness, and especially

continuous functions and continuous deformation.

For a simple example, consider the three curves pictured in Fig 1. Geometrically, the curves

in Fig 1a are distinct in many ways: 1) The area enclosed by the curve on the left is convex, but

the area enclosed by the right-hand curve in Fig 1a is not. 2) The arc length (i.e., perimeter; the

length of the curve itself) of the left-hand curve is also greater than the arc length of the right-

Fig 1. The two curves in (a), are geometrically distinct in many ways, but are homeomorphic, that is, topologically

equivalent. Intuitively, each can be continuously deformed into the other without “tearing” or “gluing.” The curve in

(b) is, however, not homeomorphic to either of the other curves, because of its node (crossing point) in the center. For

curves, these ideas seem straightforward. However, for surfaces and higher-dimensional geometric spaces (which we

suggest fMRI-determined structures to be), determining whether two spaces are homeomorphic can be much more

involved and less intuitive. In pure mathematics, such determination is a powerful technique in the classification of

higher-dimensional geometries.

https://doi.org/10.1371/journal.pone.0255859.g001
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hand curve in Fig 1a. 3) Every point on the left-hand curve has a well-defined tangent line. The

same is not true of the right-hand curve in Fig 1a: neither of the singular points (the “pinched

points”) has a well-defined tangent line.

In terms of geometry the two curves in Fig 1a are clearly distinct. However, topologically
speaking, they are equivalent. More specifically, they are “homeomorphic,” that is, there exists a

continuous function, with a continuous inverse function, from one to the other [57]. Intui-

tively, these functions should be thought of as providing continuous deformations from one

curve to the other. We can continuously deform the left-hand curve to the middle curve, with-

out any discontinuous actions like “tearing” or “gluing.” Importantly, since mutually inverse

continuous functions map the left-hand curve to the middle curve and vice versa, every genu-

inely topological property of the left curve also holds for the middle curve (and vice versa).

By comparison, the curve in Fig 1b is not homeomorphic to either of the curves in Fig 1a.

Any curve without a node cannot be homeomorphic to a curve with a node. Because the

curves in Fig 1a lack any nodes, there can be no homeomorphism from the curve in Fig 1b

to either of the two others. These basic examples of curves in the plane generalize readily to

higher dimensions such as surfaces, three-dimensional geometries (“three-manifolds”), and

n-dimensional manifolds for all positive integers n (though these generalizations are difficult

to visualize).

By finding easy ways to tell that two spaces are not homeomorphic, it is possible to show

that two geometric spaces are not equivalent (e.g., one cannot possibly be obtained from the

other by rotations and reflections). For geometric spaces of dimension greater than three,

where geometric “intuition” is ineffective, formal topological tools assume importance. These

tools help determine if two such geometric spaces could possibly be “equivalent” (e.g., if one

space could be obtained from the other by small continuous perturbations, such as “stretching”

or “twisting”, but not discontinuous transformations such as “tearing” or “gluing”).

The topological tools employed in persistence are known as homotopy and homology. Both

tools quantify the topological properties of a space: a) how many connected “pieces” does the

space consist of, and b) how many loops and voids (and the higher-dimensional analogues of

these concepts) does the space have. Throughout this manuscript, we attempt to convey these

intuitions (taking some mathematical liberties that blur the distinction between homology

and homotopy and preempt technical details from interfering with access to fundamental

concepts).

What is persistence? Conventionally, a collection of coordinates in fMRI data form only

a discrete, finite set of points in three-dimensional stereotactic space (four-dimensional if sig-

nal is included, henceforth referred to as a “stereotactic hyperspace”; the space increases to

five-dimensions if time is included as a fifth dimension). To speak of geometry and topology

“of the data” in a meaningful way requires more than just a discrete set of isolated points:

rather, it requires a choice of “filling in” space around points in stereotactic hyperspace to get a

non-discrete space.

Remark We will use the standard mathematical symbol R3
for the set of triples (x, y, z) of real

numbers, which we regard as three-dimensional Euclidean space. By “real stereotactic

space,” we mean a copy of 3-dimensional Euclidean spaceR3 in which the discrete voxel

coordinates are embedded as points with integer coordinates.

One approach to introducing geometry to a finite set of points is known as the Čech con-

struction. Fix a time index t and for each voxel (x, y, z) in stereotactic space, plot the point

(x, y, z, f(x, y, z, t)) in four-dimensional Euclidean space R4, where f(x, y, z, t) represents the

BOLD amplitude of the voxel at coordinates (x, y, z) at time index t. The result is a finite
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collection of points inR4, often called a “point cloud.” The ambient spaceR4 in which this

point cloud is embedded has three spatial dimensions and one signal amplitude dimension,

and we regard this version of R4
as “real stereotactic hyperspace.” Fill in a four-dimensional

ball of radius r around each point (x, y, z, f(x, y, z, t)) of our point cloud. Our main topological

space of study is the union of these balls, denoted C(t, r) (for Čech construction), as a subset of

real stereotactic hyperspace, where r is the radius of the open balls we have filled in around

each point in the point cloud, and t is the time index.

If r is very small (e.g., smaller than half the edge length of a cubical voxel), then the space

C(t, r) will simply be a union of non-intersecting balls, and consequently has no interesting

topological features. For example, every continuous loop in C(t, r) has to be contained in a sin-

gle one of these balls, and so can be contracted down to a single point within that ball. On the

other hand, if r is sufficiently large, then every ball intersects every other ball, with no gaps left.

Thus C(t, r) is convex, and consequently also has no interesting topological features: for exam-

ple, while continuous loops in C(t, r) can cross between multiple balls, any continuous loop in

C(t, r) can be continuously deformed down to a point in C(t, r) using the convexity of C(t, r)

(see Fig 2).

But for intermediate values of r between the very small and the very large, C(t, r) can take

on interesting topological features. Here is an example: consider a ring of voxels of uniformly

low signal amplitude, surrounding a cluster of voxels of high signal amplitude, at some time

index t. If r is larger than half the distance between the centers of adjacent voxels, but smaller

than half the difference between the high signal and low signal amplitude, then C(t, r) “looks

like” a filled-in torus (doughnut shape) together with a filled-in sphere above it, in the dimen-

sion which represents the signal amplitude. Topologically, there are two connected compo-

nents. In the component of lower signal amplitude, there is a continuous loop which cannot be

continuously contracted down to a point, namely the loop which wraps around the hole of

voxels of high-signal amplitude. See Fig 11 for an example of such a phenomenon in actual

fMRI data.

How do we choose the radius r? Instead of making arbitrary choices which can bias our

results, we should treat the topological properties of C(t, r) as a function of r. The crux of per-

sistence is to let r vary continuously and track the topological features which persist over many

(or few) values of r. The persistence of a topological feature is the range of r values over which

it exists (or persists). In this way, we can see pieces merge together, at what radial values are

loops formed and die, and reveal how the data are organized in ways that traditional clustering

methods cannot.

On topological features within fMRI data

What are some obvious issues with fMRI related analyses that TDA is optimized to address?

1. TDA can reveal structure in fMRI data in a way that is invariant under small perturbations
or deformations, i.e., small anatomical variations from one individual to the next. This prop-

erty of TDA is important because anatomical variability is a hallmark of brain structures

[58, 59] and may confound analyses in stereotactic space. As we explain below, TDA is

agnostic regarding assumptions about anatomy, and therefore is not affected by anatomical

variations in the way that conventional analyses are; see the section “What isn’t topological

about fMRI data,” below, for some discussion of the senses in which persistent homology is

and isn’t invariant under anatomical variations.

2. TDA can recover non-linear shape in fMRI data. Generally, because almost all approaches

to human brain mapping are concerned with mapping activation loci to the underlying
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anatomy, the topology of fMRI activation profiles is not a subject of inquiry. However, fMRI

activation profiles are rife with non-linear “shape” (see Figs 3 and 4 and discussion in subse-

quent sections, as well as Figs 10 and 11), and TDA can reveal circumscribed regions within
the fMRI data with substantially different signal properties from their surroundings. These
might be characterized by distinct geometric (e.g. spherical, toroidal, etc.) organization of the
signal with those regions. Such inquiry may identify functional sub-structures with proper-

ties that cut across anatomical regions (see Figs 3 and 4 for an example).

3. TDA can discover properties in the data without a priori information about what the prop-

erties should be. Principal component analysis, and dimensional reduction techniques can

handle non-linear phenomena, but are generally reliant on knowing the correct change-of-

coordinates in order to convert the non-linear phenomenon to a linear one. However, in

order to choose the coordinates correctly, one has to already know that the circular shape

exists. This effectively presumes one already knows where to look for non-linear phenomena, a

difficult presumption given our focus on discovery.

Fig 2. (a) Twenty-seven data points are plotted, in the shape of points at the corners, midpoints of edges, and

midpoints of faces of a cube, but the point at the center of the cube is moved several units of distance away. (b) A ball

of fixed radius is plotted with its center at that data point. The union of the 26 balls in the left-hand component then

appears as a “bumpy” surface of a cube (and is homeomorphic to the surface of a cube). Because the center data point

is displaced out of the cube, the ball at the center of the cube is missing from the cube, instead being displaced outside

of the cube. Consequently, there is a “hole” in the middle of this “bumpy cube.” (c) The surface of the red sphere is

contained entirely inside the union of the balls centered at the data points, but because the center data point is

displaced outside of the cube, the red sphere cannot be continuous deformed down to a single point without leaving

the union of the balls. This is an example of a sphere, rather than a loop, which cannot be continuously deformed

down to a point inside the union of the balls centered at the given data points. Such spheres are closely related to two-

dimensional persistent homology. If the radius of the balls is too small, then the balls do not intersect, and so the red

sphere cannot be drawn in the union of the balls. On the other hand, if the radius of the balls is too big, then the union

of the balls will completely fill the “hole” in the middle of the cube, and the red sphere will be contractible. The range of

radii of balls in which the red sphere exists and is contractible is the “persistence” of the red sphere.

https://doi.org/10.1371/journal.pone.0255859.g002
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Fig 3. (a) The activation map is adapted from a recent study [63] of the functional organization of motor responses

during an inter-hemispheric transfer tasks. The activation map shows activation in contra-lateral motor cortex (for

right handed responses). Responses in left primary motor cortex (narrowly defined) are in the inset. Given that this is

an activation map, the three-dimensional representation collapses across the dimension of time. The color scale is a

statistical representation of signal amplitude. A loop in the lateral and medial aspects of Brodmann Areas 4 and 6 (M1

and Supplementary Motor Area, respectively) suggest a complex topological structure in three-dimensional space the

characteristics of which may reflect a hidden structure-function relationship. Notably, activation-based analyses lack

the ability to quantify structure in the way that TDA can. This illustrative example can be scaled up to consider the

added dimension of time, as TDA approaches can viably identify structure in higher dimensional spaces where the

temporal dimension is retained. (b). The four dorsal-most frames from the inset in (a) are shown. As seen, there is a

“ring-like” shape within the activated regions. (c) The activated clusters from the cross sections in (a) are extracted

from the template, and are stacked in three-dimensional space to form a three-dimensional geometric figure.

https://doi.org/10.1371/journal.pone.0255859.g003

Fig 4. Continuing from Fig 3 see that the two loops on the left are homotopic—they are continuously deformable

into one another—in the idealized surface. We present them along with their projections to the fMRI cross-sections

which the idealized surface is intended to resemble. The rightmost loop is not homotopic to the two on the left: it is not

possible to continuously deform the right-hand loop into either of the two left-hand loops without leaving the idealized

surface. In other words, there is no way to continuously deform the right-hand loop into either of the left-hand loops

without travelling “too far” in stereotactic space from the activated cluster.

https://doi.org/10.1371/journal.pone.0255859.g004
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4. TDA provides a multiscale approach to the study of data. Even by the standards of complex-

ity associated with biological systems, the brain presents unique challenges with respect to

spatial scale, evidenced by poorly understood scaling relationships from the neurotransmit-

ter/molecular levels upwards [60]. Pioneers in the field of biological cybernetics (e.g., Val-

entino Braitenberg) were aware of these challenges, and advocated for an understanding of

the topology of brain anatomy to better understand function [61]. The summaries provided

by TDA allow practitioners to study all scales (e.g., microscopic to macroscopic) simulta-

neously. Small values of the aforementioned parameter r highlight local structure, whereas

larger values reveal structure across the entire region of activation. Hence, small and large

scale structure in the data can be examined without a priori designation of scale. This

notion is the focus of the animated S1 Fig.

5. TDA can recover structure in higher dimensions. As noted, fMRI data by their intrinsic

nature are five-dimensional (three spatial dimensions, time, and signal amplitude).

Therefore, TDA can reveal the shapes of regions differentiated by signal, even when those
shapes are nonlinear and of dimension three or greater, without any need for dimensional

reduction.

6. Finally, TDA can be adapted in many ways to specific data and problems, and used in paral-

lel with established statistical methods (e.g. activation-based analyses, functional and effec-

tive connectivity approaches to network discovery). We explain this further in the section

titled “Combining TDA with statistical inference,” below.

We stress that TDA is only one of a set of data-analytic tools, but one that has properties

that are complement many other methods and that can make a dent in answer some of the

challenging questions in neuroimaging. As do other established methods, it holds the promise

of revealing aspects of meaningful organization in the data.

What is topological about fMRI data? The search for structure in fMRI data—that is,

meaningful, characteristic organization within subsets of fMRI data—need not be linked to

spatial location. Thus, it may be desirable to look for structure in the acquired scans, indepen-

dent of considerations of anatomy. Individual differences in the functional properties of data

may result in the variable topology of functional structures (their shape and/or size), permit-

ting functional discovery in fMRI data that is invariant under small anatomical perturbations.
One type of small perturbation is a simple translation in stereotactic space. For example,

suppose we take the data of a single fMRI acquisition for one subject, and add a constant to the

y-coordinate of every voxel. This simple translation would distort the spatial positions of vox-

els, but this translation does not change the spatial organization of patterns of relative signal
amplitude, and therefore does not affect the outcome of topological data analysis. Because topo-

logical methods of data analysis are invariant under such small perturbations, they are resilient

to spatial displacement. Accordingly, information about proximity (e.g. statements like “paths

through low-activation voxels from a given highly-activated voxel cluster to another passes

through a spherical low-activation voxel cluster”) can be preserved even as the correspondence
between voxel coordinates and their mapping to brain anatomy are not necessary for recover-

ing structure in the data. However, though TDA methods do not rely on fixed structure-func-

tion mapping, and can be conducted in a way that is agnostic of these relationships, all the

results from TDA can ultimately be mapped back to anatomy. An example of this is provided

in Figs 10 and 11.

A motivating example. In this subsection, we show an example of the kind of static struc-

ture in fMRI data that non-dynamic methods of TDA are designed to reveal. In subsequent
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explorations below we extend our analyses to discover structures in the dorsal anterior cingu-

late that are observed across all conditions of an associative learning paradigm, evidence that it

is also possible to discover dynamic structures using TDA (see the Workflow section below).

Here, we focus on of the simplest depiction of observed fMRI data, an activation map pro-

duced by averaging signal amplitude over time, as well as by making a choice of threshold

value, above which a voxel is considered to be “activated” (see also the previously referenced

paper by Worsley). This results in a familiar, easily understandable figure, convenient for our

purposes, and allowing us to show that the methods of TDA work perfectly well without averag-
ing over time and without thresholding.

In fMRI analyses, it is standard to use tools like Statistical Parametric Mapping [62] to

understand how task characteristics induce statistically significant activations in different

regions of interest. These activations themselves are organized into clusters of contiguous vox-

els. A very simple and plausible example of a structure in such data is a continuous loop (for

brevity, a loop). A loop is a genuine topological construct, defined in terms of continuous func-

tions, without reference to distance or angle. Importantly, a continuous loop will be a property
inherent in the fMRI data itself.

Fig 3a shows significant clusters (resulting from a second level random effects analyses) ren-

dered on a mosaic of 70 transverse planes from a recent study from our group [63]. The more

superior aspects of the mosaic (sixth row from the top) are highlighted as we will use some

observable aspects of this cluster shape in illustrating meaningful properties of TDA.

Mapping the activation peaks to the underlying anatomy is important for functional discov-

ery [64, 65], but an alternative question might be: are there relevant shapes in the observed

clusters that could be independent of the location of the activation peaks. For example, a nota-

ble spatial phenomenon in the rightmost slice of the inset is a “ring-like” shape in the activa-

tion profile (see Fig 3b). There seem to be two distinct “paths” within the cluster (which has

peaks in the primary motor cortex, M1, and the supplementary motor area, SMA), and it is

plausible that the cluster is contained within inter-hemispheric white matter tracts. TDA per-

mits the exploration of the topology of this cluster on its own terms.
One way to describe the phenomenon indicated in Fig 3a and 3b is that there is a non-con-

tractible loop in the observed cluster. That is, we can draw a continuous loop which cannot be

continuously deformed (like a rubber-band: it can be stretched, but not torn) down to a single

point. This analysis involves some subtlety. For example, the posterior inter-hemispheric con-

nection in the activated regions is not visibly present in the most dorsal cross section (the far-

thest to the right in the sequence of cross sections in Fig 3a). This is visible as a gap along the

hemispheric divide between the activated foci at the posterior extreme of the cluster (labelled

“B” in Fig 3b). Instead, a few millimeters further in the ventral direction, we find an interhemi-

spheric connection in the posterior activated regions, which is clearly visible in the third and

fourth cross-sections from the right in Fig 3a, and the two leftmost cross sections in Fig 3b.

However, there is a more anterior gap, labelled A, in the ventral frames in Fig 3b. Because of

these “gaps” in the ring-shaped activated region in each cross-section, we cannot embed a con-

tinuous loop in the activated regions in any single cross-section but must instead work in

three-dimensions. One can draw a continuous loop entirely within the activated regions indi-

cated in Fig 3a, as follows: a) begin in the right hemisphere, b) cross into the left hemisphere

along the posterior interhemispheric crossing indicated in the third cross-section from the

right in Fig 3a, and c) then pass back into the right hemisphere along the anterior interhemi-

spheric crossing indicated in the furthest-right cross-section in Fig 3a. This is an example of a

non-contractible loop (depicted more clearly in the left-hand subfigure of Fig 4): this loop can-

not be continuously contracted down to a single point entirely inside of the activated regions

in the fMRI data (for the same reason that a rubber band in the interior of a hollow doughnut,
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wrapped around the central hole in the doughnut, cannot be contracted down to a point with-

out either tearing the rubber band or leaving the interior of the doughnut).

This non-contractible loop in the activated cluster is only present when using all three spa-

tial dimensions, and not in any single two-dimensional cross-section. The fundamental idea in

this simplified example is that reducing the dimensionality of the analyses (from three to two)

is insufficient. Recognizing the geometric structure of significantly activated clusters requires

working with the full three-dimensional structure. We reiterate that in this highly simplified

example, data are collapsed across the dimension of time (as is typical in an activation map).

The activated areas in the cross-sections in Fig 3a–3c can be idealized as cross-sections of a

deformed hollow tube, illustrated in Fig 4. A typical technique in topological data analysis is to

count such non-contractible loops, up to continuous deformation. This relationship of one

loop being continuously deformable into another is called “homotopy.”

Figs 4–6 are collectively designed to further explicate the concept of homotopy. As noted,

any analytic technique for recognizing nonlinear shape in data should be invariant under

small deformations. Thus, if this technique is applied to individual fMRI activation maps from

a given paradigm, we might consistently observe two highly-activated regions that are always
connected by a tunnel-shaped activated region, even though the anatomical location of the

topological structures might vary. Thus it may be possible to discover “functional” structures

that are common to or cut across individuals. This could make TDA an intriguing tool in the

endeavor of discovering individual differences in fMRI data.

Homotopy and fMRI. We now attempt to make these mathematical notions rigorous.

Assume we have a geometric space X (e.g., Figs 4–6). Two paths p and q are homotopic if p can

be continuously deformed into q, inside of the ambient geometric space X, without moving

the endpoints of the paths. The intuitive mental image is of an elastic string laid down along

the path p, and pinned down at the two ends so that the ends cannot move. If it is possible to

change the path from p to q, by stretching, twisting, and deforming (but not breaking) the

string, then the paths p and q are homotopic. This is illustrated in left-hand and central images

in Fig 4. The paths illustrated in Fig 5, on the other hand, are not homotopic to one another.

If two paths p and q are homotopic, then they are said to be in the same homotopy class.
Two paths in the same homotopy class can be continuously deformed into each other. From

the perspective of topology, these two paths are essentially the same. Another pair of paths

which are not homotopic to one another is illustrated in Fig 6.

Fig 5. Three different homotopy classes of paths connecting two regions along a cylindrical surface (schematically

representing an activated cluster). In general, the homotopy class of a path connecting two points on a cylinder is

determined by the winding number of the path, i.e., the number of times the path winds around the central axis of the

cylinder. This number is an integer: one can count clockwise winding as positive and counterclockwise as negative, or

vice versa. The choice of orientation (clockwise vs. anti-clockwise) gives the two isomorphisms of the fundamental

group of a cylindrical surface with the integers under addition.

https://doi.org/10.1371/journal.pone.0255859.g005
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If the two paths are in different homotopy classes, then they comprise two genuinely quali-

tatively different connections between their end-points. Examples are illustrated in Figs 5 and

6. For another example, the right-hand path in Fig 4 is also not homotopic to the left-hand and

central paths in Fig 4.

One final remark regarding the relationship between paths and loops: if we have two dis-

tinct paths p and q, each from a point a to a point b, then by traversing p to get from a to b,

and then traversing q in the reverse direction to get from b back to a, we obtain a loop within

the activated voxels (illustrated in Fig 6). Furthermore, if p and q are not in the same homotopy

class, then the loop is noncontractible. That is, two such paths can be combined to make a

loop, and by picking two points on a loop, we can split it to get two paths. This simple observa-

tion shows that the calculation of the homotopy classes of non-contractible loops within an

activated cluster carries information about the shape of that activated cluster. This is the funda-

mental connection between paths and loops, and shows how we can characterize the topology

of activated pathways via loops.

Thus, given two points in different activated clusters, the mathematical question “how
many homotopy classes of paths within activated voxels connect these two points?” can become

an applied imaging question “how many genuinely different pathways within activated voxels
connect these clusters?” Framed in this way, the calculation of homotopy classes of paths in

fMRI data might resemble a type of “functional tractography” where a path is a functional

structure that, if responsive to task-induced fluctuations, might reflect meaningful biological

phenomena.

To our knowledge, the search for distinct pathways arising from loops has not yet been

used in fMRI analyses. However, this equivalence between a loop and two distinct paths has

been fruitful in other biological studies. For example, in studying viral evolution, persistent

loops have been shown to give rise to distinct evolutionary pathways involving horizontal and

vertical evolution [66], and persistent loops have been shown to give rise to distinct sequences

of protein folding and highlight features like compressibility [67–69].

This process of discovery can be achieved with only a minor modification to the above dis-

cussion about homotopy classes of paths connecting two clusters: let us denote a significant

cluster in fMRI data as X. We can consider the set of homotopy classes of loops in X. We will

refer to this set as the homology of X. This set has a natural vector space structure (in the sense

of linear algebra), and the dimension of this vector space is both explicitly computable via algo-

rithms that are easily implemented, and measures something meaningful about the data. This

Fig 6. Two different paths connecting two locations within an idealized surface in stereotactic hyperspace (again

representing an idealized activated cluster with nontrivial shape). These two paths cannot be continuously

deformed into one another without leaving the surface, so these two paths are not homotopic. By tracing one path and

then the other, we get a non-contractible loop within the surface of relatively high activation, and consequently a

nonzero element in the one-dimensional persistent homology of the fMRI data.

https://doi.org/10.1371/journal.pone.0255859.g006
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dimension is, roughly speaking, equal to the number of holes in X (what we intuitively regard

as a “hole” in a geometric space is what a non-contractible loop can be wrapped around).

Remark The real situation is that not every element in the first homology of X is a loop.

Instead, an element of the first homology of X can be a linear combination of loops, and in

homology we accept a slightly weaker equivalence relation on loops than homotopy. That

is, in the first homology of X, two loops can be identified with one another even when one

is not continuously deformable into the other. The Hurewicz theorem (see [57] for a text-

book treatment) quantifies the relationship homotopy and homology in a rigorous manner.

However, a precise treatment of the relationship between homology and homotopy would

require a much more serious investment in developing the purely mathematical ideas than

is appropriate for this paper. In the interest of restricting the length of the narrative, we are

economical with these details here.

With these concepts, we present a more formal depiction of how TDA can be applied to

fMRI activation data (Fig 3a). We first stack the activated regions in the cross-sections in

three-dimensional space in the way they sit in stereotactic space. A two-dimensional projec-

tion of the result (with some rotation and some vertical stretching to make the geometry more

visually apparent), is given in Fig 3c. This projection conforms to the cross-sections of a three-

dimensional geometric figure in real stereotactic space which looks roughly like a (hollow)

tube, but with a split along the side facing the viewer in Fig 4 (this “front side” corresponds to

the left anterior side of the cross sections in Fig 3). The split forms near the “top” (dorsal end)

of the tube, and widens as we follow it to the “bottom” (ventral end) (Fig 4). We designate the

resulting geometric figure (the tube-like figure in Fig 4) as X. What is the dimension of the

first homology of X?

To answer this, we count the number of homotopy classes of loops in X in the following

way. Choose a to be the point indicated with an arrow in Fig 3c. An example loop in X would

begin at point a, and wrap once around the tube-like shape in the clockwise direction. The

nature of this wrapping is immaterial so long as the loops wind around the central column

once in the clockwise direction. Two possible choices are the loops depicted in the left and in

the center in Fig 4.

In fact, we could wrap around the tube n times in the clockwise direction, for any integer n.

A loop which wraps m times clockwise around the tube is homotopic to a loop which wraps n
times around the tube if and only if m = n. We see consequently that the first homology of X is

one-dimensional: every homotopy class of loops in X is a multiple of the homotopy class of a

single loop (wrapping once around X in the clockwise direction, or the counterclockwise

direction). This is illustrated in Fig 5.

Consequently, the existence of the “hole” in the space X, suggested by Fig 4, is reflected alge-

braically in the first homology of X (i.e., the first homology of X is one-dimensional instead of

zero-dimensional). If we instead had a space with several such “holes” not connected to one

another (as in Fig 6), we would expect to see the first homology of X being a vector space of

dimension greater than one: roughly, a vector space of dimension equal to the number of

“holes” in X. As for homotopy, this notion of “homology” is standard in algebraic topology

(see [57] for a rigorous construction), and which coincides in many natural cases with a geo-

metrically intuitive sense of the “number of the holes” in a geometric space. Furthermore, the

computation of the dimension of the first homology can be done algorithmically, by standard

computer libraries such as Ripser, Perseus, Dionysus and GUDHI [70–73], which provide fast

and efficient implementations of the computations described here [74].

The concept of homology was originally developed in all dimensions (i.e., not only for

loops—one-dimensional “holes”—but also for “voids” and analogous “holes” in higher
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dimensions) in Poincaré’s influential 1895 “Analysis situs” [75], and has the advantage of

being algorithmically computable. Particularly useful for fMRI analysis is a variant called per-
sistent homology, a recent (late 20th century) adaptation of homology for application to data

arising from empirical measurements. (See [76] for a survey of the subject with historical infor-

mation on its roots).

Homology in dimension zero counts the number of connected components in a topological

space, and persistent homology in dimension zero is a way to describe clustering of points in a

data set, e.g. in fMRI data. Classical statistical methods also offer effective ways to describe

such clustering, and in particular, single-linkage clustering is precisely persistent homology in

degree zero, so this offers little that is new. It is in higher dimensions—e.g. persistent homology

in dimension one, which quantitatively reports on loop-shaped organization of points in a

data set—that persistent homology can offer us something beyond what well-established statis-

tical methods provide.

Next, we explain how one can go from fMRI data to the homology calculations that describe

topological structure in the data (when considering the full dimensionality of the data).

Five dimensions (space, time, and signal amplitude). As previously noted, activation

based analyses of fMRI data use statistical thresholding to distinguish supra-threshold signal

amplitude from sub-threshold amplitude (thus Fig 3a depicts only statistically significant

clusters).

Here we instead consider the set of all quadruples of real numbers (x, y, z, f(x, y, z)), where

f(x, y, z) is the signal amplitude of the voxel with spatial coordinates x, y, z. Using the usual

Euclidean distance in four-dimensional space, two points (x0, y0, z0, f(x0, y0, z0)) and (x1, y1, z1,

f(x1, y1,z1)) are near one another if x0 and x1 are very close, and y0 and y1 are very close, and z0

and z1 are very close, and f(x0,y0,z0) and f(x1,y1,z1) are very close. In other words, voxels with

very different signal amplitudes will be distant from one another in this four-dimensional

space, even if these regions are anatomically proximate to one another. As in the section on

persistence above, we refer to this four-dimensional (three spatial dimensions, one signal

amplitude dimension) enrichment of real stereotactic space as “real stereotactic hyperspace.”

The approach of characterizing data in a real stereotactic hyperspace has the natural effect

of isolating voxels of very high or very low amplitude, and distinctly higher or distinctly lower

than surrounding regions, without the need for statistical thresholding. Moreover, with the

added dimension of time, a necessary dimension in all fMRI analyses, the hyperspace cannot
be visualized. However, TDA is untroubled by the “curse of dimensionality” which affects clas-

sical statistical methods [77, 78] and which motivates dimensional-reduction techniques that

may lose data and may bias results [79].

In the next sub-section we provide further details regarding persistent homology, the tool

using which one goes from the actual fMRI data, given by a subset of real stereotactic hyper-

space at each time index, to homology calculations which reflect topological structure in that

data.

Persistent homology

The concept of “persistence” addresses each of the following three important questions: a)

What definition of “region” is implied in thinking of “activated regions,” b) what is specifically

meant by “activated,” and c) given that the methods of TDA are designed to be invariant

under small perturbations in the data, are TDA methods robust to outliers (e.g., isolated voxels

that might show up as false positives under conventional analyses) [80]?.

A cluster of fMRI coordinates at which the measured signal has higher amplitude than at

surrounding coordinates results in a “functional” region of interest, the shape of which can
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be studied using TDA. However, this may fail to be robust: consider what happens, for exam-

ple, if there is one voxel with low signal amplitude amidst a cluster of voxels with high signal.

The region in real stereotactic space consisting of the voxels of high signal amplitude would

form a continuous “shell,” the surface of a sphere, within the highly activated region,

wrapped around the one voxel with low signal. The resulting “shell” could not be continu-

ously deformed down to a single point without leaving the regions of high amplitude,

because it is wrapped around the one voxel which is not highly activated (as in Fig 2). This is

an example of two-dimensional homology: rather than considering homotopy classes of loops

(i.e., circles) within regions of high amplitude, we are instead considering homotopy classes

of spheres within those regions.

We have thus far restricted our descriptions to activated structures (Fig 3), allowing us to

more easily describe foundational concepts of TDA. Now, we extend these concepts to incor-

porate the notion of time as a dimension of interest. Such an extension allows us to demon-

strate that the idea of persistence in TDA allows us to work with all the data points in an fMRI

acquisition for an experimental participant.

Homology provides a rigorous, quantitative expression of many topological properties of

any geometric space. Most importantly for the present situation, the “hole” made by the cluster
of voxels more highly-activated than their surroundings has a quantitative, characteristic effect
in persistent homology. Put simply, homology is a standard way in pure mathematics to rigor-

ously define and measure the existence of “holes” in geometric spaces.

Recall that the Čech construction C(t, r) was defined earlier in this paper, in the “What is

persistence?” section. Each non-contractible loop gives rise to non-zero one-dimensional
homology of the space C(t, r), for appropriate values of r depending on the scale of the loop. As

a consequence, when we apply this particular method of TDA, persistent Čech homology, to

fMRI data, what we get is not a listing of the homology of the fMRI data at each time index t,
but a listing of the homology of the fMRI data at each time index t and for each radius r, i.e.,

the homology of C(t, r). The homology of C(t, r) is trivial for sufficiently small r and sufficiently

large r, since for very small r, C(t, r) is a union of isolated, nonintersecting small balls, and for

very large r, C(t, r) is convex. Consequently, every topological feature of our fMRI data at time

index t which is visible in the homology has a birth radius, the lowest value of r, at which that

feature is nonzero in the homology of C(t, r), and a death radius, the greatest value of r at

which that feature is nonzero in the homology of C(t, r). The death radius is always at least as

large as the birth radius, and the difference is defined to be the persistence of that topological

feature:

persistence ¼ death radius � birth radius:

Persistence is a measure of the geometric (as opposed to topological) scale of a feature in

data. Tracking the persistence of topological features in data greatly improves the robustness

of persistent homology as a data-analytic method, because outliers in data will potentially result

in nonzero homology elements with extremely low death radius and consequently extremely

low persistence. In the context of fMRI data, a high-persistence topological feature is one

which involves voxels separated by large “distances” in the spatial dimension, or in the ampli-

tude dimension, or both. Imagine an abstract data set in which all the points are clustered

around the surface of a sphere. Then that sphere is a very high-persistence feature, as it “orga-

nizes” all the points in the data set. On the other hand, if you have a tiny “bubble” in the surface

of that sphere, that bubble is visible as a low-persistence feature: it “organizes” only a small

portion of the data in the set data, and the distances between points in that bubble are small

compared to the largest distances between points in the data set (S1 Fig illustrates the idea that
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topological structure, such as clustering into connected components, can be present at both

large and small scales in the same fMRI data).

As is evident, the higher the persistence of an element of the persistent homology in any

fMRI data, the more that homology expresses large-scale organization of some substantial part

of that data, and just as importantly, it is the high-persistence homology which is least sensitive

to artifacts.

We refer the reader to [81] for a discussion of the computational complexity of the calcula-

tion of Čech persistent homology. From a practical point of view, the calculation of persistent

homology scales very quickly with the size of the data set. Thus persistent homology of whole-

brain fMRI data acquired at typical spatial resolutions (e.g. 2 mm3) is presently beyond the

reach of even a high-performance scientific computing grid. Other variants of persistent

homology (e.g. homology of “witness complexes” or cubical complexes) do allow for whole-

brain computations, but some summarize whole-brain data in various ways before calculating

homology, and can involve additional choices of tuneable hyperparameters. However, restrict-

ing analyses to subsets of the data (e.g. only within, say, the anterior cingulate cortex) brings

the calculation of persistent homology within reach and (as described in our workflow below),

is quite reasonable on a modern laptop computer.

Next, we provide a detailed workflow for computing persistent homology from an experi-

mentally derived data set. We begin with a description of the specific experimental paradigm,

and previous studies that have motivated its use. Then we provide a very general diagram

describing the workflow that leads to inferences about signal geometry, and correspondingly

functional discovery. Finally, we provide source material (including code) used to guide these

analyses that (with some modifications) can be deployed in the service of any data set of the

reader’s choice.

Methods

A workflow for computing persistent homology

This application of the workflow results from fMRI data from a single healthy participant, col-

lected during an associative learning task (all study procedures were approved by Wayne State

University’s Institutional Review Board, and the participant gave informed written consent to

participate in the fMRI procedures). Several studies from our group have used task-specific

fMRI paradigms to study brain network dynamics induced by associative learning and mem-

ory [30, 82–88]. Associative learning and memory are characterized by the acquisition of reli-

ably co-occurring environmental contingencies [89]. In a laboratory setting, learning and

memory can be efficiently simulated by pairing arbitrary memoranda, the associations

between which must be learned in some finite amount of time [90] even without positive or

negative contingencies. The complex architecture of human functional brain networks means

that these tasks evoke brain responses in both the hippocampus [91] and higher-order control

brain regions such as the anterior cingulate cortex (ACC) [92]. The latter region is of particular

interest given that it is strongly linked with meta-cognitive processing, sustained attention,

and executive control [93], processes that are expected to be in play throughout the course of

an associative memory paradigm. Details of the fMRI paradigm can be found elsewhere [30];

in brief, the task alternated between blocks of memory encoding (during which paired memo-

randa were presented for encoding, 27 s, 3 s/pair), post-encoding consolidation (27 s), cued-

retrieval (during which memory for each of the 9 associated pairs was tested, 27 s, 3 s/pair),

and post-retrieval consolidation (27 s). Eight iterations were employed (fMRI data were col-

lected with a TR = 3s, 288 images acquired). Preliminary analyses for computing persistent

homology are expounded upon in Figs 9–12 (S2 Fig).
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At each time index t, let f(x, y, z, t) be the amplitude of the fMRI signal at time index t and

voxel coordinates (x, y, z). For each time index t, the set of points (x, y, z, f(x, y, z, t)), ranging

across all voxel coordinates (x, y, z) at which we have fMRI data, forms a subset of R4 (i.e., real

stereotactic hyperspace). Our goal is to use persistent homology to describe topological charac-

teristics of that subset of R4
at each moment of time, and then to study the dynamics of those

topological characteristics of the signal over time. The steps in our workflow are sketched in

Fig 7, with more detail in the text below.

Normalization of signal. To scale the dimensions uniformly, the data were normalized so that

the scale of the unitless signal amplitude dimension was comparable to the scale of the three

spatial dimensions (see Appendix for details about the parameterless normalization proce-

dure for the fMRI signal). We write fnorm(x, y, z, t) for the normalized signal amplitude at

time t and stereotactic coordinates (x, y, z).

The sample results we present below were obtained after applying an anatomical mask to

isolate the voxels in the anterior cingulate cortex (ACC).

Calculation of persistence diagrams. For each time index t, we then calculate the Vietoris-

Rips persistent homology, an equivalent but computationally simpler version of Čech per-

sistent homology, of the set of points (x, y, z, fnorm(x, y, z, t)) in R4. For each element ℓ in a

basis for the first homology of this set of points (i.e., in Čech terms, each loop in a represen-

tative set of noncontractible loops in the union of open balls centered at the points with

coordinates (x, y, z, fnorm(x, y, z, t)) in real stereotactic hyperspace), we record the birth

radius of ℓ and the death radius of ℓ, and we plot the set of resulting points, with birth radius

on the horizontal axis and death radius on the vertical axis. Due to computational con-

straints, we implemented a maximum radius threshold of ℓmax = 12, effectively truncating

the persistence diagram. The resulting plot or persistence diagram is shown in Fig 8.

Fig 7. We present our employed workflow used in studying dynamics of persistent homology.

https://doi.org/10.1371/journal.pone.0255859.g007

Fig 8. A persistence diagram at one time index.

https://doi.org/10.1371/journal.pone.0255859.g008
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We clarify that this choice of maximum radius threshold is, comparatively harmless.

Increasing the maximum radius threshold in a persistent homology calculation simply

results in a more complete persistence diagram, and not the emergence of spurious positive

results.

Each point in the time t persistence diagram represents a topological structure present in

the fMRI signal at time t. Our goal is to understand the dynamics of those topological struc-

tures, and our next step is motivated by this goal.

Calculation of the vineyard. The location of a point in a persistence diagram reflects only the

birth radius and death radius of the topological feature that that point represents; it does

not reflect the spatial location (in stereotactic space or stereotactic hyperspace) of the “loop”

in the data. When studying the dynamics of topological structure, we want to know which

topological structures at time t+1 are spatially proximate to a given topological structure at

time t.
Following this train of thought, we augment the three-dimensional “stacked” sequence of

persistence diagrams obtained from Fig 8 with additional visual information: for each point

ℓt persistence diagram of the fMRI data at time t, and each point ℓt+1 in the persistence dia-

gram of the fMRI data at time t+1, we draw (in the “stacked” diagram of persistence dia-

grams) a line segment from ℓt to ℓt+1, with shading given by the distance in R3
(real

stereotactic space, not real stereotactic hyperspace) from a loop representing ℓt to a loop

representing ℓt+1. The choice of loops representing the homology classes ℓt and ℓt+1 are

made as in the algorithm given in [94], and as implemented in the software [71]. Conse-

quently, if ℓt is spatially very near ℓt+1, a very dark-colored line segment is drawn between

the two points in the “stacked” persistence diagrams. If ℓt is spatially very distant from

ℓt+1, then the line segment connecting the two points is drawn so faintly that it is nearly

invisible.

The resulting three-dimensional diagram is called the vineyard of the fMRI data, and it

gives a reasonable depiction of dynamical properties of the topological structure inherent in

the fMRI data. There are standard references for vineyards as a data-analytic tool [10, 95],

although they describe vineyards that differ slightly from ours (e.g. by not using shading on

the line segments). A topological structure in the fMRI data which is present at each time

index and which remains within a very constrained spatial (in stereotactic space) region

results in a very dark, visually distinct “vine” in the vineyards. Structures which respond to

an experimental task can result in “intermittent vines”: sequences of points at consecutive

time indices connected by dark, visually distinct line segments, but which are not always

present (e.g. which are present during only certain epochs of an experiment), or which are

not always highly persistent during certain epochs of an experiment, resulting in periodic

“dips” or “swerves” in the vines.

Fig 9 displays the vineyard obtained from the ACC-masked data from a patient in our asso-

ciative learning study. We see that the dynamics of the topological structures present in the

data are sophisticated:

• The isolated points high up in the vineyard represent topological structures (i.e., homology

classes of loops) in the fMRI data which are sporadic, i.e., present only for a single time

index. These structures are of high death radius, but also high birth radius, hence of low per-

sistence. Consequently these topological structures can be regarded as the topological equiv-

alent of noise.

• The darkly-shaded line segments represent topological structures which are present for

more than one consecutive time index: two points at consecutive time indices are connected
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Fig 9. Building from a single time index (in Fig 8), we present persistence diagrams at each of the first 27 time

indices in the analyzed fMRI data. The results are stacked to form a three-dimensional image, with time as the third

axis (and with birth radius and death radius as the other two axes, consistent with Fig 8). For the sake of visual clarity,

we omit features of relatively low persistence from this image. The result is depicted in three complementary views. In

the top subfigure, we simply show the stacked persistence diagrams. In the middle subfigure, we present the

persistence vineyard, in which the top subfigure is supplemented with line segments indicating the anatomical

proximity (i.e., the Hausdorff distance in real stereotactic space) between the representative loops in each homology

class. Darker line segments indicate anatomically more proximate loops, while lighter line segments indicate loops

which are more anatomically distant from one another. A dark, distinct “vine” represents a loop-shaped topological

structure in the fMRI data which is stable over time. The bottom subfigure has red dots indicating a particular vine

which our statistical test has identified as being task-correlated, that is, a persistent homology class is present in the

vine’s region of stereotactic space at some time indices and not at others, and over the full run of 288 time indices, the

presence of the vine at a time index was positively correlated (p<0.01) with that time index being within the memory

encoding epoch of the task.

https://doi.org/10.1371/journal.pone.0255859.g009
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by a darkly-shaded line segment if and only if a loop representing one is proximate, in ste-

reotactic space, to a loop representing the other.

• In the perspective used to display Fig 9, the points which “come out of the page” the most

(i.e., those whose death radius most exceeds their birth radius) represent the highest-persis-

tence topological structures. Consequently the “vines” of line segments in Fig 9 which most

“come out of the page” represent the large-scale topological structures in the ACC-masked

fMRI data, and the starting and stopping of those vines, as we read Fig 9 from left to right,

reveal the dynamics of those topological structures.

Identifying task-responsive vines. Once identified, a vine can be evaluated for covariation

with an experimental task. To accomplish this, all persistence diagrams must first be

stripped of features that are not members of the vine in question. If there are instances

where a persistence diagram does not contain any feature of the vine being evaluated, it is

left as empty. The result is a set of persistence diagrams containing only features found in a

particular vine (and with a minimum persistence threshold of 0.8). This new set of persis-

tence diagrams is now amenable to analysis using the statistical inference test described in

[97]. It is now possible to determine if the vine exhibits differentiating structure across dis-

tinct epochs of an experiment. To begin, the set of persistence diagrams were split based on

the original conditions of experiment. The evaluated null hypothesis is that the label assign-

ments based on condition produce two groups no more distinct than if labels were chosen

at random. The two groups were compared using a test statistic based on the Wasserstein

distance, a metric to compare how similar two persistence diagrams are to each other [97].

The Wasserstein distance captures differences in both persistence and the presence or

absence of features between diagrams. Thus, the test statistic compares the groups of persis-

tence diagrams based on both the presence of the vine and its persistence. After the test sta-

tistic was computed with the original labels, the labels were then randomly permuted in a

manner respecting both the temporal and experimental structure of the task. The test statis-

tic was then computed using these new labels. This process was repeated several thousand

times to obtain the distribution of the test statistic under randomly permuted labels, in

other words under the null distribution. The test statistic computed under the original

labelling is then compared against this null distribution to determine the probability of

observing it by chance, i.e. the p-value of our hypothesis test.

As described above, to identify this task-correlated vine, the persistence diagrams were

stripped of all features except those within the given region in stereotactic space, which

chosen because of the presence of an unusually persistent homology class in that region

at some time indices. The referenced statistical test was then applied to the resulting set of

persistence diagrams to evaluate whether the vine’s topological behavior differed between

encoding and retrieval epochs. The combination of intermittent presence and varying per-

sistence across epochs elicited a significant p-value (<0.01). Namely, the vine’s behavior is

task-responsive.

Inference about geometry of signal in stereotactic space. Once a persistent task-responsive

“vine” is selected in the vineyard, at each time index t at which the vine is present, we select

one or more loops within the homology class given by that vine at t, and we can plot the

voxel locations of those loops. The resultant image represents the loop-shaped structure

(which may represent loops of voxels of distinctly higher or lower signal amplitude than

surrounding voxels) and is mapped to the anatomy.

It is illuminating to superimpose loops representing the homology classes in a persistent

vine over a heat map of the signal amplitude; Figs 10 and 11 represents this at time index 1
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Fig 10. A loop representing the task-correlated persistent vine in the ACC mask for time index 1 is superimposed on a heat map of the fMRI

signal amplitude at the same time index. The loop passes through voxels of high signal amplitude and is non-contractible, i.e., cannot be continuously

contracted down to a point without passing through voxels of significantly lower amplitude.

https://doi.org/10.1371/journal.pone.0255859.g010

Fig 11. The figure depicts (a) the learning paradigm used to evoke fMRI responses with each of the four conditions clearly depicted, (b) a

rendering of the results of activation-based analyses on the anterior cingulate cortex using regressors to represent each of the four conditions

(p<.01, corrected), and (c) results of TDA analyses using our documented workflow. The workflow and the statistical test (see text), shows that a

non-contractible loop (pictured at time index t = 1) shows significantly more persistence during encoding than during retrieval. Note that the TDA-

identified effects in (c) complement the activation-based analyses in (b) in their location in the ACC.

https://doi.org/10.1371/journal.pone.0255859.g011
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for a homology class in a vine whose presence at each time index is statistically significantly

correlated with the experimental task. The data are from the same participant in Figs 8, 9

and 12. As seen, the loop marks out a region of relatively high signal amplitude, wrapped

around a region of relatively lower signal amplitude, in the ACC. This differential pattern

of signal amplitudes, with its characteristic shape, is what we see as the persistent homology

class in the persistent, task-responsive vine in Figs 9 and 12.

In fact, the sharpness of the difference in amplitudes between these two regions is correlated

with the experimental task: during the encoding periods, the loop is more often present

than during other periods.

The above workflow can be adapted to specific situations, and we anticipate methodological

improvements in some steps. For example, rather than working with a single loop representing

each element in first homology, we can carry out our distance calculations (for deciding how

darkly to shade each line segment in the vineyard) using many or all loops representing that

element in first homology. This would yield a data-analytic method which is more numerically

stable, i.e., small changes in the fMRI data would result in comparatively smaller changes in

the resulting vineyards.

Fig 12. The 27 time indices of the vineyard from Fig 9, from a different perspective. The red dots are members of a

statistically identified vine which is intermittent, i.e., not present at every time index. This intermittently-present

topological structure forms a “vine” in the sense that it remains within a tightly constrained region of stereotactic space

in the ACC. The persistence of this vine at each time index where it is present is correlated with whether that time

index is part of the memory encoding epoch of the experimental task. In particular, the vine is statistically significantly

more persistent in encoding epochs than in retrieval epochs.

https://doi.org/10.1371/journal.pone.0255859.g012

PLOS ONE Extracting geometric structure from fMRI time series data with topological data analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0255859 August 12, 2021 23 / 33

https://doi.org/10.1371/journal.pone.0255859.g012
https://doi.org/10.1371/journal.pone.0255859


Our software implementing the above workflow is freely available on a Github repository

[98].

Robustness. We next discuss the robustness of the persistence vineyards produced by the

above workflow. Birth-death diagrams are proved to be robust (i.e., small changes in the data

set result in small changes in the persistence diagram) in the paper [80].

An H1 persistence vineyard from fMRI data consists of a collection of birth-death diagrams

augmented with line segments that track the proximity, in stereotactic space, of loops repre-

senting the homology classes. It has been a recognized issue, since the original paper [10] that

introduced persistence vineyards, that these line segments in a persistence vineyard are not
robust. The issue arises in how loop representatives are chosen, which is not robust in general,

and hence, the shading of lines in the vineyard is also not robust. Stated differently, small

changes to a data set can yield discontinuous “jumps” in the location of the loop representing a

homology class.

One can address these questions of robustness by constructing vineyards using randomly
sampled representative loops for homology classes. We believe that a serious discussion of this

method is too long, too technical, and too purely mathematical (rather than specifically about

fMRI) to be within the scope of this paper.

What isn’t topological about fMRI data. There presumably are limits to exactly what

kinds of “small perturbations” the methods of TDA are invariant under. The paper [80] gives a

precise account (with mathematical proofs) of the robustness of persistent homology (the

main approach to TDA discussed in the present paper) to perturbations of the data. Further

discussion can also be found below, in the “Robustness” section of the present paper.

Furthermore, although the methods of TDA are designed to be invariant under small per-

turbations, neuroimaging researchers sometimes apply transformations to fMRI data during a

preprocessing stage which are not invariant under small perturbations. The standard example

is the application of a spatial mask to isolate a particular region of interest: of course this step is

not invariant under small anatomical variations, and no matter how “perturbation-invariant”

a topological data-analytic technique is, it cannot correct for the failure of a preprocessing

step, like application of a ROI mask, to be invariant under small anatomical variations.

There are two reasonable, but imperfect responses to the failure of the application of ROI

masks to be invariant under small anatomical variations.

1. There may be “boundary effects” due to the placement of the ROI mask which could be mit-

igated by simply using a permissive mask, i.e., a mask which extends several voxels beyond

the desired ROI. This has obvious drawbacks: it is possible that meaningful functional orga-

nization from other anatomical regions of the brain other than the ROI will be included in

the permissive mask mask (a problem that is also a characteristic of spatial smoothing), so

one winds up detecting topological structure in the fMRI data which is not from the ana-

tomical region that one intended to study.

2. Alternatively, one can simply work with whole-brain data. This eliminates the problem of

“boundary effects,” but it has two evident difficulties. First, an analysis of whole-brain fMRI

data returns a potentially overwhelming amount of information, and one needs a way to

spatially localize the topological structures in the fMRI data detected in the analysis, so that

one can identify what topological structures in the data are located in particular regions of

interest. The “vineyard” approach described in the section “A workflow . . .” significantly

addresses this difficulty.

The second difficulty with applying TDA to whole-brain data is simply that it is extremely

computationally intensive. Recent advances in the design of algorithms for calculation of

persistent homology have resulted in enormous improvements [70, 74, 99, 100] in the
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memory and CPU resources required for TDA on large data sets. The calculation of Cech

and Vietoris-Rips persistent homology, the variants we describe in detail, remains largely

out of reach for whole-brain fMRI data, but this has been computed for other flavors such

as cubical persistence [49].

The last point of the previous paragraph can be rephrased to fit the idea that the structure
within the fMRI data is itself worth studying (a fundamental theme of this paper). If there is

some functional phenomenon across subjects which we expect to be reflected in fMRI data, we

cannot usually expect this phenomenon to be always located in the same location in stereotac-

tic space because anatomical variability across participants can impact functional responses in

unpredictable ways. However, TDA circumvents these issues because the search for functional

phenomena in fMRI data is driven by topology, rather than an assessment of their location in

stereotactic space. Thus, instead of a question like “Is there a cluster of highly-activated voxels

in M1 centered at stereotactic coordinates (x1,y1,z1) consistently seen across subjects?” com-

monly addressed in fMRI studies, TDA is suited to address questions like “Do we see topologi-

cally equivalent configurations of high- and low-activation voxels across all subjects during a

specific motor task?” The answer to the second question is invariant under most small pertur-

bations in the data (e.g. small anatomical variations). Moreover, the answer has a certain

“robustness”, as it is not affected by modest changes to signal amplitude in a single voxel or a

relatively small number of voxels. The question instead is about larger-scale organization to

the signal amplitude across many voxels (i.e., structure in the fMRI data), rather than any single

voxel.

Combining TDA with statistical inference

A natural response to learning about persistent homology is: “How do we know if a topological

feature is meaningful?” One answer to this question is that, if a topological feature has

markedly higher persistence than others in the same data set, then this feature should be inves-

tigated, by computing its location within the data set, tracking its change over time, and study-

ing the data points comprising this topological feature. For example, is it a) a very low-signal-

amplitude loop surrounded by high-signal-amplitude voxels, b) or the reverse, c) or is the loop

composed of two distinct paths connecting a low-signal-amplitude region to a high-signal-

amplitude region, d) or some other alternative?

It is valuable to be able to use standard statistical methods to give some quantifiable sense of

whether a given topological feature has “markedly higher persistence” than others. A crude

approach would be to study the distribution of persistences of topological features in a data

set, and to study only the topological features whose persistence is, for example, two standard

deviations above the norm within that data set. We refer to [101] for a much more refined

approach that uses Monte Carlo methods to arrive at a p-value. A recent publicly-available pre-

print [96] adapts this approach for application to task-based fMRI data, using a multi-level

block sampled Monte Carlo test on persistence diagrams to overcome an independence

assumption in [101] which limits that paper’s direct applicability to time-series fMRI data.

TDA has also been used in conjunction with statistics and machine learning techniques

through various vectorization schemes. However, persistence diagrams do not possess a nat-

ural vector space structure amenable to statistical quantities, like mean and variance, so they

must be “vectorized” before passed onto statistical learning algorithms. A multitude of

authors have proposed various vectorization schemes, known as feature maps, for persis-

tence diagrams to remedy this issue. These include both parametric methods [102, 103], like

kernel-based approaches [104, 105], and nonparametric methods [106–108]. All these vec-

torization tools allow the practitioner to apply statistical learning methods, such as support
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vector machines, feature selection, neural networks, etc., to persistent homology, and com-

bine the two approaches in a meaningful way.

Using statistics with TDA is important in making inferences about topological structure in

fMRI data across many subjects, as well as—as we explain in the “Workflow” section of this

paper—in making inferences about correlation of a topological feature with a task. However,

we suggest that TDA is a useful and robust method for discovering features in the data from

individual participants, because of its focus on structure in data. When appropriately applied,

this aspect can be valuable in the study of individual differences and/or in clinical applications

where individual subject variability can overwhelm the sensitivity of group-based studies.

Conclusions

This paper straddles the boundaries between a conceptual overview and a methodological

demonstration. A pure conceptual overview would be academic, and a methodological dem-

onstration without being preceded by the elucidation of central concepts would be poorly

directed. Accordingly, our goal was to provide a working overview of some methods of TDA

that can inform the search for the discovery of structure in fMRI signals. To achieve this, we

decided to structure this paper in order where we 1) provided information on some of the

known underpinnings of the fMRI response, before 2) venturing into a primer on TDA with a

focus on the concept of persistence; 3) we then provided some motivations for what topologi-

cal features might be contained in fMRI data, working through a basic (but limited) example

using activation maps; 4) from this limited example, we worked through a detailed explanation

of the concept of persistent homology, accentuating our explanations by applying persistent

homology to real fMRI data, and 5) using the generated results to attempt to drive home the

value of using persistent homology to discover topological structure within the spatio-tempo-

ral properties of fMRI data; 6) finally, in concluding the overview, we direct the reader to code

used in the computations of persistent homology, in the expectation that our methods can be

openly tested on their dataset of choice.

The discovery of complex biological function is acutely difficult, even more so in the case of

the brain [109], where generative architectures must be recovered from limited, overt signals

[24]. Where does TDA fit in the heavily proliferated mix of methods? We propose that TDA

can discover mixed structures in fMRI data that involve both spatial organization in real ste-

reotactic space and variations in intensity of fMRI signal. Such structures may be biologically

meaningful, if they are shown to appear in concert with task-induced variations. Because their

discovery is based on topology in high dimensions, traditional statistical methods are not opti-

mized to detect them. Thus, TDA can provide a meaningful and unique complement to such

established methods.

We hope that our exhaustive approach adequately communicates both why TDA should be

used in the service of functional discovery in fMRI, and how it can be used.

Appendix on parameterless normalization of fMRI data

The normalization process that we describe here, mentioned in the “Workflow” section of our

paper, has the merit of being completely parameterless. One of the fundamental reasons to

normalize fMRI data is to ensure that the range of values taken by the fMRI signal amplitude is

not radically different from the range of values taken by the spatial (x, y, and z) coordinates.

With that motivation in focus, we describe the simplest normalization procedure which

accomplishes that aim: we do not modify the spatial coordinates of locations in stereotactic

space at all, and we modify the fMRI signal amplitude by applying the unique linear function

such that

PLOS ONE Extracting geometric structure from fMRI time series data with topological data analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0255859 August 12, 2021 26 / 33

https://doi.org/10.1371/journal.pone.0255859


• the minimum of the normalized signal amplitudes is equal to the average of the minimum x,

minimum y, and minimum z coordinates, and

• the maximum of the normalized signal amplitudes is equal to the average of the maximum x,

maximum y, and maximum z coordinates.

Consequently the range of values taken by the normalized signal amplitude is equal to the

average of the ranges of values taken by the spatial (x, y, and z) coordinates. As a formula:

fnewðx; y; z; tÞ ¼
f ðx; y; z; tÞ � a0

a1 � a0

;

where

a0 ¼
ðmin: x coord:Þ þ ðmin: y coord:Þ þ ðmin: z coord:Þ

3
; and

a1 ¼
ðmax: x coord:Þ þ ðmax: y coord:Þ þ ðmax: z coord:Þ

3
:

This normalization process is “canonical” in the sense in which the term is often used in

mathematics, that is, there are no free parameters anywhere in this normalization process. We

do not know of any reason to believe that ours is the only possible, or the best, parameterless

normalization method for fMRI data. However, it does have the merit of being characterized

uniquely by linearity and its effect on the ranges of normalization values.

It also has the merit that the resulting distances between points in stereotactic hyperspace

are invariant under a linear change of spatial coordinate applied to the fMRI data before nor-

malization: that is, whether we configure the fMRI machine to record spatial coordinates using

units of millimeters, or of centimeters, or of inches, or of voxel edge lengths, after applying our

normalization procedure we get the same distances between points in stereotactic hyperspace,

and consequently the same results from calculation of persistent homology. This is an impor-

tant demonstration, because it tells us that the persistent homology of normalized fMRI data is

determined by the behavior of the fMRI signal in the physical space being scanned, rather than

being partially determined by the way one chooses to represent that physical space by a system

of units of spatial distance.

One can ask what happens if we modulate the scale of the four coordinates differently, or if

we establish the scaling of the coordinate using some other (e.g. non-Euclidean) metric (we

thank an anonymous referee for these questions). Applying nonlinear scaling functions, or

(more drastically) putting a non-Euclidean metric on stereotactic hyperspace, would lose the

information about ratios between spatial distances or differences in signal amplitude, or both,

so we use linear scaling functions only. It does not seem meaningful to scale the spatial coordi-

nates differently from one another, as this distorts the natural spatial organization of the anat-

omy underlying the fMRI signal. One could, in principle, not use the canonical scale described

above, and instead “dial” the scale of the fMRI signal amplitude freely up and down:

• The effect of dialing the scale of the fMRI signal very far up is to introduce a great distance in

the signal dimension between each point in stereotactic space and its nearest neighbors. The

resulting point cloud in stereotactic hyperspace is nearly linear: a cloud of points spaced over

an enormous range of signal values, with comparatively only very minor variation in values

in the spatial dimensions. All the loop-like organization is lost, as well as voids and higher-

dimensional analogues; i.e., the homology H1,H2,. . . becomes trivial, and the resulting vine-

yards are free of any vines at all.
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• The effect of dialing the scale of the fMRI signal very far down is to collapse stereotactic

hyperspace down to stereotactic space, i.e., the point cloud is simply a cubical lattice, with

no large-scale organization in the form of loops, voids, etc. The resulting H1,H2,. . . has

extremely low persistence (e.g. we get many H1 classes with birth radius equal to half the

voxel edge length, and death radius equal to
ffiffiffi
2
p

times the birth radius; each such H1 class

arises from each 4-tuple of adjacent voxels arranged as the corners of a square). Since the

homology is all low-persistence, the resulting vineyard has no high-persistence vines at all.

So artificially “dialing” the fMRI signal scale sufficiently high or sufficiently low yields a

negative result when calculating the persistence vineyard.

Supporting information

S1 Fig. Topological organization in fMRI data at multiple scales. Topological organization

in data is often present at more than one scale. In this figure, we see both large-scale clustering

(three larger clusters when “zoomed out”) and small-scale clustering (nine smaller clusters

when “zoomed in”). The persistence of an element of homology (in this case, the zeroth

homology, which is a vector space whose dimension essentially counts the number of clusters)

quantifies the scale at which the structure described by that element of homology is present.

(GIF)

S2 Fig. Interactive vineyard. This HTML file is an interactive rotatable version of the vineyard

pictured in Figs 9 and 12 and described in the Workflow section of the paper.

(HTML)

S3 Fig. Interactive loop plot. This HTML file is an interactive rotatable version of the plot of

the representative loops at t = 1 in the task-correlated persistent vine in the masked fMRI data

pictured in Fig 10 and described in the Workflow section of the paper.

(HTML)

S1 Data. fMRI data. The included archive of .csv files has one .csv file for each time index.

Each .csv file contains a single matrix, which has one column for each of the spatial coordinates

x, y, z and one column for the fMRI signal amplitude at voxel (x, y, z) at that time index. This

is normalized scan data for a single patient from our study, described in the paper, with an

ACC (anterior cingulate cortex) mask applied. This is the data we used, together with our soft-

ware implementation of our workflow (available at https://github.com/regalski/Wayne-State-

TDA), to produce the persistence diagrams, vineyards, and loop locations pictured in the fig-

ures and described in the Workflow section of our paper.

(ZIP)
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