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Abstract. The nondegeneracy of the Petersson inner product on cusp forms,

and the fact that Hecke operators are self-adjoint with respect to the Petersson

product, together imply that the cusp forms have a basis consisting of Hecke
eigenforms. In the literature on topological modular forms, no topological

analogue of the Petersson product is to be found, and it is not known which

topological spaces have the property that their topological cusp forms admit
a basis consisting of eigenforms for the action of Baker’s topological Hecke

operators. In this note we define and study a natural topological Petersson

product on complexified topological cusp forms, whose value on a one-point
space recovers the classical Petersson product. We find that the topological

Petersson product is usually degenerate: in particular, if X is a space with
nontrivial rational homology in any positive degree, then the Petersson prod-

uct on complexified tcf∗(X) is degenerate. Despite tcf -cohomology being

a stable invariant, the topological Petersson product is an unstable invari-
ant, vanishing on all suspensions. Nevertheless, we demonstrate nontriviality

of the topological Petersson product by giving an explicit calculation of the

topological Petersson product on complexified tcf -cohomology of the complex
projective plane. We show that, for a compact Kahler manifold X, the Peters-

son product is nondegenerate on complexified tcf -cohomology of X in a range

of Atiyah-Hirzebruch filtrations (essentially one-third of the possibly-nonzero
Atiyah-Hirzebruch filtrations in the tcf -cohomology of X).
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1. Introduction

The classical Petersson product of level 1 cusp forms is the positive-definite
Hermitian form given by the formula

⟨f, g⟩ ∶= ∫
H/SL2(Z)

fḡvk−2dudv, τ = u + iv ∈ H.

Each Hecke operator Tm is self-adjoint with respect to the Petersson product on
Sk ⊗Z C. Consequently the action of each Hecke operator on Sk is diagonalizable,
and Sk has a basis consisting of Hecke eigenforms; this is a fundamental, important
result, since (among other reasons) the modular forms with L-functions expected to
occur from irreducible degree 2 Galois representations are the cusp forms, and for a
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normalized Hecke eigenform f the p-th L-series coefficient is simply the eigenvalue
of the action of Tp on f . Having a basis for weight k cusp forms consisting of Hecke
eigenforms gives a powerful handle on their L-functions: we write a cusp form as a
linear combination of Hecke eigenforms, and then on each summand we can recover
the L-series coefficients from the Hecke eigenvalues.

It is quite satisfying to be able to get this fundamental result as consequences
of the existence of a piece of structure, namely, an inner product on cusp forms
with respect to which the Hecke operators are self-adjoint. One would like to see
this same structure occur in the context of topological modular forms, with some
similar consequences, like diagonalizability of the action of the Hecke operations on
topological cusp forms.

We define, in the most direct and näıve possible way, a “weight j topological
Petersson product”

tcf −2k
(X)⊗Z tcf −2k

(X)→H2(j−k)
(X; C)

for each unpointed finite CW-complex X. When X is a single point, this recovers
the classical Petersson product in the case j = k, and is zero when j ≠ k. When
X is the complex projective plane, the weight j topological Petersson product on
tcf −2k

(X) vanishes unless j = k or j = k + 1, and recovers the classical Petersson
product when j = k or j = k + 1. These examples are given in Examples 4.2.

Base-changing to C, the topological Petersson product yields an R-bilinear form

(tcf −2k
(X)⊗Z C)⊗R (tcf −2k

(X)⊗Z C)→H2(j−k)
(X; C)

which is explicitly calculated in Proposition 4.3 up to the Atiyah-Hirzebruch filtra-
tion, i.e., we calculate the topological Petersson product on the associated graded
of the Atiyah-Hirzebruch filtration on tcf −2k

(X) ⊗Z C, where it depends only on
the cup product on H∗(X; Q) and the classical Petersson product.

We compute examples of topological Petersson products in Examples 4.2:

● On a single point, the topological Petersson product coincides with the
classical Petersson product of cusp forms.

● On a sphere of positive dimension, the topological Petersson product again
coincides with the classical Petersson product of cusp forms, supported
entirely on the basepoint. That is, the topological Petersson product is
completely insensitive to the topology of the sphere.

● However, the topological Petersson product over a space X does detect some
of the topology on X: we show that the topological Petersson product of
topological cusp forms on CP 2 agrees with the classical Petersson product
on the basepoint, and it agrees with a weight-shifted copy of the classical
Petersson product on the 2-cell S2 ⊆ CP 2. It is trivial on the topological
cusp forms supported on the 4-cell in CP 2, however.

We give formula (10), which provides an explicit and highly usable way to calculate
the topological Petersson product of topological cusp forms over a space X, at
least up to terms of higher Atiyah-Hirzebruch filtration. That is, formula (10) is an
explicit formula for the topological Petersson product on the associated graded of
the Atiyah-Hirzebruch (i.e., skeletal) filtration of tcf∗(X)⊗Z C. One consequence
is that the topological Petersson product is highly sensitive to the cup product
structure of the cohomology of a space, and is consequently not a stable invariant
of the space.
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As another consequence, we get Corollary 4.4, which shows that, unfortunately,
the topological Petersson product is degenerate on tcf ∗(X) ⊗Z C for finite CW-
complexes X with any nontrivial rational cohomology in positive degrees at all.

Here is the moral: in this note, we have carried out the most näıve kind of inves-
tigation into what a Petersson product on topological modular forms might be, by
simply considering the rational case. Rationalizing dramatically simplifies stable
homotopy types, so one might expect this to trivialize all questions about topolog-
ical Petersson products. Yet we see that the most basic and important question
about the Petersson product—is it degenerate, so that we can use it to show that
the topological Hecke operators are diagonalizable, like how the argument goes for
classical cusp forms?—remains quite nontrivial even after our simplifications, and
indeed, over any finite CW-complex with any nontrivial rational cohomology in pos-
itive degrees, the topological Petersson product is degenerate. Evidently some more
involved techniques would be required to establish diagonalizability of topological
Hecke operators on elliptic (co)homology.

Nevertheless, nondegeneracy of the topological Petersson product is not an en-
tirely lost cause. We end on a small positive note: in Theorem 4.7, we show
that when X is a compact Kähler manifold of complex dimension d, the topolog-
ical Petersson product of X is nondegenerate when restricted to the elements of
tcf ∗(X)⊗Z C of even Atiyah-Hirzebruch filtration ≤ 2d/3. (When the rational ho-
mology of X is concentrated in even degrees, then all elements of tcf ∗(X) ⊗Z C
have even Atiyah-Hirzebruch filtration.)

Throughout this note, on various occasions, we have an HC-module spectrum
X and a map of HC-module spectra of the form

(1) X ∧HR X →HC.

Naturally, this represents an R-bilinear form on the spectrum X. If one is willing
to keep track of a Gal(C/R)-action on the relevant spectra, then one could consider
a map of the form

(2) X ∧HC X →HC,

i.e., a sesquilinear form on X. We suspect that, using equivariant spectra to keep
track of the Galois action, the methods we pursue in this note in order to get an
R-bilinear Petersson product on tcf -cohomology ought to also yield a sesquilinear
Petersson product on tcf -cohomology. However, bringing in ideas from equivari-
ant stable homotopy would significantly increase the length and/or expected back-
ground knowledge of this note, while making only a modest improvement in the
strength of the results, so we elected to consider only an R-bilinear (rather than
sesquilinear) Petersson product here.

We are grateful to Theo Johnson-Freyd for a helpful conversation early on during
this project.

2. Topological cusp forms.

In this section we recall the construction of topological cusp forms. We learned
about this construction from Theo Johnson-Freyd. Our understanding is that it is
originally due to Lennart Meier (unpublished). Let F denote the homotopy fiber of
the usual E∞-ring spectrum map tmf → ko. The rational stable homotopy groups
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of F are then given by

π∗(F )⊗Z Q ≅ S2∗ ⊗Z Q⊕Σ3Q,

the graded Q-vector space of level 1 cusp forms1, with grading given by weight
multiplied2 by 2, along with an additional copy of Q in degree 3 coming from the
Bott class in π4(ko) failing to be in the image of the map π∗(tmf) → π∗(ko),
essentially because the weight 2 Eisenstein series fails to be a modular form.

In fact the above is true after inverting the primes 2 and 3; it is not necessary to
pass all the way to the rationalization. In particular, we have πn(F [ 1

6
]) ≅ 0 if n < 3,

while π3(F [ 1
6
]) ≅ Z [ 1

6
]. We then have πn(F [ 1

6
]) ≅ 0 for n = 4,5,6,7,8, . . . ,23, and

then we get π24(F [ 1
6
]) ≅ Z [ 1

6
] generated by ∆, and thereafter (i.e., for n ≥ 24)

we have that πn(F [ 1
6
]) is a free Z [ 1

6
]-module of rank j if n = 24j + r with r ≡

0,8,12,16,20 modulo 24, rank j − 1 if n = 24j + r with r ≡ 2,4,6,10,14,18,22
modulo 24, and rank 0 otherwise. To narrow our focus to the rank of degrees where
the homotopy groups of F describe (away from 6) exactly the classical level 1 cusp
forms, we define tcf as the 4-connective cover of F . This yields the isomorphism of
graded Z[ 1

6
]-modules π∗(tcf [ 1

6
]) ≅ S2∗. So, after inverting 6, the homotopy groups

of tcf are precisely the classical level 1 cusp forms over Z[ 1
6
].

It will not be important for the rest of this note, but it is perhaps satisfying
to know that the spectrum tcf is also a tmf -module, and the resulting action of
π∗(tmf [ 1

6
]) on tcf [ 1

6
] coincides with the usual action, by multiplication, of the

ring M∗ of holomorphic level 1 modular forms on its submodule of cusp forms.
To see that this is so, first observe that the map tmf → ko is a ring spectrum
map, hence in particular a tmf -module map, so its homotopy fiber F is also a tmf -
module. Since tmf is a connective E∞-ring spectrum, we can take any tmf -module
X and attach tmf -cells (rather than S0-cells, as in the stable version of the familiar
“attaching cells to kill higher homotopy” construction from classical homotopy
theory) to kill all the homotopy above some degree n, yielding a map of tmf -
modules X → X(−∞, n]. Our spectrum tcf is the fiber of the map F → F (−∞,3],
so tcf is the fiber of a map of tmf -modules, so tcf is a tmf -module. It is routine
to check that the resulting π∗(tmf [ 1

6
])-action on π∗(tcf [ 1

6
]) is as expected.

3. Hecke operators on rational topological cusp forms.

When we speak of an “action of Hecke operators” on a spectrum E, we will
always mean that the relevant Hecke operator T̃n ought to be a homotopy class of
maps of spectra E → E; we do not require Hecke operators to be defined “on the
nose,” and we only require the usual Hecke relations T̃mT̃n = T̃nT̃m and

(3) T̃pr+2(x) = T̃p (T̃pr+1(x)) −
1

p
ΨpT̃pr(x)

1The cusp forms do not form a ring, since, for example, there is no weight 0 cusp form, hence

no multiplicative unit.
2Throughout, we will consistly write S2∗ to mean the graded Z[ 1

6
]-module of level 1 cusp forms

over Z [ 1
6
] with grading given by weight multiplied by 2. We write S−2∗ for the same graded Z[ 1

6
]-

module but with the grading degrees also multiplied by −1. We write Sk for the Z [ 1
6
]-module of

weight k level 1 cusp forms over Z [ 1
6
].
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to hold up to homotopy3. Consequently, in the rest of this section, we will always
be working in the stable homotopy category.

Getting an action of Hecke operators on tcf is quite nontrivial: in [Bak90],
Baker constructs an action of Hecke operators on TMF [ 1

6
], and essentially the

same method yields an action of Hecke operators on tmf [ 1
6
]. Baker’s method uses

the complex-orientability of TMF [ 1
6
] in an essential way, and it does not yield

Hecke operations on TMF (or on Tmf or tmf) without inverting the primes 2 and
3, since it is only after inverting 6 that these spectra become complex-oriented.

Like TMF and Tmf and tmf , the spectrum tcf is not complex-oriented; but
unlike TMF and Tmf and tmf , inverting 6 still does not make tcf complex-
oriented4. Some other idea is needed to build Hecke operators on tcf , even on
tcf [ 1

6
].

In this note we take the path of least resistance: we simply rationalize, and then
try to show that Baker’s Hecke operators on rational tmf restrict to operators on
rational tcf . This is, however, straightforward: for each positive integer n, we have
the solid arrows in the diagram of spectra whose rows are homotopy fiber sequences

(4) F ∧HQ //

��

tmf ∧HQ //

T̃n

��

ko ∧HQ

F ∧HQ // tmf ∧HQ // ko ∧HQ

and the composite F ∧HQ→ ko∧HQ from the upper left corner to the lower right
corner induces the zero map in π∗, since Baker’s T̃n agrees with the classical Hecke
operator on Tn on π∗(tmf [ 1

6
]). In rational spectra, a map that induces zero in π∗

is nulhomotopic, so there exists a map filling in the dotted line in diagram (4) and
making it commute. The number of such maps is the order of the cokernel of the
map

[F ∧HQ,Σ−1tmf ∧HQ]→ [F ∧HQ,Σ−1ko ∧HQ].

Since the rational homotopy groups of Σ−1ko are concentrated in odd degrees and
since the only odd-degree rational homotopy group of F is the copy of Q in rational
π3(F ) coming from the failure of π4(tmf) → π4(ko) to be rationally surjective,
the dotted arrow in (4) is well-defined up to the question of how Tn ought to act
on π3(F ) ⊗Z Q; a reasonable way to make this choice might be to use the action
of Tn on the quasimodular form E2, as in [Mov15]. For the sake of this note, one
can make whatever choice one wants, since we make no use of the Hecke action on
π3(F ); since taking the 4-connective cover is a functor, each map F ∧HQ→ F ∧HQ
yields a map tcf ∧HQ→ tcf ∧HQ with the same effect on homotopy in degrees ≥ 4,
yielding our Hecke action on tcf ∧HQ.

3The classical Hecke relation is Tpr+2 = TpTpr+1 − p
k−1Tpr , which holds for the action of the

Hecke operators on the ring of holomorphic modular forms. However, Baker points out in [Bak90]

that his topological Hecke operators on elliptic homology instead satisfy the more general relation
(3), where Ψp here is the pth Adams operation. In the case of the holomorphic elliptic homology

of the zero-sphere S0, the action of Ψp on `2k(S
0) ≅Mk is simply by multiplication by pk, so (3)

reduces to the classical relation Tpr+2 = TpTpr+1 − p
k−1Tpr when the topological Hecke operators

are evaluated on the zero-sphere. See [CS22] for further discussion.
4This is simply because a spectrum cannot be complex-oriented without having a ring structure.

Since π0(tcf) remains trivial after inverting any set of primes, it is not possible to make tcf into

a ring spectrum by inverting any set of primes.
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Consequently, for each positive integer n, we have a topological Hecke operator
T̃n on tcf . It is a map of spectra T̃n ∶ tcf ∧HQ → tcf ∧HQ, well-defined up to
homotopy. By applying the base-change functor −∧HQHC we get a map of spectra

tcf ∧HC → tcf ∧HC, which by abuse of notation we will also call T̃n, and which
plays an important role in the next section.

4. The Petersson product on complexified topological cusp forms.

Given a connective spectrum X and an integer n, let X[0, n] denote X with cells

attached to kill all homotopy groups in degrees > n. For each integer k, let tcf wtk
C be

the fiber of the map from (tcf ∧HC) [0,2k] to (tcf ∧HC) [0,2k−1]. Since tcf ∧HC
is a rational spectrum, the fiber inclusion map tcf wtk

C → (tcf ∧HC) [0,2k] splits,

and a degree argument shows that the splitting is unique. Hence tcf wtk
C is uniquely

a wedge summand of tcf ∧HC, homotopy equivalent to the 2kth suspension of the
Eilenberg-Mac Lane spectrum of the C-vector space Sk ⊗Z C of weight k level 1
classical cusp forms.

For each integer k, let

Peterssonk ∶ Σ
−2k tcf wtk

C ∧HRΣ−2k tcf wtk
C →HC

be the Eilenberg-Mac Lane spectrum functor H applied to the Petersson product
map (Sk ⊗Z C)⊗R (Sk ⊗Z C)→ C.

Now we are ready to define the Petersson product on topological cusp forms:

Definition 4.1. For each integer j, the weight j topological Petersson bicharacter
is the composite map of spectra

Σ−2j tcf ∧Σ−2j tcf → (Σ−2j tcf ∧HC) ∧HR (Σ−2j tcf ∧HC)

→ Σ−2j tcf wt j
C ∧HRΣ−2j tcf wt j

C

Peterssonj

Ð→ HC.

Consequently, given an unpointed topological space5 X, an integer or half-integer
k, and a pair of elements f, g ∈ [Σ∞X+,Σ

−2k tcf ] ≅ tcf −2k
(X), the composite map

Σ∞X+

Σ∞∆+
Ð→ Σ∞

(X ×X)+

≅

Ð→ Σ∞X+ ∧Σ∞X+

f∧g
Ð→ Σ−2k tcf ∧Σ−2k tcf

Ð→ Σ−2k tcf ∧HRΣ−2k tcf

Σ4(j−k) Peterssonj

Ð→ Σ2(j−k)HC

is an element of H̃4(j−k)(X+; C) ≅ H4(j−k)(X; C). We define ⟨f, g⟩j, the weight j

topological Petersson product of f and g, to be that element of H4(j−k)(X; C).

Note that the topological Petersson products are not stable invariants. In par-
ticular, suspending X tends to cause topological Petersson products not supported
on the basepoint to become zero.

5We cannot make the same construction for an arbitrary spectrum X, since we are required
to have a diagonal map on X.
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Examples 4.2.

● When X = pt., an element f of [Σ∞X+,Σ
−2k tcf [ 1

6
]] ≅ π2k (tcf [ 1

6
]) is given

by a weight k level 1 classical cusp form. Since π0(Σ
−2k tcf wt j

C ) vanishes
unless j = k, the composite

Σ∞X+

≅

Ð→ Σ∞S0

≅

Ð→ Σ∞S0
∧Σ∞S0

f∧g
Ð→ Σ−2k tcf ∧Σ−2k tcf

→ Σ−2k tcf wt j
C ∧HRΣ−2k tcf wt j

C

is nulhomotopic unless j = k. Consequently ⟨f, g⟩j = 0 unless j = k. When
j = k, the topological Petersson product is nonzero: it is immediate from
Definition 4.1 that ⟨f, g⟩k = ⟨f, g⟩ ∈ C ≅ H0(pt.; C), the classical Petersson
product of the cusp forms f and g.

● More generally, when X is a finite discrete space with n points, then
tcf 2k

(X) splits as a direct sum of n copies of tcf 2k
(pt.), and the weight k

topological Petersson product on each summand of tcf 2k
(X) [ 1

6
] is simply

the classical Petersson product, while the weight j topological Petersson
product is zero for j ≠ k.

● When X = Sn for n > 0, it is standard that the composite map of spectra

Σ∞Sn
∨Σ∞S0 ≅

Ð→ Σ∞Sn
+

Σ∞∆+
Ð→ Σ∞

(Sn
× Sn

)+
≃

Ð→ Σ∞S2n
∨Σ∞Sn

∨Σ∞Sn
∨Σ∞S0

sends the summand Σ∞Sn in its domain via the categorical diagonal map
to the summands Σ∞Sn ∨Σ∞Sn in the codomain, and sends the summand
Σ∞S0 in its domain via the identity map to the summand Σ∞S0 in its
codomain. Consequently, given elements f, g ∈ [Σ∞Sn

+
,Σ−2k tcf [ 1

6
]], we

decompose f into a weight k cusp form f0 ∈ [Σ∞S0,Σ−2k tcf [ 1
6
]] and a

weight k + n
2

cusp form fn/2 ∈ [Σ∞Sn,Σ−2k tcf [ 1
6
]], and similarly we de-

compose g into a weight k cusp form g0 ∈ [Σ∞S0,Σ−2k tcf [ 1
6
]] and a weight

k + n
2

cusp form gn/2 ∈ [Σ∞Sn,Σ−2k tcf [ 1
6
]], so that the composite map

Σ∞Sn
+
Ð→ Σ∞Sn

+
∧Σ∞Sn

+

f∧g
Ð→ Σ−2k tcf [

1

6
] ∧Σ−2k tcf [

1

6
]

→ Σ−2k tcf wt j
C ∧HRΣ−2k tcf wt j

C

→ Σ4(j−k)HC
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is nulhomotopic unless j = k. To be clear: the composite map

Σ∞S2n
∨Σ∞Sn

∨Σ∞Sn
∨Σ∞S0 ≃

Ð→ Σ∞
(Sn

× Sn
)+(5)

≃

Ð→ Σ∞Sn
+
∧Σ∞Sn

+
(6)

f∧g
Ð→ Σ−2ktcfwt j

C ∧HR Σ−2ktcfwt j
C(7)

→ Σ4(j−k)HC(8)

has the following effect on each wedge summands in its domain:
– On Σ∞S2n, the composite map

Σ∞S2n
→ Σ−2ktcfwt j

C ∧HR Σ−2ktcfwt j
C → Σ4(j−k)HC

is ⟨fn/2, gn/2⟩j , a classical Petersson product of weight k + n/2 cusp
forms, hence certainly capable of being nonzero if (and only if) j =

k + n/2.
– On one summand Σ∞Sn, the composite map

Σ∞Sn
→ Σ−2ktcfwt j

C ∧HR Σ−2ktcfwt j
C → Σ4(j−k)HC

is ⟨f0, gn/2⟩j , a classical Petersson product of cusp forms of distinct
weights, hence is zero.

– On the other summand Σ∞Sn, the composite map

Σ∞Sn
→ Σ−2ktcfwt j

C ∧HR Σ−2ktcfwt j
C → Σ4(j−k)HC

is ⟨fn/2, g0⟩j , again a classical Petersson product of cusp forms of dis-
tinct weights, hence again zero.

– On the summand Σ∞S0, the composite map

Σ∞S0
→ Σ−2ktcfwt j

C ∧HR Σ−2ktcfwt j
C → Σ4(j−k)HC

is ⟨f0, g0⟩j , a classical Petersson product of weight k cusp forms, hence
capable of being nonzero if (and only if) j = k.

However, the topological Petersson product of f and g is the composite
of (6) and (7), precomposed with the diagonal map ∆ ∶ Σ∞Sn

+
→ Σ∞(Sn ×

Sn)+. While the composite of (5) through (7) is non-nulhomotopic on the
top-dimensional summand Σ∞S2n, precomposing with ∆ misses that top-
dimensional summand entirely. (Of course this follows immediately from
the triviality of πn(S

2n). Recall that n > 0 throughout this example.)
Consequently, on the n-sphere for n > 2, the weight j topological Peters-

son product of f and g is trivial unless j = k. If j = k, then the topological
Petersson product of f and g is supported entirely on the basepoint of Sn,
where it agrees with the classical Petersson product of f0 and g0. On the
n-sphere for n > 0, the topological Petersson product is completely insen-
sitive to fn/2 and gn/2. In particular, the topological Petersson product is

degenerate on tcf ∗(Sn)⊗Z C.
● The example of the sphere Sn for n > 0 may give the reader the impression

that the topological Petersson product on tcf ∗(X) ⊗Z C is simply given
by the classical Petersson product on the cusp forms supported on the
basepoint of X+. This impression is not correct, as the following example
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demonstrates: let X = CP 2. The composite map

Σ∞S0
∨Σ∞CP 2 ≅

Ð→ Σ∞CP 2
+

→ Σ∞
(CP 2

×CP 2
)+

≅

Ð→ Σ∞CP 2
+
∧Σ∞CP 2

+

≅

Ð→ (Σ∞CP 2
∧Σ∞CP 2) ∨Σ∞CP 2

∨Σ∞CP 2
∨Σ∞S0

is non-nulhomotopic: it is nulhomotopic on the 2-cell S2 ≃ CP 1 ⊆ CP 2, but
the top cell of CP 2 is mapped by a rational equivalence to the 2-skeleton of
CP 2∧CP 2, since the cup square of a generator of H2(CP 2; C) is a generator
of H4(CP 2; C).

Consequently, given elements f, g ∈ [Σ∞CP 2
+
,Σ−2k tcf [ 1

6
]]], we decom-

pose f into a weight k cusp form f0 ∈ [Σ∞S0,Σ−2k tcf [ 1
6
]] and an element

f ′ of [Σ∞CP 2,Σ−2k tcf [ 1
6
]], and similarly we decompose g into a weight k

cusp form g0 ∈ [Σ∞S0,Σ−2k tcf [ 1
6
]] and an element g′ of [Σ∞CP 2,Σ−2k tcf [ 1

6
]].

For the same reasons as in the previous examples, ⟨f0, g0⟩k = ⟨f, g⟩k, and
⟨f0, g0⟩j = 0 if j ≠ k.

The Atiyah-Hirzebruch spectral sequence

Es,t
2 ≅Hs (CP 2; tcf t

⊗ZC)⇒ tcf s+t
(CP 2

)⊗Z C

dr ∶ E
s,t
r → Es+r,t−r+1

r

collapses at E2; one way to see this is by Dold’s theorem that the shortest
nonzero Atiyah-Hirzebruch differential is torsion-valued, from [Dol66] (see
[Arl92] for a more easily-obtained English-language reference). This yields
a splitting of C-vector spaces

tcf −2k
(CP 2

)⊗Q C ≅ (H0
(CP 2; C)⊗Q Sk)

⊕ (H2
(CP 2; C)⊗Q Sk+1)

⊕ (H4
(CP 2; C)⊗Q Sk+2) .

Consequently we can decompose the image of f in tcf −2k
(CP 2)⊗Z C into a

triple (f0, f2, f4), where f is a weight k cusp form and f2 is a weight k + 1
cusp form and f4 is a weight k + 2 cusp form. This refines the above de-
composition of f into f0 and f ′ = (f2, f4). We decompose g into (g0, g2, g4)

similarly.
The composite

Σ∞S2 ≅

Ð→ Σ∞CP 1

Ð→ Σ∞CP 2
+

Ð→ Σ∞CP 2
+
∧Σ∞CP 2

+

f2∧g2
Ð→ Σ−2k tcf ∧Σ−2k tcf

→ Σ−2k tcf wt j
C ∧Σ−2k tcf wt j

C

is nulhomotopic for all j, so the component of ⟨f, g⟩j on the 2-cell in CP 2
+

is trivial for all j.
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The 4-cell in CP 2
+

is the interesting part: by the above cell-by-cell analysis
of the homotopy class of the diagonal map on CP 2

+
, the component of ⟨f, g⟩j

on the 4-cell in CP 2
+

is ⟨f2, g2⟩j+1. Finally, we have

⟨f, g⟩k = ⟨f0, g0⟩ ∈ C ≅H0
(CP 2; C)

⟨f, g⟩k+1 = ⟨f2, g2⟩ ∈ C ≅H4
(CP 2; C)

⟨f, g⟩j = 0 if j ≠ k, k + 1.

The above examples show that, since tcf wt j
C is a rational spectrum, the topologi-

cal Petersson product on tcf ∗(X) [ 1
6
] is determined on the n-skeleton tcf ∗(Xn) [ 1

6
]

by the images of the rational cells in Xn ∧HQ under the rationalized diagonal map
X →X ×X, up to elements of higher Atiyah-Hirzebruch filtration6; that is, on the
associated graded of the Atiyah-Hirzebruch filtration on tcf ∗(X) ⊗Z C, the topo-
logical Petersson product is determined by the cup product on H∗(X; C) and the
classical Petersson product. Consequently, we have:

Proposition 4.3. Let X be an unpointed finite CW-complex. Let k be an integer
or half-integer, let f, g ∈ tcf −2k

(X) [ 1
6
], and let j be an integer. Then ⟨f, g⟩j is the

element of H4(j−k)(X; C) ≅ homQ(H4(j−k)(X; Q),C) given, up to higher Atiyah-
Hirzebruch filtration, by composing the rational homology coproduct map

H4(j−k)(X; Q)→∐
n

Hn(X; Q)⊗Q H4(j−k)−n(X; Q)

with the summand projection

∐
n

Hn(X; Q)⊗Q H4(j−k)−n(X; Q)→H2(j−k)(X; Q)⊗Q H2(j−k)(X; Q)

followed by the map

H2(j−k)(X; Q)⊗Q H2(j−k)(X; Q)→ (Sj ⊗Z Q)⊗Q (Sj ⊗Z Q)(9)

given by the chain of isomorphisms

tcf −2k
(X)⊗Z C ≅∐

n

Hn
(X; tcf −n−2k

⊗ZC)

≅∐
n

homQ(Hn(X; Q), tcf −n−2k
⊗ZC)

≅∐
n

homQ(Hn(X; Q), Sn
2 +k

⊗Z C),

and finally postcomposing (9) with the classical Petersson product map

(Sj ⊗Z Q)⊗Q (Sj ⊗Z Q)→ C.

We can rephrase Proposition 4.3 as the following method for calculating ⟨−,−⟩j ,
not on tcf ∗(X) ⊗Z C, but only on the associated graded of the Atiyah-Hirzebruch

filtration on tcf ∗(X) ⊗Z C. Given elements f, g ∈ tcf −2k
(X) ⊗Z C, we use the

isomorphism tcf ∗(X)⊗Z C ≅ tcf ∗(S0)⊗ZH
∗(X; C) to express f as a sum ∑h fh⊗xh

and to express g as a sum ∑i gi⊗yi, with each fh and each gi a classical cusp form,

6Recall that the Atiyah-Hirzebruch filtration on E∗(X), for a generalized cohomology theory
E∗ and a CW-complex X, is the decreasing filtration of E∗(X) whose nth layer Fn is the set of
elements of E∗(X) whose image under the map E∗(X)→ E∗(X/Xn−1) is zero. Here X/Xn−1 is

X with its (n − 1)-skeleton Xn−1 collapsed (“pinched”) down to a point. An element of E∗(X)

has Atiyah-Hirzebruch degree n if it has Atiyah-Hirzebruch filtration n but not Atiyah-Hirzebruch
filtration n − 1.
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and with each xh and yi an element of H∗(X; C). Since we are only calculating
⟨−,−⟩j on the associated graded of the Atiyah-Hirzebruch filtration, we can assume
without loss of generality that f and g are each homogeneous with respect to
Atiyah-Hirzebruch filtration, i.e., that the integer ∣xh∣ is independent of h, and the
integer ∣yi∣ is independent of i. Then Proposition 4.3 yields the formula

⟨f, g⟩j ≡ ∑
(h,i)∶∣xh∣=∣yi∣=2(j−k)

⟨fh, gi⟩ ⋅ (xh ∪ yi)(10)

modulo terms of greater Atiyah-Hirzebruch filtration. The form ⟨−,−⟩ on the right-
hand side of (10) is the classical Petersson product of cusp forms, while xh ∪ yi is
the usual cup product in H∗(X; C).

Corollary 4.4. Let X be a finite CW-complex such that Hm(X; Q) is nonzero for
some positive integer m. Then there exists some integer n such that, for every
integer j, the topological Petersson product of weight j is degenerate on tcf n

(X)⊗Z

C.

Proof. Let d be the greatest integer m such that Hm(X; Q) is nonzero. Then d > 0,
so for degree reasons, there exists no element y ∈Hd(X; Q) such that x∪ y ≠ 0. Let
f be any nonzero classical cusp form, of any weight k. Then

0 ≠ f ⊗ x ∈ tcf −2k
(S0

)⊗Z H
d
(X; Q)⊗Z C ≅ tcf d−2k

(X)⊗Z C,

and by formula (10) and the triviality of x ∪ y for all y ∈ Hd(X; Q), we have
that ⟨f, g⟩j is zero modulo terms of greater Atiyah-Hirzebruch filtration, for any g.
But since d is the highest degree in which H∗(X; C) vanishes, f is already in the
highest possible Atiyah-Hirzebruch filtration. So ⟨f, g⟩j is zero for all g. So ⟨−,−⟩j
is degenerate on tcf d−2k

(X)⊗Z C. �

A consequence of formula (10) is that the weight j topological Petersson product
⟨−,−⟩j vanishes on the weight k cusp forms supported on cells of dimension >

2(j − k). In light of that consequence, we make the following definition of the
topological Petersson product simpliciter, rather than the topological Petersson
product of a particular weight:

Definition 4.5. Let X be a finite CW-complex. By the topological Petersson
product on tcf ∗(X)⊗Z C we mean the R-bilinear form

(tcf ∗(X)⊗Z C)⊗R (tcf ∗(X)⊗Z C)→ C

given on the elements of tcf i
(X)⊗Z C of Atiyah-Hirzebruch degree j by the weight

(j− i)/2 topological Petersson product ⟨−,−⟩(j−i)/2. (If j− i is odd, then this product
is defined to be zero.) We write ⟨−,−⟩X for the topological Petersson product on
the space X.

Example 4.6. In the case of the complex projective plane, collapse of the Atiyah-
Hirzebruch spectral sequence gives us that the complexified tcf -cohomology tcf −∗(CP 2)⊗Z

C is isomorphic to the direct sum of:

● a copy of S∗ ⊗Z C supported on the 0-cell of CP 2,
● a copy of S2+∗ ⊗Z C supported on the 2-cell of CP 2,
● and a copy of S4+∗ ⊗Z C supported on the 4-cell of CP 2.
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As in Examples 4.2, an element f of tcf −2k
(CP 2)⊗ZC is given by a triple (fk, fk+1, fk+2),

where fk, fk+1, fk+2 are weight k, k + 1, and k + 2 classical cusp forms, respec-
tively. These have Atiyah-Hirzebruch filtrations 0,2, and 4 respectively: this is
simply a matter of reading off the dimensions of the cells on which fk, fk+1, and
fk+2 are supported. Consequently it follows from Examples 4.2 and Definition 4.5
that the topological Petersson product ⟨f, g⟩CP 2 is the nonhomogeneous element
⟨fk, gk⟩ + ⟨fk+1, gk+1⟩ ∈ H

∗(CP 2; C). Here ⟨fk, gk⟩ is the classical Petersson prod-
uct of fk and gk, regarded as an element of C ≅ H0(CP 2; C), while ⟨fk+1, gk+1⟩

is the classical Petersson product of fk+1 and gk+1, regarded as an element of
C ≅H4(CP 2; C).

Note that the topological Petersson product over CP 2 is degenerate, since it is
insensitive to the part of the topological cusp form supported on the top cell in
CP 2, a phenomenon we noticed already in Examples 4.2.

Theorem 4.7. Let X be a compact Kähler manifold of complex dimension d. Write
tcf ∗C(X)≤2d/3 for the sub-C-vector space of tcf ∗(X)⊗Z C spanned by the elements of
Atiyah-Hirzebruch degree n such that n is even and n ≤ 2d/3. Then the topological

Petersson product is a nondegenerate R-bilinear form on tcf ∗C(X)≤2d/3.

Proof. Let ω be a Kähler 2-form on X. Given an integer n such that n < d, the
hard Lefschetz theorem gives us that multiplication by [ω]d−n yields an isomorphism
Hn(X; C) → H2d−n(X; C). Since we assume n ≤ 2d/3, we have 2n ≤ 2d − n, and

consequently multiplication by [ω]d−n factors through the multiplication by [ω]n/2

map

Hn
(X; C)→H2n

(X; C).(11)

. Since an isomorphism factors through (11), we have that (11) is injective. Now
given a nonzero element

∑
h

fh ⊗ xh ∈ tcf ∗(S0
)⊗Z H

∗
(X; C) ≅ tcf ∗(X)⊗Z C

with the elements {xh} ⊆ H∗(X; C) C-linearly independent, choose, for each h, a
classical cusp form gh ∈ tcf ∗(S0) such that the classical Petersson product ⟨fh, gh⟩
is nonzero. This is possible since the classical Petersson product is nondegenerate.
Let g = ∑h gh⊗ [ω]n/2 ∈ tcf ∗(S0)⊗ZH

∗(X; C) ≅ tcf ∗(X)⊗Z C. Formula (10) yields

⟨f, g⟩X ≡∑
h

⟨fh, gh⟩ ⋅ (xh ∪ [ω]n/2) ≠ 0,

since each ⟨fh, gh⟩ is nonzero and since the elements {xh ∪ [ω]n/2} ⊆H2n(X; C) are
C-linearly independent due to the hard Lefschetz theorem. �
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