
KÜNNETH FORMULAS FOR COTOR.

A. SALCH

Abstract. We investigate the question of how to compute the cotensor prod-

uct, and more generally the derived cotensor (i.e., Cotor) groups, of a tensor
product of comodules. In particular, we determine the conditions under which

there is a Künneth formula for Cotor. We show that there is a simple Künneth

theorem for Cotor groups if and only if an appropriate coefficient comodule
has trivial coaction. This result is an application of a spectral sequence we

construct for computing Cotor of a tensor product of comodules. Finally, for

certain families of nontrivial comodules which are especially topologically nat-
ural, we work out necessary and sufficient conditions for the existence of a

Künneth formula for the 0th Cotor group, i.e., the cotensor product. We give
topological applications in the form of consequences for the E2-term of the

Adams spectral sequence of a smash product of spectra, and the Hurewicz

image of a smash product of spectra.
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1. Introduction.

The classical, well-known Künneth formula expresses

• the homology of a tensor product of chain complexes of abelian groups1

in terms of the (derived) tensor product of the homology of each chain
complex,

• and, closely related, the homology of a Cartesian product of topological
spaces in terms of the (derived) tensor product of the homology of each
space.

• The stable-homotopical version of the previous example: the homology of
a smash product of spectra is described in terms of the (derived) tensor
product of the homology of each spectrum.

1Or, more generally, of chain complexes of modules over any commutative ring R, if one is
willing to consider the Künneth spectral sequence.
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2 A. SALCH

More generally, in any setting in which we have some notion of cohomology, and
some kind of tensor product, one expects that a “Künneth formula” in that setting
ought to be some expression for the cohomology of a tensor product in terms of the
(derived) tensor product of the cohomology of each factor.

Now suppose that Γ is a bialgebra, or more generally, a bialgebroid, over some
ground ring A. In the setting of Γ-comodules, the usual notion of cohomology is
given by Cotor∗Γ(A,−), the derived functors of the cotensor product Cotor0Γ(A,−) ∼=
A□Γ−. Using the multiplication on Γ, we get a tensor product ⊗A on the category
of Γ-comodules. Consequently we would like to know if there exists a well-behaved
Künneth formula for the cotensor product, or more generally for Cotor. There
is apparently no place in the existing literature where such a Künneth formula is
considered. The purpose of this paper is to fill that “hole” in the literature.

Before explaining the main results of this paper, we pause to explain why it
is both reasonable and unreasonable to expect some kind of Künneth formula in
Cotor. Given an algebraic groupG over some field k, the representations ofG (taken
in the broad sense, with no requirement of finite-dimensionality) are equivalent
to the comodules over the representing Hopf algebra kG. The Cotor-groups of
the comodules recover the cohomology groups of the representations. Of course
it is unrealistic to expect a simple relationship between H∗(G; ρ1), H

∗(G; ρ2), and
H∗(G; ρ1⊗kρ2) for arbitrary representations ρ1 and ρ2! From this class of examples,
it is clear that there cannot be a straightforward Künneth formula in Cotor without
some kind of restrictive hypotheses on the bialgebroid or on the comodules involved.

On the other hand, consider the occurrences of Cotor in algebraic topology2.
This is a paper in pure algebra, but motivated by topological questions, so we hope
the reader will forgive a digression into topology. Given a generalized homology
theory E∗ satisfying standard conditions3, the ring E∗E of stable cooperations
on E∗-homology forms a bialgebroid (E∗, E∗E). For any spectrum X we get the
generalized Adams spectral sequence

E∗,∗
2

∼= Cotor∗,∗E∗E
(E∗, E∗(X)) ⇒ π∗

(
X̂E

)
.

In the particular case when E is classical mod p homology, we have E∗ ∼= Fp
concentrated in degree zero, and we have E∗E ∼= A∗, the mod p dual Steenrod
algebra, a commutative bialgebra over Fp. When X is a CW-complex with finitely
many cells in each dimension, the spectral sequence then takes the form

E∗,∗
2

∼= Cotor∗,∗A∗
(Fp, H∗(X;Fp)) ⇒

(
πst∗ (X)

)̂
p
,

where (πst∗ (X))
ˆ
p is the p-adic completion of the stable homotopy groups of X, i.e.,

(πst∗ (X))
ˆ
p
∼= limn→∞ πst∗ (X)/pnπst∗ (X).

Now suppose X and Y are spectra, and write πst∗ (X ∧ Y )ˆp for the p-adically
completed stable homotopy groups of the smash product X ∧ Y . The image of the

2The most important reference here is surely Eilenberg and Moore’s paper [13] which intro-

duced their spectral sequence which converges to the homology of a homotopy pullback of spaces,
and whose E2-page is given by Cotor groups. Two spectral sequences involving Cotor are con-

structed in that paper, but those spectral sequences are different—in construction as well as in

input and in output—from the spectral sequence constructed below in Theorem 4.6.
3Standard references here are [1] and appendix 1 of [18].
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Hurewicz homomorphism

πst∗ (X ∧ Y )ˆp → H∗(X ∧ Y ;Fp) ∼= H∗(X;Fp)⊗Fp H∗(Y ;Fp)
is precisely the 0-line in the Adams E∞-page, i.e., those elements in

Fp□A∗

(
H∗(X;Fp)⊗Fp

H∗(Y ;Fp)
)

which survive the Adams spectral sequence.
Mod p homology does satisfy a Künneth formula. The question of whether the

Hurewicz image in mod p homology satisfies a Künneth formula is nearly4 the same
question as asking whether Cotor0, i.e., the cotensor product, satisfies the Künneth
formula

Fp□A∗

(
H∗(X;Fp)⊗Fp H∗(Y ;Fp)

) ∼= (Fp□A∗H∗(X;Fp))⊗Fp (Fp□A∗H∗(Y ;Fp)) .
An unbridled optimist might even hope for some kind of Künneth theorem in higher
Cotor-groups as well, yielding a way to express the entire Adams E2-page

Cotor∗,∗A∗

(
Fp, H∗(X;Fp)⊗Fp

H∗(Y ;Fp)
)

for X ∧ Y in terms of the Adams E2-pages for X and for Y .
The topological considerations make it seems plausible that a Künneth formula

could exist in Cotor0, or perhaps Cotor∗, at least under appropriate hypotheses.
On the other hand, the representation-theoretic considerations make it seem im-
plausible. We hope the reader is now interested in knowing how the story turns
out, which is the subject of this paper.

Our findings are outlined below:

• Section 2 reviews basic ideas about categories of comodules. The main
result is a simple observation, Proposition 2.1, which establishes that we
cannot possibly have a Künneth formula for comodules over a bialgebroid
Γ unless the left and right unit maps ηL, ηR of Γ are equal to one another,
i.e., the bialgebroid Γ is in fact a bialgebra. Consequently we restrict our
attention to comodules over bialgebras for the rest of the paper.

• Section 3 reviews the case where one comodule is trivial, i.e., all of its
elements are primitive5. This is the easiest case, and the results in section 3
essentially all follow from a lemma that, as far as the author knows, first
appeared in a 2002 paper of Al-Takhman, [3]. The main result in section 3
is Corollary 3.4, which establishes that, when N is a trivial Γ-comodule
which is flat over the ground ring A, we have isomorphisms

(1) CotornΓ(L,M ⊗A N) ∼= CotornΓ(L,M)⊗A N ∼= CotornΓ(L,M)⊗A (A□ΓN)

for all n and L.
• Given that isomorphism (1) is a reasonable Künneth-like theorem whenever
N is a trivial comodule, we can approach the situation when M,N are
each nontrivial by filtering N so that its filtration quotients are trivial.

4“Nearly” here means “up to Adams spectral sequence differentials originating on the 0-line.”
5Throughout this paper, we sometimes refer to coalgebra primitives, and we sometimes refer

to comodule primitives. These notions are both classical. Whenever we have used the word
“primitive” in this paper, we have exercised some care to make sure that context is sufficient to
make it clear which notion is meant. For completeness, we recall both definitions. An element a

of a coalgebra A is said to be a (coalgebra) primitive if ∆(a) = a⊗ 1 + 1⊗ a. An element m of a
left A-comodule M , with left coaction map ψ :M → A⊗kM , is said to be a (comodule) primitive
if ψ(m) = 1⊗m.



4 A. SALCH

In section 4 we carry out that idea. Specifically, in Definition-Proposition
4.1, we define a canonical such filtration, the “primitive filtration.” If the
primitive filtration of a given comodule N is exhaustive, then we get a
canonical grading on N .

In Proposition 4.2 we show that, when Γ is a connected graded bial-
gebra, all bounded-below graded Γ-comodules have exhaustive primitive
filtration. Since the dual Steenrod algebra is connected and graded, the
primitive filtration is exhaustive in the topological examples which moti-
vate the investigations in this paper.

The result is a spectral sequence

Es,t1
∼= CotorsΓ(L,M)⊗A N t ⇒ CotorsΓ(L,M ⊗A N),(2)

constructed in Theorem 4.6. See that theorem for the necessary conditions
for the existence of this spectral sequence, as well as the definition of the
relevant grading on N in the description of the E1-page. Among several
consequences of the existence of this spectral sequence, the most important
is Corollary 4.10: if the canonical map

(L□ΓM)⊗A (A□ΓN) → L□Γ(M ⊗A N)

is an isomorphism, and if the canonical map

Cotor1Γ(L,M)⊗A (A□ΓN) → Cotor1Γ(L,M ⊗A N)

is also injective, then N has trivial coaction. This is a negative result:
it tells us that, unless one of the tensor factors is a comodule with trivial
coaction, we cannot expect any reasonable kind of Künneth formula for both
Cotor0 and Cotor1. See Corollary 4.10 for the mild hypotheses necessary
for this result.

• In section 5 we run spectral sequence (2) very explicitly in a family of exam-
ples where there are nontrivial differentials of several lengths. In particular,
the spectral sequence calculations in section 5 demonstrate that spectral se-
quence (2) does not necessarily collapse at E1 or E2, and is indeed capable
of having arbitrarily long nonzero differentials.

• Section 6 takes up the question of when we have a Künneth theorem for the
cotensor product, i.e., Cotor0. In light of the negative result of Corollary
4.10, a Künneth theorem for Cotor0 is as much as can be hoped for, unless
one of the comodules in question is trivial. Theorem 6.2 is the main result
in section 6: it establishes that, when M is a subcomodule of Γ, we have
a Künneth isomorphism (A□ΓM) ⊗A (A□ΓN) → A□Γ(M ⊗A N) if and
only if, whenever n ∈ N satisfies ψN (n) ∈ M ⊗A N ⊆ Γ ⊗A N , then n is
primitive. Here ψN : N → Γ⊗AN is the coaction map of the comodule N .
This result is generalized by Theorem 6.4 and its corollaries, which allowM
to be a subcomodule of a finite (or, in the graded case, finite-type) direct
sum of copies of Γ.

• Finally, in section 7, we give some topological consequences. In Corollaries
7.2 and 7.4, we give necessary and sufficient conditions on a spectrum Y
for the 0-line in the Adams E2-page for X ∧ Y to decompose as a tensor
product of the 0-line in the Adams E2-page for X with the 0-line in the
Adams E2-page for Y , with the criteria being especially explicit in the cases
X = BP,BP ⟨n⟩, ku, ko, and tmf .
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We are grateful to an anonymous referee for helpful comments on this paper.

Conventions 1.1. Throughout, A will always denote a commutative ring.

2. Basic ideas, and the restriction to bialgebras.

We recall a few basic, standard facts about comodules; excellent references in the
coalgebra case include the book-length treatment in [9], and in the bialgebroid case,
Appendix 1 of [18]. Given a coalgebra or a bialgebroid (A,Γ), a left Γ-comodule
is a left A-module M equipped with a coassociative, counital left A-module map
ψ : M → Γ⊗AM . If Γ is a bialgebroid6 and flat over A, then we have an abelian
category Comod(Γ) of left Γ-comodules equipped with a monoidal product given by
tensor product over A, and the relatively injective left Γ-comodules are the retracts
of those of the form Γ ⊗A M for some A-module M , which are called extended
comodules. The extended comodule functor E : Mod(A) → Comod(Γ), given by
E(M) = Γ⊗AM , is right adjoint to the forgetful functor G : Comod(Γ) → Mod(A).
All derived functors in this paper are relative derived functors with respect to
the allowable class whose injectives are the relative injectives. See chapter IX of
[14] for an excellent textbook treatment of relative homological algebra in general,
or Appendix 1 of [18] (oriented toward generalized Adams spectral sequences) or
section 10.11 of [16] (oriented toward Eilenberg-Moore spectral sequences) for an
introductory treatment in the present setting, that is, relative derived functors with
respect to this particular allowable class on comodules7.

Here is the basic question: under what conditions do we have a Künneth formula
for comodule primitives? A first attempt at making such a question precise is as
follows: we ask under what conditions we might have an isomorphism of A-modules

A□Γ (M ⊗A N) ∼= (A□ΓM)⊗A (A□ΓN) .(3)

for all left Γ-comodulesM andN . The most obvious requirement is that (A□ΓM)⊗A
(A□ΓN) must actually be defined, that is, A□ΓM and A□ΓN must be A-modules.
Here is the relevant observation:

Proposition 2.1. Let (A,Γ) be a bialgebroid. Then the following conditions are
equivalent:

(1) The subgroup inclusion

(4) M□ΓN ↪→M ⊗A N
is A-linear for every right Γ-comodule M and left Γ-comodule N .

(2) The subgroup inclusion

(5) A□ΓM ↪→M

6We discuss comodules over a bialgebroid, not the more general case of comodules over a
coalgebroid, because one needs a multiplication on Γ in order to define a tensor product of Γ-
comodules over A. The argument is dual to the familiar argument that, if R is a k-algebra and

M,N are R-modules, then we need to have a k-linear comultiplication on R in order to get a
natural R-module structure on M⊗kN . To be clear, the material on tensor product of comodules

over a coalgebra in section 3.8 of [9] is about the tensor product of a Γ-comodule with an A-module,
rather than a tensor product of two Γ-comodules.

7The reader who prefers not to deal with relative homological algebra may be relieved to know

that, when the ground ring A of the bialgebroid (A,Γ) is a field, these relative derived functors
agree with ordinary derived functors. So relative homological algebra need not be mentioned at
all unless the ground ring A fails to be a field.
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is A-linear for all left Γ-comodules M .
(3) The bialgebroid (A,Γ) is a bialgebra. That is, the left unit and right unit

maps ηL, ηR of (A,Γ) coincide, i.e., ηL = ηR.

Proof.

1 implies 2: Trivial.
2 implies 3: Let M = A. Then 1 ∈ A□ΓA, so (5) implies in particular that

ηR(a)⊗ 1 = 1⊗ a

= ψ(a · 1)
= aψ(1)

= a(1⊗ 1)

= ηL(a)⊗ 1 ∈ Γ⊗A A,
so ηR(a) = ηL(a) for all a ∈ A. Here ψ is the coaction map on M .

3 implies 1: Recall that the structure map ψ : M → Γ ⊗A M of a left Γ-
comodule M is required to be a left A-module morphism. Recall that A is
assumed commutative. Hence, if ηL = ηR, then the left A-action on Γ coin-
cides with the right A-action on Γ, and consequently ψ is a left A-module
morphism if and only if it is a right A-module morphism. Consequently
the maps ψM ⊗N and M ⊗ ψN in the equalizer sequence

M□ΓN // M ⊗A N
ψM⊗N//

M⊗ψN

// M ⊗A Γ⊗A N

are A-module morphisms, and so the inclusion (4) is A-linear.

□

Remark 2.2. As a consequence of Proposition 2.1, we could have a Künneth
isomorphism (3) for all Γ-comodules M,N only if (A,Γ) is a bialgebra, not only a
bialgebroid. But even restricting to comodules over a bialgebra, the formula (3) still
often fails to hold. For example, if we let A = k for some field k, let Γ = k[x] with x
primitive, and let M = N be the sub-Γ-comodule of Γ which is k-linearly spanned
by 1 and x, then A□ΓM ∼= A□ΓN ∼= k spanned by 1, while A□Γ(M ⊗AN) ∼= k⊕k
with basis {1⊗ 1, x⊗ 1− 1⊗ x}. Since the k-vector-space dimensions differ, there
is no way we could have an isomorphism exactly of the form (3). But the “moral”
of Proposition 2.1 remains true: any Künneth formula for Cotor—i.e., any way of
describing Cotor of a tensor product over A in terms of a tensor product over A
of Cotor-modules—first requires that Γ be a bialgebra, so that the tensor product
over A of Cotor-modules is defined at all.

In light of Proposition 2.1, we restrict our attention to comodules over bialgebras
for the rest of this paper.

3. The case where one comodule is trivial.

We have a tensor-cotensor relation given by the result8

8Proposition 3.1 is very easy to prove—indeed, it appears as a lemma with a five-line proof in

the earliest published paper where I am aware that it appears, [3]—but since Proposition 3.1 is
the closest thing to a Künneth theorem for Cotor which is already in the literature, we hope the

reader will forgive us to trying to give a bit of history of this lemma. After appearing as Lemma
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Proposition 3.1. If Γ is a coalgebra9 over a commutative ring A, M is a right
Γ-comodule, and N is a left Γ-comodule, and W is an A-module, then we have
natural A-linear maps

W ⊗A (M□ΓN) → (W ⊗AM)□ΓN,(6)

(M□ΓN)⊗AW →M□Γ(N ⊗AW ),(7)

where W ⊗AM and N ⊗AW are each given the trivial Γ-comodule structure, i.e.,
the coaction maps are

W ⊗AM →W ⊗AM ⊗A Γ

w ⊗m→ w ⊗ ψM (m), and

N ⊗AW → Γ⊗A N ⊗AW
n⊗ w → ψN (n)⊗ w,

where ψM :M →M ⊗A Γ and ψN : N → Γ⊗A N are the coaction maps of M and
N , respectively.

Furthermore, the following conditions are equivalent:

• The map (6) is an isomorphism.
• The map (7) is an isomorphism.
• The canonical inclusionM□ΓN ↪→M⊗AN remains injective after applying
the functor −⊗AW .

While Proposition 3.1 is the closest result to a Künneth theorem for Cotor (in
this case, only Cotor0, i.e., the cotensor product) appearing in the literature, it has
a critical limitation that we need to overcome: it describes Cotor∗Γ(L,M ⊗A N)
in terms of Cotor∗Γ(L,M) and N only when either M or N has trivial Γ-coaction.
Here a left Γ-comodule W is said to have trivial coaction if its coaction map ψW :
W → Γ ⊗A W is given by ψW (w) = 1 ⊗ w. This limitation is far too strict for
Proposition 3.1 to be useful for the topological applications of Cotor. One would
like to find a description of Cotor∗Γ(L,M ⊗A N) in terms as close as possible to
Cotor∗Γ(L,M) and Cotor∗Γ(L,N), without assuming that either M or N have trivial
Γ-coaction.

Before moving on to the case whereM andN each have nontrivial coaction, we at
least remark that Proposition 3.1 has an easy corollary for the higher Cotor groups.
We first need a couple of easy lemmas. Recall that E : Mod(A) → Comod(Γ) de-
notes the extended comodule functor, which is right adjoint to the forgetful functor
G : Comod(Γ) → Mod(A). Then:

Lemma 3.2. There exists an isomorphism E(M ⊗A GN) ∼= (EM) ⊗A N of Γ-
comodules, natural in the variables M and N .

Proof. See Proposition 9 in [11], where this is proven for A a bialgebra; the same
proof applies when A is a bialgebroid. □

3.8 in [3], it shows up as Lemma 2.3 in [4], the published form of Al-Takhman’s Düsseldorf thesis

[2], which is easier to locate than [3], and finally it appears as 10.6 in the book [9].
9The isomorphisms (6) and (7) appear to involve tensor products, over A, of Γ-comodules,

and yet Γ is only a coalgebra, not a bialgebra. The reason these tensor products make sense,
as Γ-comodules, despite the lack of a multiplication on Γ is that in each case, one of the tensor

factors is a trivial comodule.
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Lemma 3.3. If M,N are left Γ-comodules and M is relatively injective, M ⊗A N
is also relatively injective.

Proof. Choose an A-module M̃ and left Γ-comodule morphisms i : M → EM̃ and
π : EM̃ →M such that π ◦ i = idM . Then we have the commutative diagram

M ⊗A N

id

22
i⊗AN// (EM̃)⊗A N

π⊗AN // M ⊗A N,

and (EM̃)⊗A N ∼= E(M̃ ⊗A N) as left Γ-comodules, by Lemma 3.2. So M ⊗A N
is indeed a retract of the extended comodule E(M̃ ⊗A N). □

Now we have the following corollary of Proposition 3.1:

Corollary 3.4. If Γ is a coalgebra over a commutative ring A, L is a right Γ-
comodule, M is a left Γ-comodule, and N is a trivial left Γ-comodule which is flat
over A, then we have isomorphisms of A-modules

CotornΓ(L,M ⊗A N) ∼= CotornΓ(L,M)⊗A N
∼= CotornΓ(L,M)⊗A (A□ΓN)

for each nonnegative integer n.
In particular, in the n = 0 case we have a Künneth isomorphism

L□Γ(M ⊗A N) ∼= (L□ΓM)⊗A (A□ΓN).

Proof. Since N has trivial coaction, we have an isomorphism of left Γ-comodules
N ∼= A□ΓN , which we use freely throughout this proof.

Given a resolution I• of M by relatively injective left Γ-comodules, the cochain
complex of left A-comodules I• ⊗A N is exact by flatness of N , and it is a com-
plex of relative injectives due to Lemma 3.3. Consequently the cohomology of the
cochain complex L□Γ(I

• ⊗A N) yields the Cotor-groups Cotor∗Γ(L,M ⊗A N). Ap-
plying Proposition 3.1 yields the isomorphism of cochain complexes L□Γ(I

• ⊗A
N) ∼= (L□ΓI

•) ⊗A N , and the cohomology of the cochain complex on the right is
Cotor∗Γ(L,M)⊗A N , again using flatness of N . □

Corollary 3.4 has a partial converse given below by Corollaries 4.10 and 4.11.

4. The primitive filtration of a comodule.

A basic idea in what follows is that, when the comodules M,N both have non-
trivial coaction, the results of section 3 do not directly apply, but we could try to
filter one of the comodulesM or N so that each of the filtration quotients has trivial
coaction, in order to get a spectral sequence whose input term could be simplified
by some application of Corollary 3.4. There is a canonical and quite useful such
filtration10, defined in Definition-Proposition 4.1:

Definition-Proposition 4.1.

10This primitive filtration on a comodule is not the same as the primitive filtration on a

bialgebra, from [15]. We have never seen our primitive filtration in the literature and have never
heard it mentioned by others, but it is a very simple and effective idea, and we expect it has

probably been considered by others on more than occasion.
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• Let (A,Γ) be a bialgebroid, and letM be a left Γ-comodule. By the primitive
filtration of M we mean the filtration

(8) 0 =M−1 ⊆M0 ⊆M1 ⊆ · · · ⊆M

of M by subgroups defined as follows: Mi is the kernel of the projection
M →M(i+ 1), where

(9) M =M(0) →M(1) →M(2) → . . .

is a sequence of surjective group homomorphisms defined inductively by
letting M(i+ 1) be the cokernel of the inclusion A□ΓM(i) ↪→ M(i). Con-
sequently we have short exact sequences of groups

0 →Mi →M →M(i+ 1) → 0,(10)

0 → A□ΓM(i) →M(i) →M(i+ 1) → 0, and(11)

0 →Mi →Mi+1 → A□ΓM(i+ 1) → 0.(12)

• We will say that M has exhaustive primitive filtration if ∪iMi = M . We
will say that M has finite primitive filtration if Mi =M for some M .

• If (A,Γ) is a bialgebra, then the primitive filtration (8) is a filtration by
sub-Γ-comodules, not merely by subgroups, and the extensions (10),(11),
and (12) are extensions of Γ-comodules.

• When the underlying A-module extensions of the left Γ-comodule extensions
(12) are split, we say that primitive filtration on M is split. For example,
the primitive filtration on M is automatically split if the commutative ring
A is semisimple, e.g. a field.

• When the primitive filtration on M is split and exhaustive, then we have an
isomorphism of A-modules11 M ∼=

∐
i≥0A□ΓM(i). We then refer to this

grading on M , whose degree i summand M i is A□ΓM(i), as the primitive
grading on M .

Proof. By Proposition 2.1, if (A,Γ) is a bialgebra, then each of the inclusions
A□ΓM(i) ↪→ M(i) is a left Γ-comodule morphism, and consequently (9) is a se-
quence of left Γ-comodule morphisms, so (8) is also a sequence of left Γ-comodule
morphisms, and similarly for (10),(11), and (12). □

Of course every left Γ-comodule whose underlying A-module is Artinian has
finite primitive filtration. Another useful source of comodules with well-behaved
primitive filtrations is Proposition 4.2:

Proposition 4.2. Let (A,Γ) be a graded bialgebra which is connected, i.e., A and
Γ each are trivial in negative degrees and the unit map η : A → Γ is surjective
(equivalently, an isomorphism) in grading degree zero. Then every bounded-below12

graded left Γ-comodule has exhaustive primitive filtration.

Proof. If M is a bounded-below graded left Γ-comodule which is trivial in grading
degrees < n, then A□ΓM → M is an isomorphism in the bottommost grading
degree, so its cokernel is also bounded-below and with a strictly higher lower bound
on the grading degrees of its nontrivial summands. By induction, in (9) each M(i)
is trivial in grading degrees < n + i, and in (8), the inclusion Mi ⊆ M is an

11But generally not an isomorphism of Γ-comodules.
12It is standard that a graded group, module, ring, etc. M is said to be bounded below if there

exists an integer n such that M is trivial in grading degrees < n.
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isomorphism in grading degrees < n+ i− 1. So every homogeneous element of M
is contained in M(i) for some i. □

We need a couple of easy lemmas, Lemma 4.3 and 4.4, which are certainly not
new. At the recommendation of the referee, we have omitted their proofs.

Lemma 4.3. Let (A,Γ) be a bialgebra, let I be a set, and let {Mi : i ∈ I} be a set
of left Γ-comodules. Let L be a left Γ-comodule. Then the natural map13

(13)
∐
i∈I

(L□ΓMi) → L□Γ

(∐
i∈I

Mi

)
is an isomorphism.

Lemma 4.4. Let (A,Γ) be a bialgebra, and let

(14) M0 →M1 →M2 → . . .

be a sequence of morphisms of left Γ-comodules. Let L be a left Γ-comodule, and
let n be a nonnegative integer. Then the natural group homomorphism

(15) colimiCotor
n
Γ(L,Mi) → CotornΓ(L, colimiMi)

is an isomorphism.

Proposition 4.5. Let (A,Γ) be a bialgebra, and let M be a left Γ-comodule with
exhaustive primitive filtration M0 ⊆ M1 ⊆ . . . . Then we have a first-quadrant
spectral sequence

E1
s,t

∼= TorAs (A□ΓM(t), N) ⇒ TorAs (M,N)

dr : Ers,t → Ers−1,t+r.

Proof. This is simply the spectral sequence of the exact couple obtained by applying
TorA∗ (−, N) to the tower of extensions of A-modules

M−1
// M0

//

��

M1
//

��

M2
//

��

. . .

A□ΓM(0) A□ΓM(1) A□ΓM(2).

□

Of course, in most motivating examples of bialgebras (A,Γ), A is a field and
consequently the spectral sequence of Proposition 4.5 collapses to the s = 0 line
already at the E1-page, yielding an unsurprising isomorphism. So the spectral
sequence of Proposition 4.5 is not our focus at all, and we mention it only for
completeness. A much more interesting spectral sequence is given by the following:

13Since the forgetful functor from Γ-comodules to A-modules is a left adjoint, it preserves

colimits, and so the coproduct in the domain of (13) can equally well be regarded as a coproduct

in A-modules or as a coproduct in Γ-comodules. Of course the coproduct in the codomain of (13)
must be regarded as a coproduct in Γ-comodules, since otherwise it would not make sense to apply

the cotensor product to it.
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Theorem 4.6. (The Künneth spectral sequence for Cotor.) Let (A,Γ) be
a bialgebra, and let L be a right Γ-comodule and M,N left Γ-comodules. Suppose
that M is flat over A, and suppose that N has exhaustive primitive filtration.

Then we have a first quadrant spectral sequence

Es,t1
∼= CotorsΓ(L,M)⊗A (A□ΓN(t)) ⇒ CotorsΓ(L,M ⊗A N)(16)

dr : E
s,t
r → Es+1,t−r

r .

If the primitive filtration on N is also split (for example, if A is a field), then the

E1-term of (16) is also given by Es,t1
∼= CotorsΓ(L,M)⊗AN t where N t = A□ΓN(t)

is the degree t summand in the primitive grading on N , as in Definition-Proposition
4.1.

Proof. Since M is flat, applying M ⊗A − to the primitive filtration on N yields a
tower of extensions of left Γ-comodules

0 =M ⊗A N−1
// M ⊗A N0

//

��

M ⊗A N1
//

��

. . .

M ⊗A (A□ΓN(0)) M ⊗A (A□ΓN(1))

such that colimn→∞M ⊗A Nn →M ⊗A N is an isomorphism, and consequently a
spectral sequence

Es,t1
∼= CotorsΓ (L,M ⊗A (A□ΓN(t))) ⇒ colimiCotor

s
Γ(L,M ⊗A Ni)(17)

dr : E
s,t
r → Es+1,t−r

r .

Recall that A□ΓN(t) has a natural left Γ-coaction given by Proposition 2.1, since
(A,Γ) is a bialgebra, but that left Γ-coaction is clearly the trivial one, since every
element of A□ΓN(t) is primitive. Triviality of the coaction is what allows us to
apply Corollary 3.4, to get that CotorsΓ (L,M ⊗A (A□ΓN(t))) ∼= CotorsΓ(L,M)⊗A
(A□ΓN(t)) for each s, t. Finally, the abutment colimi Cotor

∗
Γ(L,M ⊗ANi) of spec-

tral sequence (17) is isomorphic to

Cotor∗Γ (L, colimi(M ⊗A Ni))) ∼= Cotor∗Γ(L,M ⊗A N)

by Lemma 4.4. □

In case it helps the reader to visualize the spectral sequence, we provide a picture
of a portion of the E1-page of spectral sequence of Theorem 4.6, with s as the
horizontal coordinate, t as the vertical coordinate, the d1-differentials colored in
red, the d2-differentials colored in orange, and the d3-differentials colored in blue:
(18)

t = 0

t = 1

t = 2

t = 3

s = 0 s = 1 s = 2 s = 3
(L□ΓM)⊗A N0 Cotor1Γ(L,M)⊗A N0 Cotor2Γ(L,M)⊗A N0 Cotor3Γ(L,M)⊗A N0 . . .

(L□ΓM)⊗A N1 Cotor1Γ(L,M)⊗A N1 Cotor2Γ(L,M)⊗A N1 Cotor3Γ(L,M)⊗A N1 . . .

(L□ΓM)⊗A N2 Cotor1Γ(L,M)⊗A N2 Cotor2Γ(L,M)⊗A N2 Cotor3Γ(L,M)⊗A N2 . . .

(L□ΓM)⊗A N3 Cotor1Γ(L,M)⊗A N3 Cotor2Γ(L,M)⊗A N3 Cotor3Γ(L,M)⊗A N3 . . .

...
...

...
...
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In (18) we write N i rather than A□ΓN(i) as though the primitive filtration on N
is split, but this is only for notational convenience, to make the illustration of the
spectral sequence more readable. If the primitive filtration on N is not split, then
replace all the instances of N i in diagram (18) with A□ΓN(i), and the resulting
diagram remains a correct picture of the spectral sequence.

This convention for drawing the spectral sequence in (18), in particular the
choice of horizontal and vertical coordinates, is convenient because the bidegrees
in the s-column are precisely those bidegrees which contribute, in the E∞-page, to
CotorsΓ(L,M ⊗A N).

Theorem 4.6 has corollaries:

Corollary 4.7. Let (A,Γ) be a bialgebra, and let L be a right Γ-comodule and
M,N left Γ-comodules. Suppose that M is flat over A, and suppose that N has split
exhaustive primitive filtration. Then the A-module L□Γ(M ⊗AN) is isomorphic to
the sub-A-module of (L□ΓM)⊗AN consisting of the elements in the s = 0-column
in the kernel of the dr differential for every r ≥ 1.

Note that, unlike the Adams spectral sequence (whose convergence properties
are discussed in [6]), there is no issue of conditional convergence in this spectral
sequence which could cause N = ⊕n≥0N

n in the E∞-page to become
∏
n≥0N

n in
the abutment. This is because the spectral sequence of Theorem 4.6 converges to
the colimit, and so the extension problems are organized into a colimit sequence
rather than a limit sequence.

Corollary 4.8. Let (A,Γ) be a bialgebra, and let L be a right Γ-comodule andM,N
left Γ-comodules. Suppose that M is flat over A and that N has primitive filtration
of length 2, i.e., the quotient Γ-comodule N/ (A□ΓN) has trivial Γ-coaction. Then
the spectral sequence of Theorem 4.6 degenerates to a long exact sequence

0

��
(L□ΓM)⊗A (A□ΓN) // L□Γ(M ⊗A N) // (L□ΓM)⊗A (N/(A□ΓN))

��
Cotor1Γ(L,M)⊗A (A□ΓN) // Cotor1Γ(L,M ⊗A N) // Cotor1Γ(L,M)⊗A (N/(A□ΓN))

��
Cotor2Γ(L,M)⊗A (A□ΓN) // Cotor2Γ(L,M ⊗A N) // . . . .

Definition 4.9. Given a commutative ring A, we will say that an A-module M
detects nontriviality if, whenever N is an A-module such that M ⊗A N ∼= 0, we
have N ∼= 0.

For example, over any commutative ring A, nonzero free A-modules detect non-
triviality. If A is a field, every nonzero A-module detects nontriviality. If A is a
local commutative Artinian principal ideal ring with maximal ideal m, then A/mA
detects nontriviality.

One of the most important consequences of Theorem 4.6 is Corollary 4.10:

Corollary 4.10. Let (A,Γ) be a bialgebra, and let L be a right Γ-comodule and
M,N left Γ-comodules. Suppose that the A-module L□ΓM detects nontriviality,



KÜNNETH FORMULAS FOR COTOR. 13

suppose that N has split exhaustive primitive filtration, suppose that the canonical
map

(19) (L□ΓM)⊗A (A□ΓN) → L□Γ(M ⊗A N)

is an isomorphism, and suppose that the canonical map

(20) Cotor1Γ(L,M)⊗A (A□ΓN) → Cotor1Γ(L,M ⊗A N)

is injective. Then N has trivial coaction.

Proof. The map (19) is an isomorphism if and only if all elements in the leftmost
column above the bottom row in spectral sequence (16) support differentials, and
consequently fail to survive to the E∞-page. In particular, if (L□ΓM)⊗AN1 were
nonzero, it would have to support a nonzero d1-differential hitting Cotor1Γ(L,M)⊗A
N0, and consequently not all elements of Cotor1Γ(L,M) ⊗A N0 would survive to
the E2-term, much less the E∞-term. Consequently the map (20) would not be
able to be injective. So (L□ΓM) ⊗A N1 must be trivial. Since L□ΓM detects
nontriviality, N1 vanishes. Since N1 = A□Γ(N/(A□ΓN)), vanishing of N1 ensures
that N(2) ∼= N/(A□ΓN) ∼= N(1) and consequently N2 also vanishes; by induction,
the primitive filtration on N is constant starting at the second term. Exhaustivity
of the primitive filtration on N consequently gives us that A□ΓN = N . □

Using Proposition 4.2 and the fact that triviality of L□ΓM implies triviality of
M when A is a field, (A,Γ) is a connected graded bialgebra, and L,M are bounded-
below graded Γ-comodules, we have:

Corollary 4.11. Let A be a field, and let Γ be a connected graded bialgebra over
A. Let L be a graded right Γ-comodule, let M,N be graded left Γ-comodules such
that that the canonical map

(21) (L□ΓM)⊗A (A□ΓN) → L□Γ(M ⊗A N)

is an isomorphism, suppose that L,M, and N are nonzero and bounded below, and
suppose that the canonical map

(22) Cotor1Γ(L,M)⊗A (A□ΓN) → Cotor1Γ(L,M ⊗A N)

is injective. Then N has trivial coaction.

Corollaries 4.10 and 4.11 are negative results, and they provide a kind of converse
to Corollary 3.4: they tell us that, when we have the expected Künneth formula (21)
for Cotor0 (i.e., the cotensor product), then we cannot possibly have any reasonable
Künneth formula describing Cotor1, since the failure of the canonical map (22) to be
injective means that Cotor1Γ(A,M⊗AN) cannot decompose as any kind of extension
of Cotor1Γ(A,M)⊗ACotor0Γ(A,N) by Cotor0Γ(A,M)⊗ACotor1Γ(A,N) unless N has
trivial coaction. Instead, the best general statement one can make is that one has
the spectral sequence of Theorem 4.6.

One reasonable response to these negative results is to ask under what circum-
stances we at least have a Künneth formula for Cotor0. We take up this question
in section 6.
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5. Example calculations of the Künneth spectral sequence for Cotor.

Let k be a field of characteristic p and let Γ be the bialgebra k[ξ]/ξp with ξ
primitive. Consider the case L = k =M and N = Γ of Theorem 4.6: the primitive
filtration on N is finite, with Nn the k-vector space spanned by ξn for 0 ≤ n ≤ p−1
and trivial otherwise. We adopt the notation k{x} for the k-vector space with basis
{x}, so that we can make a reasonable drawing of the E1-page of the Künneth
spectral sequence, here pictured with p = 5:

k{1} Cotor1Γ(k, k)⊗k k{1} Cotor2Γ(k, k)⊗k k{1} Cotor3Γ(k, k)⊗k k{1} . . .

k{ξ} Cotor1Γ(k, k)⊗k k{ξ} Cotor2Γ(k, k)⊗k k{ξ} Cotor3Γ(k, k)⊗k k{ξ} . . .

k{ξ2} Cotor1Γ(k, k)⊗k k{ξ2} Cotor2Γ(k, k)⊗k k{ξ2} Cotor3Γ(k, k)⊗k k{ξ2} . . .

k{ξ3} Cotor1Γ(k, k)⊗k k{ξ3} Cotor2Γ(k, k)⊗k k{ξ3} Cotor3Γ(k, k)⊗k k{ξ3} . . .

k{ξ4} Cotor1Γ(k, k)⊗k k{ξ4} Cotor2Γ(k, k)⊗k k{ξ4} Cotor3Γ(k, k)⊗k k{ξ4} . . .

Figure 1. E∗,∗
1

∼= Cotor∗k[ξ]/ξp(k, k)⊗ k[ξ]/ξp

⇒ Cotor∗k[ξ]/ξp(k, k[ξ]/ξ
p).

The nonzero differentials are as pictured, but that claim deserves some justifica-
tion, which we now give, below.

An alternative construction of the spectral sequence of Theorem 4.6 is given by
filtering the cobar complex of Γ with coefficients of N by the primitive filtration on
N . That is, the spectral sequence of Theorem 4.6 is the spectral sequence of the
filtered cochain complex

Γ⊗A• ⊗A N0 ⊆ Γ⊗A• ⊗A N1 ⊆ Γ⊗A• ⊗A N2 ⊆ · · · ⊆ Γ⊗A• ⊗A N.

In the case Γ = k[ξ]/ξp, a cobar complex 1-cocycle which represents a generator
for Cotor1Γ(k, k) is the primitive ξ ∈ k[ξ]/ξp, while a cobar complex 2-cocycle which
represents a generator for Cotor2Γ(k, k) is the “transpotent”

Tξ :=

p−1∑
i=1

1

p

(
p

i

)
ξp−i ⊗ ξi ∈ k[ξ]/ξp ⊗k k[ξ]/ξp

of ξ. The graded k-algebra Cotor∗Γ(k, k) is isomorphic to Λ (h) ⊗k k [b], where h ∈
Cotor1Γ(k, k) is represented by ξ, and b ∈ Cotor2Γ(k, k) is represented by Tξ. Here we
use the notation Λ(h) for the exterior k-algebra on the generator h. The comodule
algebra structure on Γ, and the fact that the primitive filtration on Γ is a filtration
by comodule algebra ideals, yields that the spectral sequence of Theorem 4.6 is
a spectral sequence of k-algebras, and so we need only calculate the differentials
on k-algebra generators for each page. The E1-page is isomorphic to k[ξ]/ξp ⊗k
Λ(h) ⊗k k[b], and since ψ(ξ) = ξ ⊗ 1 + 1 ⊗ ξ, we have δ(ξ) = ξ ⊗ 1 in the cobar
complex, and hence the d1-differential d1(ξ) = h. For degree reasons, d1(h) = 0
and d1(b) = 0, so the Leibniz rule gives us that d1(ξ

ibj) = iξi−1hbj for all i < p
and d1(ξ

ihbj) = 0, yielding the E2-page E
∗,∗
2

∼= Λ(hξp−1)⊗k k[b]. The class hξp−1

is represented by the cobar complex 1-cochain ξ⊗ ξp−1, and we have δ(ξ⊗ ξp−1) =

−
∑p−1
i=1

(
p−1
i

)
ξi⊗ξp−1−i in the cobar complex. When we reach the Ep−1-page of the
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spectral sequence, we have that dp−1(hξ
p−1) is the sum of the terms of δ(ξ⊗ ξp−1)

of primitive filtration14 p− 1 less than that of ξ⊗ ξp−1. Consequently we have that
dp−1(hξ

p−1) is the class in the Ep−1-page represented by the cocycle −ξ⊗ ξp−1⊗1,
i.e., dp−1(hξ

p−1) = −(Tξ). From the Leibniz rule we get that all that remains on
the Ep-page is the copy of k in bidegree (0, 0), so the spectral sequence collapses at
that page. This yields the long differentials pictured in Figure 1.

One consequence is that, by taking p to be a large prime, we can get arbitrarily
long nonzero differentials in spectral sequence (16).

6. When do we have a Künneth formula for Cotor0?

The main result in this section is Theorem 6.2, which give a criterion for the
differentials supported on the s = 0 column of spectral sequence (16) to wipe out
everything above the t = 0 row15, at least in the situation of greatest interest for
topological applications, i.e., the situation of Theorem 4.6 when L = A and M is
a subcomodule of Γ. The most obvious cases of those topological applications are
described later, in section 7. In this section we also give Theorem 6.4, a general-
ization of Theorem 6.2 which weakens the hypothesis that M is a subcomodule of
Γ.

In Definition 6.1, we use the notation N0 for the comodule primitives A□ΓN ⊆
N . This agrees with the notation N0 introduced in Definition-Proposition 4.1. (To
be clear, N0 and N0 each agree with the comodule primitives A□ΓN in N .)

Definition 6.1. Let A be a commutative ring, let Γ be a bialgebra over A, and let
M be a subcomodule of the left Γ-comodule Γ. Let N be a left Γ-comodule. By the
Künneth quotient of N relative to M we mean the A-module Kü(N ;M) given by
the cokernel of the natural A-module map16(

M ⊗A N0
)
×Γ⊗AN N ↪→ (M ⊗A N)×Γ⊗AN N(23)

arising from the commutative diagram

(24) M ⊗A N0 �
� // M ⊗A N �

� // Γ⊗A N

(
M ⊗A N0

)
×Γ⊗AN N

� � //
?�

OO

(M ⊗A N)×Γ⊗AN N �
� //

?�

OO

N
?�

ψN

OO

in which each square is a pullback square of A-modules.

The maps marked with hooked arrows in (24) are injective if M is flat over A.
Of the equivalent conditions given in Theorem 6.2, the fourth condition is an

especially checkable (in practical situations) necessary and sufficient condition for
the Künneth formula for the cotensor product, (25), to hold.

14Remember that we have filtered the cobar complex of Γ, with coefficients in Γ, by the

primitive filtration on the coefficients.
15Corollary 4.7 established that this behavior of the differentials in the spectral sequence is

equivalent to the natural map (L□ΓM)⊗A (A□ΓN) → L□Γ(M ⊗A N) being an isomorphism.
16At the referee’s suggestion, we explain the notation

(
M ⊗A N0

)
×Γ⊗AN N appearing in

equation 23. It is a special case of the general notation X ×Y Z for a pullback. In any category

of modules, if we are given module homomorphisms f : X → Y and g : Z → Y , the pullback
X ×Y Z is the submodule of the Cartesian product X × Z consisting of those pairs (x, z) such

that f(x) = g(z).
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Theorem 6.2. Let A be a commutative ring, let Γ be a bialgebra over A, and let
M be a subcomodule of the left Γ-comodule Γ. Let N be a left Γ-comodule which is
flat over A, and suppose that M is also flat over A. Then the following conditions
are equivalent:

(1) The canonical map

(25) (A□ΓM)⊗A (A□ΓN) → A□Γ(M ⊗A N)

is an isomorphism.
(2) The intersection of M ⊗AN ⊆ Γ⊗AN with the image of the coaction map

ψN : N → Γ⊗A N lands in the submodule M ⊗A (A□ΓN) of M ⊗A N .
(3) The Künneth quotient Kü(N ;M) vanishes.
(4) If n ∈ N satisfies ψN (n) ∈M ⊗A N , then n is primitive.

Proof.

1 is equivalent to 2: SinceM ⊆ Γ andM is flat over A, we have monomor-
phisms M ⊗A N ↪→ Γ ⊗A N and A□Γ(M ⊗A N) ↪→ A□Γ(Γ ⊗A N), and
consequently a commutative diagram of A-modules

A□Γ (M ⊗A N) �
� // A□Γ (Γ⊗A N) N∼=

shoo

A□Γ (M ⊗A (A□ΓN)) �
� //

?�

OO

A□Γ (Γ⊗A (A□ΓN))
?�

OO

A□ΓN∼=

sh|A□ΓNoo ?�

OO

where sh : N → A□Γ(Γ ⊗A N) is the “shearing isomorphism”given on
elements simply by the coaction map ψN . Expressed more carefully, the
diagram

(26) A□Γ (Γ⊗A N)� _

ι

��

N∼=
shoo

ψNuu
Γ⊗A N

commutes, where ι is the canonical inclusion of the comodule primitives of
Γ⊗A N into Γ⊗A N .

Consequently any given element of A□Γ(M ⊗AN) ⊆ Γ⊗AN is equal to
ψ(n) for some n ∈ N . So the inclusion A□Γ(M ⊗A N0) ⊆ A□Γ(M ⊗A N)
is surjective if and only if ψ(n) is contained in M ⊗A N0 whenever ψ(n) ∈
M ⊗A N , as in the statement of the proposition.

2 is equivalent to 3, and 2 is equivalent to 4: These implications are a
routine matter of unwinding the definitions.

□

Remark 6.3. It would be nice if the functor Kü(−;M) : Comod(Γ) → Mod(A)
were at least half-exact, as that would give us some means (by standard homological
methods) of actually computing its value on various comodules. However, Kü is
generally not half-exact, as one sees from the example where A is a field k, and
M = Γ = k[ξ]/ξ2 with ξ primitive. If we had any flexible and powerful tools for
computing Kü(−;M), then the vanishing of Kü(N ;M) could potentially be the
most checkable of the four equivalent conditions listed in Theorem 6.2, instead of
(as presently seems to be the case) the fourth condition being the most practically
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checkable. Unfortunately, the author does not know of any such tools for calculating
Kü, and would be glad to learn of them.

If Γ is finitely generated as an A-module (or if (A,Γ) is graded with A concen-
trated in degree 0 and Γ finitely generated as an A-module in each degree) then
Kü is at least a coherent functor in the sense of [5], but this does not seem to yield
any nontrivial means of computing the values of Kü(−;M).

Theorem 6.2 admits a generalization to situations whereM is not a subcomodule
of Γ. That generalization is Theorem 6.4, which is not as clean to state as Theorem
6.2, which is why we present the result separately. The material on the Künneth
quotient Kü(N ;M) from 6.2 also has a generalization to the setting of Theorem
6.4, but since the vanishing of the Künneth quotient is the condition, among the
equivalent conditions of Theorem 6.2, which we know the least applications for,
we leave off the Künneth quotient from Theorem 6.4 to try to keep the statement
cleaner.

Theorem 6.4. Let (A,Γ) be a graded bialgebra with A concentrated in degree zero.
Suppose that Γ is finite-type, that is, for each integer n the degree n summand of Γ
is a finitely generated A-module. Let M be a graded left subcomodule of a finite-type
direct sum of suspensions of Γ, that is, there exists some function d : Z → N and
some one-to-one graded left Γ-comodule homomorphism

ι :M ↪→
∐
n∈Z

ΣnΓ⊕d(n).

Suppose that N is a graded right Γ-comodule, and suppose that M and N are each
flat over A. Then the following conditions are equivalent:

(1) The canonical map

(27) (A□ΓM)⊗A (A□ΓN) → A□Γ(M ⊗A N)

is an isomorphism.
(2) The intersection of the image of

ι⊗N :M ⊗A N ↪→

(∐
n∈Z

ΣnΓ⊕d(n)

)
⊗A N

with the image of the direct sum of copies of the coaction map∐
n∈Z

Σnψ
⊕d(n)
N :

∐
n∈Z

ΣnN⊕d(n) →
∐
n∈Z

Σn (Γ⊗A N)
⊕d(n) ∼=−→

(∐
n∈Z

ΣnΓ

)⊕d(n)

⊗AN

lands in the submodule M ⊗A (A□ΓN) of M ⊗A N .
(3) If y ∈

∐
n∈Z Σ

nN⊕d(n) satisfies∐
n∈Z

Σnψ
⊕d(n)
N (y) ∈M ⊗A N ⊆

∐
n∈Z

ΣnΓ⊕d(n) ⊗A N,

then y is a primitive element of
∐
n∈Z Σ

nN⊕d(n).

Proof. The proof is essentially the same as that of Theorem 6.2. □

The most notable family of examples of graded bialgebras satisfying the hy-
potheses of Theorem 6.4 are the mod p Steenrod algebras and their linear duals at
each prime p. The associated graded bialgebras E0S(n) of Ravenel’s grading on



18 A. SALCH

the Morava stabilizer algebras (as in [17] and section 6.3 of [18]) form another im-
portant family of examples of finite-type, non-finite-dimensional graded bialgebras
whose Cotor groups are, like Cotor over the duals of the Steenrod algebras, the
input for spectral sequences which ultimately compute stable homotopy groups of
various spaces and spectra.

However, the most straightforward case of Theorem 6.4 is, of course, the case
where the rings and modules in question are concentrated in degree 0, i.e., the
ungraded case:

Corollary 6.5. Let A be a commutative ring, and let Γ be a bialgebra over A.
Suppose that Γ is finitely generated as an A-module. Let M be a left subcomodule
of a direct sum Γ⊕n of finitely many copies of Γ, let N be a right Γ-comodule,
and suppose that M,N are each flat over A. Then the following conditions are
equivalent:

(1) The canonical map

(A□ΓM)⊗A (A□ΓN) → A□Γ(M ⊗A N)

is an isomorphism.
(2) The intersection of the image of ι⊗N :M ⊗A N ↪→ (Γ⊕n)⊗A N with the

image of the direct sum of copies of the coaction map

ψ⊕n
N : N⊕n → (Γ⊗A N)

⊕n ∼=−→ Γ⊕n ⊗A N

lands in the submodule M ⊗A (A□ΓN) of M ⊗A N .
(3) If n ∈ N⊕n satisfies ψN (n) ∈M ⊗A N ⊆ Γ⊕n ⊗A N , then n is a primitive

element of N⊕n.

Example 6.6.

• See the calculations of section 5 for a case in which the the isomorphism 27
holds, i.e., a case in which we have a Künneth formula for Cotor0.

• On the other hand, let A = k for some field k of characteristic p, and let
Γ = k[ξ]/ξp with ξ primitive. Then the canonical map

(A□ΓΓ)⊗A (A□ΓΓ) → A□Γ(Γ⊗A Γ)

is not surjective: its domain is isomorphic to k, while its codomain is iso-
morphic to Γ. (Of course, this same example works in the same way for
any bialgebra over a field, but we chose Γ as above for concreteness and for
comparison with section 5.)

7. Topological applications.

Now we had better explain some of the topological consequences of the results
obtained in this paper. Given a pointed space or spectrum X and an integer n, it
is classical that we can inductively attach cells to X to wipe out all the homotopy
groups of X in degrees greater than n, yielding a pointed space or spectrum X≤n

and a continuous map X → X≤n such that πm(X) → πm(X≤n) is an isomorphism
for all m ≤ n, and such that πm(X≤n) vanishes for all m > n. In the unstable
setting, this construction dates back to [10], solving a problem of Hurewicz’s from
Eilenberg’s 1949 list [12] of open problems in algebraic topology.
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When we take the homotopy fiber of X → X≤n, we get a homotopy fiber se-
quence

(28) X>n → X → X≤n,

where X>n → X induces an isomorphism in πm for all m > n, and πm(X>n) van-
ishes for m ≤ n. If we take this homotopy fiber in the stable homotopy category,
then (28) is also a homotopy cofiber sequence, and so it induces a long exact se-
quence in homology groups. It is natural to ask under what conditions on X and n
we can get good computational control over that long exact sequence in homology.

In particular, the homotopy cofiber sequence (28) induces a short exact sequence
of graded Fp-vector spaces

(29) 0 → H∗(X;Fp) → H∗(X
≤n;Fp) → H∗(ΣX

>n;Fp) → 0

if we assume that X is bounded below, HFp-nilpotently complete17, and the A∗-
comodule primitives of H∗(X;Fp) are trivial in degrees ≥ n. Here p is any prime,
and A∗ is the mod p dual Steenrod algebra.

In other words, if Cotor0A∗
(Fp, H∗(X;Fp)) is bounded above (i.e., vanishes in

sufficiently large degrees), then (29) is short exact for sufficently large n.
The 0-line in the Adams E2-page for a smash product X ∧ Y is

Cotor0A∗

(
Fp, H∗(X;Fp)⊗Fp

H∗(Y ;Fp)
)
.

The 0-line in the Adams spectral sequence is of particular interest, since the 0-
line in the E∞-page is precisely the image of the Hurewicz homomorphism from
stable homotopy to mod p homology. In light of the above considerations about
attaching cells to kill higher homotopy, if we know that Cotor0A∗

(Fp, H∗(X;Fp))
and Cotor0A∗

(Fp, H∗(Y ;Fp)) are each bounded above, we would like to know that

Cotor0A∗

(
Fp, H∗(X;Fp)⊗Fp

H∗(Y ;Fp)
)
is also bounded above, so that

0 → H∗ (X ∧ Y ;Fp) → H∗
(
(X ∧ Y )<n;Fp

)
→ H∗

(
Σ(X ∧ Y )≥n;Fp

)
→ 0

is short exact for some n.
Of course Cotor0A∗

(Fp,−) is simply the A∗-comodule primitives functor, so as a
special case of Theorem 6.2, we have:

Corollary 7.1. Let X,Y be spectra, and suppose that H∗(X;Fp) is a A∗-subcomodule
of A∗. Let e(X), e(Y ), e(X ∧Y ) denote the 0-line in the Adams E2-term for X, Y ,
and X ∧ Y , respectively. Then the canonical map e(X)⊗Fp

e(Y ) → e(X ∧ Y ) is an
isomorphism if and only if the following condition is satisfied:

(30)
For all homogeneous n ∈ H∗(Y ;Fp) such that ψ(n) ∈ H∗(X;Fp) ⊗Fp

H∗(Y ;Fp) ⊆ A∗ ⊗Fp
H∗(Y ;Fp), we have that n is an A∗-comodule primi-

tive.

In particular, if the A∗-comodule primitives in H∗(X;Fp) and H∗(Y ;Fp) are each
bounded above, and condition (30) is satisfied, then the A∗-comodule primitives in
H∗(X ∧ Y ;Fp) are also bounded above.

17The standard reference for nilpotent completion of spectra is [7]. We offer a bit of explanation
to make the idea concrete, for readers not already familar with nilpotent completion of spectra:
under the assumption that a spectrum X is bounded below, Bousfield proves that X is HFp-
nilpotently complete if and only if its homotopy groups are Ext-p-complete in the sense of [8].

More concretely, if X is bounded-below and each of its homotopy groups are finitely generated,
then X is HFp-nilpotently complete if and only if each of its homotopy groups are p-adically

complete.
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There are many familiar and compelling examples of spectraX such thatH∗(X;Fp)
is a A∗-subcomodule of A∗: for example, the case X = BP , or the case X = BP ⟨n⟩
for any positive integer n, or the cases X = ko or X = tmf when p = 2. In these
cases, we have:

Corollary 7.2. Let Y be a spectrum. We continue to write e(X) for the 0-line in
the Adams E2-spectral sequence for a spectrum X. We write ζn for the conjugate
ξn of ξn in the dual Steenrod algebra A∗.

• Let p = 2. Then the canonical map e(BP ) ⊗F2
e(Y ) → e(BP ∧ Y ) is an

isomorphism if and only if, for each homogeneous element y ∈ H∗(Y ;F2)
such that ψ(y) ∈ P (ζ21 , ζ

2
2 , . . . )⊗F2

H∗(Y ;F2), we have ψ(y) = 1⊗ y.
• Let p > 2. Then the canonical map e(BP ) ⊗Fp e(Y ) → e(BP ∧ Y ) is an
isomorphism if and only if, for each homogeneous element y ∈ H∗(Y ;Fp)
such that ψ(y) ∈ P (ξ1, ξ2, . . . )⊗Fp

H∗(Y ;Fp), we have ψ(y) = 1⊗ y.
• Let p = 2. The canonical map e(BP ⟨n⟩)⊗F2

e(Y ) → e(BP ⟨n⟩∧Y ) is an iso-
morphism if and only if, for each homogeneous element y ∈ H∗(Y ;F2) such
that ψ(y) ∈ P (ζ21 , . . . , ζ

2
n, ζn+1, ζn+2, . . . ) ⊗F2

H∗(Y ;F2), we have ψ(y) =
1⊗ y.

• Let p > 2. The canonical map e(BP ⟨n⟩) ⊗Fp e(Y ) → e(BP ⟨n⟩ ∧ Y ) is an
isomorphism if and only if, for each homogeneous element y ∈ H∗(Y ;Fp)
such that ψ(y) ∈ P (ξ1, ξ2, . . . )⊗Fp

E(τn, τn+1, . . . )⊗Fp
H∗(Y ;Fp), we have

ψ(y) = 1⊗ y.
• Let p = 2. The canonical map e(ko) ⊗F2

e(Y ) → e(ko ∧ Y ) is an isomor-
phism if and only if, for each homogeneous element y ∈ H∗(Y ;F2) such
that ψ(y) ∈ P (ζ41 , ζ

2
2 , ζ3, ζ4, . . . )⊗F2 H∗(Y ;F2), we have ψ(y) = 1⊗ y.

• Let p = 2. The canonical map e(tmf) ⊗F2
e(Y ) → e(tmf ∧ Y ) is an

isomorphism if and only if, for each homogeneous element y ∈ H∗(Y ;F2)
such that ψ(y) ∈ P (ζ81 , ζ

4
2 , ζ

2
3 , ζ4, ζ5, . . . ) ⊗F2

H∗(Y ;F2), we have ψ(y) =
1⊗ y.

The cases of Corollary 7.2 can be handled by an alternate method, since the
spectra BP and BP ⟨n⟩ have the property that their mod p homology is not only
an A∗-subcomodule of A∗ but also a sub-bialgebra of A∗. The same is true of ko
and tmf at the prime 2. Under such circumstances, we can use a change-of-rings
isomorphism to arrive at the same conclusions as in Corollary 7.2. The advantage
of using Corollary 7.1 rather than change-of-rings isomorphisms is flexibility and
generality: Corollary 7.1 does not require H∗(X;Fp) to have its own comultiplica-
tion.

More broadly, the methods of this paper, particularly Theorem 6.4, also apply
when H∗(X;Fp) is not even a subcomodule of A∗, much less a subcoalgebra. This
includes some familiar classical cases: for example, X = ku or X = MU at odd
primes. As a special case of Theorem 6.4, we have the generalization of Corollary
7.1:

Corollary 7.3. Let X,Y be spectra, and suppose that H∗(X;Fp) is a graded sub-

A∗-comodule of
∐
n∈Z Σ

nA
⊕d(n)
∗ for some function d : Z → N. Then e(X) ⊗Fp

e(Y ) → e(X ∧ Y ) is an isomorphism if and only if, for each homogeneous element
y ∈ H∗(Y ;Fp) such that∐

n∈Z
Σnψ⊕d(n)(y) ∈ H∗(X;Fp)⊗Fp

H∗(Y ;Fp) ⊆
∐
n∈Z

ΣnA
⊕d(n)
∗ ⊗Fp

H∗(Y ;Fp),
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we have
∐
n∈Z Σ

nψ⊕d(n)(y) =
∐
n∈Z Σ

n(1⊗ y)⊕d(n), i.e., y is a A∗-comodule prim-
itive.

A very familiar example of a spectrum to which Corollary 7.3 applies is the case
X = ku:

Corollary 7.4. Let p > 2. The canonical map e(ku)⊗Fp
e(Y ) → e(ku ∧ Y ) is an

isomorphism if and only if, for each homogeneous element y ∈ H∗(Y ;Fp) such that

p−2∐
i=0

Σ2iψ(y) ∈
p−2∐
i=0

Σ2iP (ξ1, ξ2, . . . )⊗Fp E(τ2, τ3, . . . )⊗Fp H∗(Y ;Fp)

⊆
p−2∐
i=0

Σ2iA∗ ⊗Fp H∗(Y ;Fp),

we have ψ(y) = 1⊗ y.
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