
HOW MANY ADJUNCTIONS GIVE RISE TO THE SAME

MONAD?

Abstract. Given an adjoint pair of functors F,G, the composite GF natu-

rally gets the structure of a monad. The same monad may arise from many
such adjoint pairs of functors, however. Can one describe all of the adjunc-

tions giving rise to a given monad? In this paper we single out a class of

adjunctions with especially good properties, and we develop methods for com-
puting all such adjunctions, up to natural equivalence, which give rise to a

given monad. To demonstrate these methods, we explicitly compute the fini-

tary homological presentations of the free A-module monad on the category
of sets, for A a Dedekind domain. We also prove a criterion, reminiscent of

Beck’s monadicity theorem, for when there is essentially (in a precise sense)

only a single adjunction that gives rise to a given monad.
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1. Introduction.

If C ,D are categories and G : D Ñ C a functor with a left adjoint F , then the
composite GF gets the structure of a monad. However, given a monad T : C Ñ C ,
there may be many categories D and adjoint pairs F,G such that GF “ T as a
monad. We will call such a choice of D, F, and G a presentation for T .

It has long been known that, among all presentations of a given monad T , there
is an initial presentation, the Kleisli category of T , and a terminal presentation, the
Eilenberg-Moore category of T . Furthermore, Beck’s monadicity theorem gives a
necessary and sufficient condition on G for the presentation pD, F,Gq to be equiva-
lent to the Eilenberg-Moore category. (See [5] for a nice exposition of these ideas.)
Beck’s result has proven very useful, e.g. in algebraic geometry where, in its dual
form for comonads, it is the foundation for the general theory of descent; see [2].
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2 HOW MANY ADJUNCTIONS GIVE RISE TO THE SAME MONAD?

The applications of Beck’s monadicity theorem have made it very clear that,
given a presentation pD, F,Gq of a monad T , it is very useful to be able to tell
when pD, F,Gq is the terminal presentation (i.e., the Eilenberg-Moore category) of
T . However, the author has long wondered about what to do when one encounters a
presentation of a monad which is not the terminal (Eilenberg-Moore) presentation,
and not the initial (Kleisli) presentation. Can one describe the collection of all
presentations of a monad? Even better, can one establish some kind of coordinate
system on the collection of presentations of a monad, so that when one encounters
a presentation of a monad (or a comonad, e.g. for applications in descent theory),
one can give some kind of “coordinates” that describe where this presentation sits
in relation to the initial and terminal presentations, and all the other presentations,
of the same monad?

In this paper we study the collection of presentations of a given monad, but with
a restriction on what presentations we are willing to consider. This is because,
given a presentation pD, F,Gq, one can trivially produce many more presentations
by taking the Cartesian product of D with any small category. We regard these
presentations as degenerate, and we want to disregard presentations with this kind
of redundant information in them. Consequently, in Definition 2.2, we make the
definition that a presentation pD, F,Gq is said to be homological if every object X
of D can be recovered from the F,G-bar construction on X (see Definition 2.2 for
the precise definition). This definition eliminates the “redundant” presentations we
wanted to exclude, and has some other good properties, described in Remark 2.3.
We also restrict our attention to what we call “coequalizable” monads, that is, those
monads T for which the Eilenberg-Moore category has coequalizers; this property
is satisfied in all cases of interest which we know of, and in Remark 2.9 we explain
a bit about why that is.

Once these definitions are made, we can prove some nice theorems:

‚ In Theorem 2.13, we prove that, if T is coequalizable, then the category of
natural equivalence classes of homological presentations of T is equivalent
to the partially-ordered collection of reflective replete subcategories of the
Eilenberg-Moore category CT which contain the Kleisli category CT .

This means the category of all natural equivalence classes of homological
presentations of T is always well-behaved in at least one way: it can’t be
just any arbitrary category, rather, it is always partially-ordered (i.e., there
is at most one morphism from any given object to any other given object).

‚ In Theorem 2.20, when T is coequalizable and CT has a biproduct and is
Krull-Schmidt, we actually construct a “coordinate system” on the natu-
ral equivalence classes of homological presentations of T ! Any homological
presentation is determined uniquely (up to natural equivalence) by spec-
ifying a suitable subcollection of the collection of isomorphism classes of
indecomposable objects of CT . In some practical cases, CT is the cate-
gory of finitely generated modules over an algebra, and then the vertices
of the Auslander-Reiten quiver of CT act as “coordinates” for the collec-
tion of natural equivalence classes of homological presentations of T ; see
Remark 2.22.

‚ In Theorem 3.6, we give a simple and usable criterion for the triviality (up
to natural equivalence) of the collection of homological presentations of T ,
i.e., a criterion for when, up to natural equivalence, there exists only one
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homological presentation of T (necessarily the Eilenberg-Moore category of
T ). As an example, in Corollary 3.8 we show that the base-change monad
on module categories associated to a field extension has this property of
unique homological presentability.

‚ In Theorem 4.5, we use Theorems 2.13 and Theorem 2.20 to explicitly
compute the collection of all (natural equivalence classes of) homological
finitary presentations of each monad in one particular class of monads:
namely, let A be a Dedekind domain, and let T denote the monad on the
category of sets which sends a set to the underlying set of the free A-module
it generates. We show that the partially-ordered set of natural equivalence
classes of finitary homological presentations of T is equivalent to the set of
functions

Max SpecpAq Ñ t0, 1, 2, . . . ,8u

from the set Max SpecpAq of maximal ideals of A to the set of extended
natural numbers, under the partial ordering in which we let f ď g if and
only if fpmq ď gpmq for all m P Max SpecpAq. Since the ring of integers
Z is a Dedekind domain, this is a very fundamental example. (Here a
presentation for T is “finitary” if its right adjoint functor preserves filtered
colimits; this is a condition that, roughly speaking, guarantees that the
data of the presentation is determined by “finite input.” See Remark 2.5.)

In many cases of interest (e.g. the base-change monads on module categories
associated to maps of rings or maps of schemes), the Eilenberg-Moore category CT

is actually abelian, hence T is coequalizable and CT has a biproduct automatically,
and frequently CT is actually quite computable and understandable. Under those
circumstances our results seem to be fairly useful, and as we hope Theorem 4.5
demonstrates, they are actually applicable and give explicit nontrivial results in
concrete situations of interest.

We are very grateful to the anonymous referee for perspicacious comments which
helped us to improve this paper greatly.

2. Homological presentations of a monad are equivalent to replete
reflective subcategories of its Eilenberg-Moore category.

2.1. Preliminary definitions. Throughout this paper, when T is a monad, when
convenient we will sometimes also write T for the underlying functor of the monad.

Definition 2.1. Let C be a category, T a monad on C . If D is a category equipped
with a functor F 1 : C Ñ D and a right adjoint G1 for F 1 such that the associated
monad G1F 1 is equal to T , we call the data pD, F 1, G1q a presentation of T . Some-
times we shall just write D as shorthand for pD, F 1, G1q, when F 1, G1 are clear from
context.

The collection of all presentations of T forms a large category, whose morphisms
are morphisms of adjunctions (see IV.7 of [5] for the definition of morphisms of
adjunctions) which are the identity on C . We call this large category the cate-
gory of presentations of T , and for which we will write PrespT q. One also can
consider natural transformations between morphisms of adjunctions, and we regard
two morphisms as homotopic if there exists an invertible natural transformation
between them; we will write HopPrespT qq for the category of presentations of T but
whose morphisms are homotopy classes of morphisms of adjunctions.
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We note that PrespT q and HopPrespT qq are not necessarily categories, but are
large categories, because their hom-collections are not necessarily hom-sets. The
notion of a category of presentations of a monad appears in VI.5 of [5], but was not
there given a name.

For the purposes of this paper we will mostly be studying presentations of a
monad which have the property that there is some minimal degree of compatibility
between the category and the monad, enough compatibility to guarantee that e.g.
some constructions in homological algebra can be made. Here is our definition:

Definition 2.2. Let C be a category, T a monad, pD, F 1, G1q a presentation of
T . We will say that D is a homological presentation of T if, for every T -algebra
ρ : G1F 1X Ñ X, the coequalizer (in Dq of the two natural counit maps

(2.1) εF 1X , F
1ρ : F 1G1F 1X Ñ F 1X

exists, and for each object Y of D, the canonical map

(2.2) coeqtεF 1G1Y , F
1G1εY u Ñ Y

is an isomorphism. We will write HPrespT q for the full large subcategory of PrespT q
generated by the homological presentations.

We will write HopHPrespT qq for the large category whose objects are homological
presentations of T , and whose morphisms are homotopy classes of morphisms of
adjunctions.

Remark 2.3. The reason for the name “homological” for this kind of presentation
is the following: if pD, F 1, G1q is a homological presentation of a monad and D is
abelian, then each object X in D admits a canonical resolution

(2.3) 0 Ð X Ð F 1G1X
d0
ÐÝ F 1G1 kerpεF 1G1X ´ F

1G1εXq
d1
ÐÝ . . .

obtained by repeatedly applying F 1G1, forming the coequalizer 2.2, and taking the
kernel of the coequalizer map. This resolution gives us a way to compute the left-
derived functors of any functor on D which is acyclic on every object of the form
F 1G1X. If pD, F 1, G1q fails to be homological, then at least for some objects X the
chain complex 2.3 fails to be exact and hence cannot be used to compute derived
functors in this way.

The resolution 2.3 is very familiar and commonplace in its various special cases.
For example, when C is the category of sets and T the monad given on a set
S by taking the underlying set of the free abelian group generated by S, then the
category Ab is a presentation for T , and it is homological (because it is the terminal
presentation, i.e., the Eilenberg-Moore category of T , which in Corollary 2.14 we
prove is always homological for any coequalizable monad T ). The resolution 2.3 is
the elementary resolution one uses in a first course in homological algebra to prove
that free resolutions exist in the category of abelian groups: given an abelian group
X, one can form the direct sum ‘xPXZ, one can let X0 be the kernel of the obvious
surjection ‘xPXZÑ X, then iterate to form a free resolution of X.

When D fails to be abelian, instead of 2.3 one forms the simplicial resolution

. . . // F 1G1F 1G1F 1G1X // F 1G1F 1G1X // F 1G1X

of X, and one can use this resolution to compute more general kinds of derived
functors (e.g. if D has the structure of a model category). In every case the
condition that pD, F 1, G1q is homological is really the condition that F 1, G1 gives
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us a way to form a canonical resolution of any object in D. In some sense one
should think of a homological presentation for a monad T as a category equipped
with a way of forming a canonical resolution of any object by T -free objects, and
that means that this paper is in some sense really about classifying various ways of
forming canonical resolutions.

Finally, one more note about the map 2.2: after applying G1, the map always
becomes an isomorphism, because the fork

G1F 1G1F 1G1X
G1εF 1G1X //

G1F 1G1εX

// G
1F 1G1X // G1X

is always split by the unit map ηG1X : G1X Ñ G1F 1G1X, hence the fork is a split
coequalizer. But the map 2.2 can fail to be an isomorphism before applying G1.

Informally, the general trend is that monads tend to either have a single homo-
logical presentation up to equivalence, or a truly enormous collection of homological
presentations, big enough to make it very difficult to explicitly classify them. How-
ever, even within the homological presentations, there is an even more restricted
class of presentations of a monad which we can reasonably restrict our attention
to, namely, the finitary homological presentations:

Definition 2.4. Let C be a category, T a monad, pD, F 1, G1q a presentation of T .
We will say that D is a finitary presentation of T if G1 preserves all filtered colimits
which exist in D.

We will write Fin PrespT q for the large category of finitary presentations of
T , Fin HPrespT q for the large category of finitary homological presentations, and
HopFin HPrespT qq for the large category of finitary homological presentations up to
natural equivalence.

Remark 2.5. In the category of modules over a ring, every object is a filtered
colimit of finitely generated modules. Consequently, when pD, F 1, G1q is a finitary
presentation and D a category of modules over a ring, then G1 can be computed on
any object if one knows how to compute G1 on finitely generated modules. This is
actually quite useful; see the proof of Theorem 4.5, for example.

Remark 2.6. It is not in general true that every presentation of a monad T is
finitary, even if T itself preserves filtered colimits; for example, let C be the category
of sets, let T be the monad which sends a set S to the underlying set of the free
abelian group generated by S, and let pD, F 1, G1q be the presentation for T in which
D is the category of reduced abelian groups, F 1 : C Ñ D is the free abelian group
functor, and G1 : D Ñ D is the forgetful functor. (An abelian group is said to
be “reduced” when it has no nontrivial divisible subgroup.) Then, for any prime
number p, the colimit of the filtered diagram

Z p
ÝÑ Z p

ÝÑ . . .

in D is zero, but the colimit of

G1pZq G
1
ppq
ÝÑ G1pZq G

1
ppq
ÝÑ . . .

in C is the underlying set of Zr 1p s.

Recall that a subcategory is said to be replete if it contains every object iso-
morphic to one of its own objects, and reflective if it a full subcategory and the
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inclusion of the subcategory admits a left adjoint. We include fullness as part of the
definition of a reflective subcategory; this seems to be relatively standard, although
not universal (see e.g. [5]), in the literature.

It is standard that a reflective subcategory is closed under limits computed in
the ambient category; see e.g. the beginning of section 2 in [7].

Definition 2.7. Let C be a category, T a monad, CT the Eilenberg-Moore category
of T -algebras. If D is a replete reflective subcategory of CT , we will say that D
presents T if D contains all the free T -algebras, i.e., if D contains the T -algebra

TTX
µX
ÝÑ TX for every object X of C .

We will write LocpT q for the partially-ordered collection of all replete reflective
subcategories CT which present T .

Finally, we will say that an element D of LocpT q is finitary if the forgetful
functor from D to CT preserves all filtered colimits which exist in D. We will write
Fin LocpT q for the subcollection of LocpT q consisting of the finitary elements.

The notation “LocpT q” is motivated by the notion that a replete reflective sub-
category of a category is, speaking intuitively and roughly, a kind of “localization”
of that category.

We note that LocpT q is not necessarily a set, nor even a class (we are grateful to
Mike Shulman for pointing out to us that the collection of subcategories of a cate-
gory is not necessarily a class!). Sometimes the term “conglomerate” is used for a
collection too large to form a class. In other words, if one wants to use Grothendieck
universes, one must expand the universe twice to go from sets to conglomerates. In
practical algebraic, geometric, and topological situations, however, it seems likely
that LocpT q will form a set. For example, see Corollary 2.16, where we show that
mild conditions (a biproduct condition, a Krull-Schmidt condition, and a smallness
condition) imply that LocpT q is a set.

Finally, it will sometimes be convenient to have coequalizers in Eilenberg-Moore
categories. We introduce a definition which describes monads which have this
agreeable property:

Definition 2.8. Let C be a category, T a monad, CT the Eilenberg-Moore category
of T -algebras. We will say that T is coequalizable if CT has coequalizers.

Remark 2.9. There are many known conditions on T which guarantee that T is
coequalizable; for example, in Lemma II.6.6 in [3] it is shown that, if T preserves
reflexive coequalizers, then T is coequalizable. Consequently, many interesting
examples of monads T are coequalizable.

For example, suppose R Ñ S is a map of commutative rings. Then the base-
change monad T : ModpRq Ñ ModpRq, i.e., the composite of the extension of
scalars functor ModpRq Ñ ModpSq with the restriction of scalars functor ModpSq Ñ
ModpRq, is coequalizable, since extension of scalars and restriction of scalars are
both right exact, preserving all coequalizers. If S is finitely generated as an
R-module then the base-change monad fgModpRq Ñ fgModpRq on the finitely
generated module category is also coequalizable, for the same reason. Then the
Eilenberg-Moore category ModpRqT is equivalent to ModpSq.

More generally, if f : Y Ñ X is a map of schemes and QC ModpOXq the category
of quasicoherent OX -modules, then the base-change monad f˚f

˚ is coequalizable
if f is an affine morphism, since in that case f˚ is right exact (and f˚ is always
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right exact, regardless of whether f is affine). Then the Eilenberg-Moore category

QC ModpOXqf˚f
˚

is equivalent to QC ModpOY q, by the results of EGA II.1.4, [4].
Usually (e.g. in the examples above, and in our Theorem 4.5) we will have an

explicit description of the category CT and we will know that it has coequalizers;
what will be interesting and new will be the description of the rest of HPrespT q.

Definition 2.10. Suppose C is a category with coproduct ‘. We say that an object
X of C is indecomposable if X – Y ‘ Z implies either Y – 0 or Z – 0. We say
that C is weakly Krull-Schmidt if every object X of C admits a decomposition into
a finite coproduct of indecomposable objects, and that decomposition is unique up
to permutation and isomorphism of the summands.

Suppose furthermore that A,G are two collections of objects of C . We say that
C is weakly Krull-Schmidt relative to A and generated by G if every object X of
C admits a decomposition into a finite coproduct of the form X0 ‘X1 ‘ ¨ ¨ ¨ ‘Xn

where X0 is in A, each of the objects X1, . . . , Xn are indecomposable and contained
in G, and that decomposition is unique up to isomorphism of the summand X0 and
permutation and isomorphism of the summands X1, . . . , Xn.

Our definition of weakly Krull-Schmidt differs from the usual definition of a
Krull-Schmidt category in that we do not require the indecomposable objects to
have local endomorphism rings. See Remark 4.2 for some discussion of the purpose
of the definition of “weakly Krull-Schmidt relative to A and generated by G .”

2.2. Replete reflective subcategories presenting a monad are equivalent
to its homological presentations.

Lemma 2.11. Let C be a category, T a monad on C , pD, F 1, G1q a presentation of
T . If D has coequalizers of all pairs of maps of the form 2.1, then the canonical
comparison functor K : D Ñ CT has a left adjoint. Conversely, if T is coequalizable
and K is full and faithful and has a left adjoint, then D has all coequalizers (and
in particular, all pairs of maps of the form 2.1).

Proof. We will write F : C Ñ CT for the canonical functor and G for its right ad-
joint. When D has coequalizers of all parallel pairs of the form 2.1, the comparison

functor K admits a left adjoint V , defined on objects as follows: if TX
ρX
ÝÑ X is the

structure map of a T -algebra, then V applied to that T -algebra is the coequalizer
of the maps

F 1ρX , εF 1X : F 1G1F 1X Ñ F 1X,

using the fact that G1F 1 “ GF “ T . (The result that K has a left adjoint if D has
coequalizers is an old one: it appears in Beck’s thesis [1], and even appears as an
exercise in VI.7 of [5]. But the only coequalizers one actually needs are the ones
used in the construction of the left adjoint, i.e., those of the form 2.1.)

For the converse: suppose T is coequalizable and K is full and faithful and
has a left adjoint V . Since left adjoints preserve colimits and since fullness and
faithfulness of K is equivalent to V K – idD , we can compute the coequalizer of
any pair f, g : X Ñ Y in D by computing the coequalizer of Kf,Kg in CT (which
exists since T is coequalizable) and then applying V . �

Lemma 2.12. Let C be a category, T a monad on C , pD, F 1, G1q a presentation
of T . Suppose D has coequalizers of all pairs of maps of the form 2.1. Then the
comparison functor K : D Ñ CT is full and faithful if and only if pD, F 1, G1q is
homological.



8 HOW MANY ADJUNCTIONS GIVE RISE TO THE SAME MONAD?

Proof. We use the same notation as in the proof of Lemma 2.11. That K is full
and faithful is equivalent to the counit map V K Ñ idD of the adjunction being
an isomorphism. We recall that K is defined on objects by letting KX be the T -
algebra with structure map G1F 1G1X “ TG1X Ñ G1X given by the counit natural
transformation F 1G1 Ñ idD . Now V KX is precisely the coequalizer of the two
maps

εF 1G1X , F
1G1εX : F 1G1F 1G1X Ñ F 1G1X,

and the map V KX Ñ X is precisely the map 2.2. So the condition that pD, F 1, G1q
be homological is equivalent to the condition that V K Ñ idD be an isomorphism
of functors, i.e., the condition that K be full and faithful. �

Theorem 2.13. Let C be a category, T a coequalizable monad on C . Then the large
homotopy category HopHPrespT qq of homological presentations of T is equivalent to
the partially-ordered collection LocpT q of replete reflective subcategories of CT which
present T .

Furthermore, if the forgetful functor CT Ñ C preserves filtered colimits, then this
equivalence restricts to an equivalence between the subcollection HopFin HPrespT qq
of HopHPrespT qq and the subcollection Fin LocpT q of LocpT q.

Proof. We write KlpT q for the Kleisli category of T , we write F : C Ñ CT for
the canonical functor and G for its right adjoint, and we write F 2 : C Ñ KlpT q
for the canonical functor and G2 for its right adjoint. The theorem follows almost
immediately from Lemma 2.12, which gives us that every homological presentation
pD, F 1, G1q of T has the property that K is faithful and full, hence D is canonically
equivalent to a full replete subcategory of CT , and Lemma 2.11, which gives us
that that full replete subcategory is reflective. That reflective replete subcategory
contains the free T -algebras, i.e., the Kleisli category of T , since the Kleisli category
is initial among presentations of T . So that reflective replete subcategory of CT is
an element of LocpT q. If we furthermore assume that G preserves filtered colimits
and pD, F 1, G1q is finitary, then since G1 “ G ˝K, for any filtered diagram X in D,
we have the natural commutative diagram

colimG1pX q – //

–

((

G1pcolim X q

GpcolimKpX qq,

66

so the map GpcolimKpX qq Ñ G1pcolim X q “ GpKpcolim X qq is an isomorphism, and
since G reflects isomorphisms, K preserves filtered colimits.

Conversely, if D is a reflective replete subcategory of CT with inclusion K : D Ñ

CT having left adjoint V , suppose we write S : KlpT q Ñ D for the inclusion of the
free T -algebras. We claim that the composite S ˝ F 2 : C Ñ D has right adjoint
G˝K : D Ñ C , and that the composite monad G˝K ˝S ˝F 2 is equal to the monad
T . The second claim is very easy: the composite G ˝K ˝ S is equal to G2, so

G ˝K ˝ S ˝ F 2 “ G2 ˝ F 2 “ T.

The first claim is also not difficult: since F “ K ˝S ˝F 2 and V ˝K » idD , we have

V ˝ F » V ˝K ˝ S ˝ F 2 » S ˝ F 2.
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Now V is left adjoint to K and F left adjoint to G, so S ˝F 2 » V ˝F is left adjoint
to G˝K, proving our first claim. It follows that pD, S ˝F 2, G˝Kq is a presentation
of T .

All that remains to be proven is that pD, S ˝ F 2, G ˝ Kq is a homological pre-
sentation of T . By construction, K is full and faithful, so by Lemma 2.11, D has
coequalizers of all parallel pairs of the form 2.1. So by Lemma 2.12, pD, S˝F 2, G˝Kq
is homological. If we furthermore assume that G preserves filtered colimits and that
D is finitary, then of course the composite G ˝ K preserves filtered colimits, and
consequently pD, S ˝ F 2, G ˝Kq is also a finitary homological presentation. �

Corollary 2.14. If T is coequalizable, the Eilenberg-Moore adjunction pCT , F,Gq of
T is a homological presentation of T . (And, consequently, the terminal homological
presentation of T .)

Corollary 2.15. If T is coequalizable, the large homotopy category HopHPrespT qq
of homological presentations of T is partially-ordered, i.e., for any objects A,B of
HopHPrespT qq, there is at most one morphism A Ñ B. If we furthermore as-
sume that the forgetful functor CT Ñ C preserves filtered colimits, then large homo-
topy category HopFin HPrespT qq of finitary homological presentations of T is also
partially-ordered.

Corollary 2.16. Suppose T is coequalizable and CT is weakly Krull-Schmidt. Sup-
pose the collection of isomorphism classes of indecomposable objects forms a set
(not a proper class!), and suppose that set has cardinality κ. Then HopHPrespT qq
is equivalent to a partially-ordered set of cardinality no greater than 2ℵ

κ
0 .

Proof. The partially-ordered collection LocpT q, which by Theorem 2.13 is equiva-
lent to
HopHPrespT qq, is contained in the collection of subcollections of the collection of
finite formal sums of indecomposable objects. This collection is, in turn, contained
in the collection of subcollections of the collection of not-necessarily-finite formal
sums of indecomposable objects in which each indecomposable object appears only
finitely many times. This last collection has cardinality 2ℵ

κ
0 . �

We greatly improve this cardinality bound in Corollary 2.21 under the assump-
tion that CT has a biproduct.

2.3. Coordinatization of the collection of homological presentations of a
monad.

Definition 2.17. Recall that a category C is said to have a biproduct if it a zero
object, finite products, and finite coproducts, and, for each finite family tXiuiPI of
objects of C , the canonical map

š

iPI Xi Ñ
ś

iPI Xi is an isomorphism.

Lemmas 2.18 and 2.19 are easy and must be well-known, but we do not know
where they already appear in the literature.

Lemma 2.18. Suppose A is a replete reflective subcategory of a category with
biproduct. Then A has a biproduct.

Proof. Reflective subcategories are closed under limits, so the biproduct computed
in the ambient category is also contained in A. It is an easy exercise to verify that
this biproduct also has the universal properties of the product and coproduct in
A. �
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Lemma 2.19. Suppose A is a replete reflective subcategory of a category C with
biproduct ‘. If X – Y ‘ Z in C , then X is in A if and only if both Y and Z are
in A.

Proof. We write L : C Ñ C for the composite of the reflector functor C Ñ A with
the inclusion A Ñ C . By Lemma 2.18, A has a biproduct. Since L is a composite of
a left adjoint (the reflector functor) with a right adjoint (the inclusion functor), it
preserves biproducts, since the biproduct is both the finite coproduct and the finite
product. So LX – LY ‘ LZ, and if Y,Z are in A, then the unit maps Y Ñ LY
and Z Ñ LZ are both isomorphisms. So X – Y ‘ Z Ñ LY ‘ LZ – LX is an
isomorphism. So X is in A.

For the converse: if X and Y are objects in C and X ‘ Y is in A, write i : X Ñ

X ‘ Y and π : X ‘ Y Ñ X for the summand inclusion and projection maps. Then
X is the equalizer of the two maps

id, i ˝ π : X ‘ Y Ñ X ‘ Y

(this is easy to prove, by “splitting the cofork” in the sense of section VI.6 of [5]).
So X is a limit of a diagram in A, so X is in A since reflective subcategories are
closed under limits. �

Theorem 2.20. (Coordinatization.) Let C be a category, T a coequalizable
monad on C . Suppose the Eilenberg-Moore category CT has a biproduct and is
weakly Krull-Schmidt. Write ΓpCT q for the collection of isomorphism classes of
indecomposable objects in CT . Then HopHPrespT qq embeds by an order-preserving
map into the collection of subcollections of ΓpCT q.

Proof. By Theorem 2.13, specifying an element of HopHPrespT qq is equivalent to
specifying a replete reflective subcategory of CT which contains CT , hence is deter-
mined uniquely by which isomorphism classes of objects in CT are contained in the
replete reflective subcategory. But by Lemma 2.19, a replete reflective subcategory
of a weakly Krull-Schmidt category with biproduct is determined uniquely by which
indecomposables are contained in it. �

In other words: under the conditions of Theorem 2.20, a homological presentation
of T can be specified by specifying a suitable subcollection of ΓpCT q (which, as
we describe in the last section of this paper, is actually computable in cases of
interest). Since CT is often computable and understandable, Theorem 2.20—when
it applies—gives a coordinatization of the collection of homological presentations
of T , as desired.

Corollary 2.21. Suppose T is coequalizable and CT is weakly Krull-Schmidt and
has a biproduct. Suppose the collection of isomorphism classes of indecomposable
objects forms a set (not a proper class!), and suppose that set has cardinality κ.
Then HopHPrespT qq is equivalent to a partially-ordered set of cardinality no greater
than 2κ.

Remark 2.22. Suppose that k is a field and A is a k-algebra. Let C be any cat-
egory and T any monad on C whose Eilenberg-Moore category CT is equivalent to
the category fgModpAq of finitely generated A-modules; for example, we could let
C be the category of B-modules, for some reasonable subalgebra B of A, and we
could let T be the monad associated to the free-forgetful adjunction between B-
modules and A-modules. In Auslander-Reiten theory, the set of isomorphism classes
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of indecomposable finitely generated A-modules is exactly the set ΓpfgModpAqq of
vertices in the Auslander-Reiten quiver of CT . So one can regard the vertices of the
Auslander-Reiten quiver of CT as “coordinates” for the collection of natural equiv-
alence classes of homological presentations of T : Theorem 2.20 gives an embedding
of HopHPrespT qq into the partially-ordered set of subsets of ΓpfgModpAqq.

3. A criterion for unique homological presentability of a monad.

3.1. Preliminary definitions. Some monads can (up to natural equivalence) only
be homologically presented in a single way, i.e., HopHPrespT qq is equivalent to a
one-object category. Here is the relevant definition:

Definition 3.1. Suppose T is a monad. If HopHPrespT qq has only a single element
up to isomorphism, then we say that T is uniquely homologically presentable.

We give a concrete algebraic class of examples (base-change monads associated
to field extensions) of uniquely homologically presentable monads in Corollary 3.8.

Because we will need to make use of it, we state Beck’s monadicity theorem (see
e.g. VI.7 of [5]):

Theorem 3.2. (Beck.) Suppose C ,D are categories, G : D Ñ C a functor with
a left adjoint F . Then the comparison functor D Ñ CGF is an equivalence of
categories if and only if, whenever a parallel pair f, g : X Ñ Y in D is such that
Gf,Gg has a split coequalizer in C , each of the following conditions hold:

‚ f, g has a coequalizer coeqtf, gu in D,
‚ G preserves the coequalizer of f, g, i.e., the natural map

coeqtGf,Ggu Ñ G coeqtf, gu is an isomorphism,
‚ and G reflects the coequalizer of f, g, i.e., if Z is a cocone over the dia-

gram f, g : X Ñ Y such that GZ is a coequalizer of Gf,Gg, then Z is a
coequalizer of f, g.

Here is a very classical definition:

Definition 3.3. When G is a functor with left adjoint, we say that G is monadic
if G satisfies the equivalent conditions of Theorem 3.2.

We offer a (to our knowledge, new) variant on this definition which will be
essential to our criterion for unique homological presentability of a monad.

Definition 3.4. Suppose C ,D are categories, G : D Ñ C a functor. We say
that G is absolutely monadic if G has a left adjoint and, whenever a parallel pair
f, g : X Ñ Y in D is such that Gf,Gg has a split coequalizer in C , then:

‚ f, g has a split coequalizer coeqtf, gu in D,
‚ G preserves the coequalizer of f, g, i.e., the natural map

coeqtGf,Ggu Ñ G coeqtf, gu is an isomorphism,
‚ and G reflects the coequalizer of f, g, i.e., if Z is a cocone over the dia-

gram f, g : X Ñ Y such that GZ is a coequalizer of Gf,Gg, then Z is a
coequalizer of f, g.

Note that a functor that is absolutely monadic is also monadic, but the converse
does not always hold.
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3.2. A criterion for unique homological presentability. Now we present and
prove the main result of this section.

First we will need a lemma. We suspect that this lemma is already well-known,
but we do not know an already-existing reference in the literature.

Lemma 3.5. Suppose D,E are categories, and D S
ÝÑ E is a full, faithful functor

with a left adjoint. Then S is monadic.

Proof. Since S is full and faithful, we regard it as inclusion of a subcategory D of E .
Then since S has a left adjoint, D is a reflective subcategory of E . We write V for
the left adjoint of S. Let f, g : X Ñ Y be a pair of maps in D such that Sf, Sg has
a split coequalizer Z Then we can apply V together with the natural equivalence
V S » idD to get that V Z is a split coequalizer of f, g. Hence S sends a cofork in D
to a split coequalizer in E if and only if the cofork was already a split coequalizer in
D. So S preserves coequalizers of all pairs in D with a S-split coequalizer, and since
S is faithful and injective on objects, it reflects isomorphisms; so S is monadic. �

Theorem 3.6. Suppose C is a category, T a coequalizable monad on C . We write
F for the canonical functor C Ñ CT and G for its right adjoint. If G is absolutely
monadic, then T is uniquely homologically presentable.

Proof. Suppose G is absolutely monadic, and suppose that pD, F 1, G1q is a presen-
tation of T . We have the comparison functor K : D Ñ CT , and we have that
G1 “ G ˝K. We are going to show that, if pD, F 1, G1q is homological, then K is an
equivalence.

Suppose f, g is a parallel pair in D such that G1f,G1g has a split coequalizer
in C . Then Kf,Kg is a parallel pair in CT such that GpKfq, GpKgq has a split
coequalizer in C , and since G is absolutely monadic, Kf,Kg has a split coequalizer
Z such that GZ is the given split coequalizer for G1f,G1g. But, by Lemma 3.5, K
is monadic, hence, by Theorem 3.2, f, g has a coequalizer W such that KW is Z.
Hence f, g has a coequalizer in D and G1 preserves that coequalizer.

Now we check that G1 reflects appropriate coequalizers. Suppose

(3.4) X
f //

g
// Y // Z

is a cofork in D such that the cofork

(3.5) G1X
G1f //

G1g

// G
1Y // G1Z

is a split coequalizer sequence in C . Again using the fact that G1 “ G˝K and using
that G is absolutely monadic, we have that the cofork

(3.6) KX
Kf //

Kg
// KY // KZ

in CT is a split coequalizer sequence; finally, by Lemma 3.5 and Theorem 3.2, K
reflects such coequalizers, so cofork 3.4 is a coequalizer sequence in D.

Hence G1 preserves and reflects coequalizers of all parallel pairs f, g such that
Gf,Gg has a split coequalizer. Hence, by Theorem 3.2, G1 is monadic, and the
comparison map D Ñ CG

1F 1 “ CT is an equivalence of categories.
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Hence every homological presentation D of T is equivalent to the entire Eilenberg-
Moore category of T . Hence every element of HopHPrespT qq is isomorphic to the
Eilenberg-Moore presentation. �

Corollary 3.7. Suppose C is an abelian category and T a monad on C such that
CT is abelian and the canonical functor G : CT Ñ C is additive. Suppose that, if

X Ñ Y Ñ Z

is a pair of maps in CT such that

GX Ñ GY Ñ GZ Ñ 0

is split exact in C , then

X Ñ Y Ñ Z Ñ 0

is split exact in CT . Then T is uniquely homologically presentable.

Proof. The assumed condition on G is precisely what absolute monadicity of G
means in the abelian setting. �

Corollary 3.8. Suppose L{K is a field extension and T : ModpKq Ñ ModpKq the
associated base change monad, i.e., TM is the underlying K-module of L bK M .
Then T is uniquely homologically presentable.

4. Explicit examples: Dedekind domains.

First, recall the well-known classification of finitely generated modules over a
Dedekind domain, which we will use throughout this section:

Theorem 4.1. Let A be a Dedekind domain, and let M be a finitely generated
A-module. Then M is isomorphic to a direct sum of a finitely generated projective
A-module and finitely many A-modules of the form A{mn for various maximal
ideals m in A and various positive integers n. This decomposition is unique up to
isomorphism and up to permutation and isomorphism of the indecomposable factors
A{mn.

Remark 4.2. In Theorem 4.1, the projective summand also decomposes into a
direct sum of indecomposables, but the decomposition of the projective summand
does not have to be unique up to permutation and isomorphism of the summands
unless the class group of the Dedekind domain vanishes. So the finitely gener-
ated modules over a Dedekind domain are weakly Krull-Schmidt relative to the
projectives and generated by the indecomposable torsion modules, but not weakly
Krull-Schmidt unless the class group vanishes (see Definition 2.10 for these defi-
nitions). (We are grateful to the anonymous referee for pointing out that we had
been careless about this effect of the class group in an earlier version of this paper.)

Now here is a result which we will use in the proof of Theorem 4.5:

Proposition 4.3. Let A be a Dedekind domain and let fgModpAq denote the cat-
egory of finitely generated A-modules. Then the partially-ordered set of reflective
replete subcategories of fgModpAq which contain the free A-modules is is isomorphic
to the set of functions

Max SpecpAq Ñ t0, 1, 2, . . . ,8u
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from the set Max SpecpAq of maximal ideals of A to the set of extended natural
numbers, under the partial ordering in which we let f ď g if and only if fpmq ď gpmq
for all m P Max SpecpAq.

Proof. Suppose that D is a replete reflective subcategory of fgModpAq which con-
tains the free A-modules. Lemma 2.19 implies that D contains all the summands
of free T -algebras, and that D is closed under the biproduct. Let G denote the col-
lection of indecomposable torsion finitely generated A-modules. By Theorem 4.1,
fgModpAq is weakly Krull-Schmidt relative to the projective A-modules and gener-
ated by G , so given an object X of D, we can decompose X as X0 ‘X1 ‘ ¨ ¨ ¨ ‘Xn

with X0 a summand of a free T -algebra and X1, . . . , Xn in G , and Lemma 2.19
now implies that X1, . . . , Xn are all in D as well. We conclude that D is deter-
mined uniquely by which indecomposable objects of G are contained in D, i.e., by
a subcollection of ΓpGq.

Now suppose that m is a maximal ideal of A and that A{mn is in A, and let i ď n.
Then A{mi is the kernel of a map A{mn Ñ A{mn, and consequently A{mi is also in
A, since a reflective category is closed under limits. Consequently, A is completely
determined by a single function fA : Max SpecpAq Ñ t0, 1, 2, . . . ,8u from the set
of maximal ideals of A to the set of extended natural numbers; namely, fA is the
function sending a maximal ideal m of A to the largest integer n such that A{mn

is in A, and by letting fApmq “ 8 if A{mn is in A for all n.
We claim that, for each function f : Max SpecpAq Ñ t0, 1, 2, . . . ,8u, there does

indeed exist a replete reflective subcategory A of fgModpAq such that fA “ f . Let
Af denote the full subcategory of fgModpAq generated by the projective A-modules
and all the A-modules M with the property that, for each maximal ideal m of A,
if there exists a monomorphism A{mn ÑM of A-modules, then n ď fpmq. Clearly
Af contains A as well as A{mn for all n ď fpmq, and Af does not contain A{mn if
n ą fpmq. Hence (using Theorem 4.1) fAf “ f .

Clearly Af is full and replete in fgModpAq, so the only remaining question is
whether Af is reflective. We now construct an explicit left adjoint for the inclusion
functor Af ãÑ fgModpAq. Given an A-module M , let tf pMq denote the subset of
M consisting of all elements x PM such that, for some maximal ideal m of A,

‚ x P mfpmqM , and
‚ there exists some positive integer n such that ax “ 0 for all a P mn.

Let uf pMq denote the sub-A-module of M generated by the subset tf pMq. Clearly,
if g : M 1 Ñ M is an A-module homomorphism, then gptf pM

1qq Ď tf pMq. Conse-
quently uf is a functor from fgModpAq to fgModpAq, and uf is equipped with a
natural transformation if : uf Ñ id, namely, the natural inclusion of uf pMq into
M . Let vf : fgModpAq Ñ fgModpAq be the functor given by vf pMq “ coker if pMq.
Clearly vf is equipped with a natural transformation ηf : id Ñ vf , namely, the
natural projection of M onto M{uf pMq.

By Theorem 4.1, every finitely generatedA-module is isomorphic to P‘
šm
i“1A{m

εi
i

for some projective A-module P , some nonnegative integers m,n, some sequence of
maximal ideals pm1, . . . ,mmq ofA, and some sequence of positive integers pε1, . . . , εmq.
Clearly,

vf

˜

P ‘
m
ž

i“1

A{mεii

¸

“ P ‘
m
ž

i“1

A{m
mintεi,fpmqu
i
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and ηf pP ‘
šm
i“1A{m

εi
i q is the obvious projection map. Consequently, for every

finitely generated A-module M , vf pMq is in Af , and since every map from P ‘
šm
i“1A{m

εi
i to an object of Af factors uniquely through the projection map ηf ,

the functor vf , with its codomain restricted to Af , is left adjoint to the inclusion
Af ãÑ fgModpAq. Consequently Af is reflective. �

The anonymous referee pointed out to us that results similar to Proposition 4.3
are also obtained in [6]; while Proposition 4.3 does not appear in [6], it is also easy
to prove Proposition 4.3 using the results of section 5 of [6] as a starting point.

Corollary 4.4. Let K,L be number fields, that is, finite extensions of Q, with rings
of integers A and B, respectively. Let L{K be a field extension. Let T be the monad
associated to the induction-restriction adjunction between fgModpAq and fgModpBq,
i.e., T pMq is the underlying A-module of BbAM . Then HopHPrespT qq has only a
single element up to isomorphism. That is, there exists (up to natural equivalence)
only one homological presentation of T .

Proof. The Kleisli category fgModpBqT contains all the B-modules of the form
B bA M for M a finitely generated A-module. For any maximal ideal m of B,
and any positive integer n, fgModpBqT contains a module B bAM with B{mi as
a summand for some i ě n, namely, let p be the (unique) prime of A under m, and
let M “ A{pn. Consequently the only reflective replete subcategory of fgModpBq
which contains fgModpBqT is the one which, in the language of Proposition 4.3,
corresponds to the function Max SpecpBq Ñ t0, 1, . . . ,8u sending every maximal
ideal to 8, i.e., fgModpBq itself. �

Theorem 4.5. Let A be a Dedekind domain, let Sets denote the category of sets,
and let T denote the monad on Sets associated to the free-forgetful adjunction
between ModpAq and Sets, i.e., T pSq is the underlying set of the free A-module
generated by S. Then the partially-ordered collection HopFin HPrespT qq of natural
equivalence classes of finitary homological presentations of T is equivalent to the
set of functions

Max SpecpAq Ñ t0, 1, 2, . . . ,8u

from the set Max SpecpAq of maximal ideals of A to the set of extended natural
numbers, under the partial ordering in which we let f ď g if and only if fpmq ď gpmq
for all m P Max SpecpAq.

Proof. Since every A-module is the colimit of its finitely generated sub-A-modules,
and since the partially-ordered set of sub-A-modules of a given A-module is filtered,
we know that every A-module is a filtered colimit of finitely generated A-modules.
Hence a finitary element of LocpSetsT q – LocpModpAqq is determined by which
finitely generated A-modules it contains.

From here, the proof resembles that of Proposition 4.3: given a finitary element
A of LocpSetsT q, since A is reflective, it is closed under limits computed in ModpAq.
Consequently, if A{mn is in A, then so is A{mi for all i ď n. Of course A is also in A.
Hence we can specify which finitely generated A-modules are contained in A, and
consequently all of A, by specifying (as in the proof of Proposition 4.3) a function
fA : Max SpecpAq Ñ t0, 1, 2, . . . ,8u from the set of maximal ideals of A to the set
of extended natural numbers; namely, fA is the function sending a maximal ideal
m of A to the largest integer n such that A{mn is in A, and by letting fApmq “ 8
if A{mn is in A for all n.
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Now we still need to know that, for each f : Max SpecpAq Ñ t0, 1, 2, . . . ,8u,
there does indeed exist a replete reflective subcategory A of ModpAq such that
fA “ f . The argument is as follows: let Af be the replete full subcategory of
ModpAq generated by the projective A-modules and all the A-modules M with the
property that, for each maximal ideal m of A, if A{mn Ñ M is a monomorphism
of A-modules, then n ď fpmq. Clearly fAf “ f and Af is replete, full, and contains
the projective A-modules. We need to know that Af is reflective and finitary.
Let L : ModpAq Ñ ModpAq be the functor given by letting LpMq be the colimit
colimXPfgpMq vf pXq, where fgpMq is the (filtered) category of finitely generated
sub-A-modules of M , and vf is the functor defined on fgModpAq in the proof of
Proposition 4.3. Let ηM : M Ñ LpMq be the natural map M – colimXPfgpMqX Ñ

colimXPfgpMq vf pXq given by the natural transformation ηf : id Ñ vf . Then LpMq
is in Af , since A{mn is finitely generated and hence every monomorphism from
A{mn to the filtered colimit colimXPfgpMq vf pXq factors through a monomorphism
A{mn Ñ vf pXq for some X P fgpMq. Furthermore, if T is an object of Af , then

homModpAqpM,T q – lim
XPfgpMq

homModpAqpX,T q

– lim
XPfgpMq

homModpAqpvf pXq, T q

– homModpAqpcolimXPfgpMq vf pXq, T q

– homModpAqpLpMq, T q

so L is indeed left adjoint to the inclusion Af ãÑ ModpAq. (More carefully: L “ GF ,
where G is the inclusion Af ãÑ ModpAq, and F is L with its codomain restricted to
Af .) So Af is reflective. The functor L “ GF commutes with filtered colimits by
construction, and F is a left adjoint and hence commutes with all colimits, and G
is full and faithful and hence reflects colimits; so G commutes with filtered colimits,
and hence Af is finitary. �
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