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Abstract

We calculate the classical Iwasawa invariants of the Iwasawa modules associated to the p-adic topological K-theory of
finite spectra. We show that the graded average of the orders of n consecutive K(1)-local homotopy groups of a finite spectrum
X grows asymptotically like

− logp(n)
2 times the total Iwasawa λ-invariant of X. We show that the Iwasawa µ-invariants of

finite spectra are all zero. Finally, we prove a spectral analogue of a weak form of the Iwasawa Main Conjecture, describing
the orders of the K(1)-local homotopy groups of a certain “torsion-free replacement” of X in terms of the characteristic
polynomials of the Iwasawa modules associated to X.

1 Introduction
1.1 The point of this paper
Throughout this document, we will let p be an odd prime.

In classical Iwasawa theory, an Iwasawa module is a module over the group algebra Ẑp[Ẑp]. Iwasawa modules arise
naturally in the study of towers of Galois extensions of number fields

F = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ F∞ =
⋃

n

Fn (1)

such that, for each n, the Galois group Gal(Fn/F) is isomorphic to Z/pnZ. Iwasawa’s structure theory for Iwasawa modules
defines three important algebraic invariants of an Iwasawa module: the λ-invariant, the µ-invariant, and the characteristic
polynomial. The λ- and µ-invariants are integers, while the characteristic polynomial is an element of the polynomial ring
Ẑp[T ].

Iwasawa showed that the class groups of the number fields in (1) naturally fit together to form an Iwasawa module whose
λ- and µ-invariants satisfy the equality

h(p)
Fn
= pnλ+pnµ+ν (2)

for some integer ν and for all sufficiently large n. Here h(p)
Fn

is the p-part of the class number of Fn. The point is that, if we
consider how the p-part of the class group grows as we move up the tower (1), the asymptotic rate of growth is controlled by
the λ- and µ-invariants. A fuller introduction to the λ- and µ-invariants is given in section 2.1.

Meanwhile, the characteristic polynomial of the Iwasawa module is used to define an algebraic p-adic L-function of the
tower (1). In section 2 we give a fuller exposition of the number-theoretic background, including the analytic p-adic L-function
and the Iwasawa Main Conjecture, i.e., the relationship between the algebraic and analytic p-adic L-functions.

Iwasawa modules also arise in stable homotopy theory, although they have not received nearly as much study in stable
homotopy theory as in number theory. Via the stable Adams operations, the profinite group Ẑ×p acts on the p-adic K-theory of
any spectrum1. Using the isomorphism of profinite groups Ẑ×p � Ẑp × F

×
p , one can canonically split the p-adic K-theory of any

spectrum X into 2(p − 1) summands

ϵ0(KU∧p )0(X), ϵ1(KU∧p )0(X), . . . , ϵp−2(KU∧p )0(X), ϵ0(KU∧p )−1(X), ϵ1(KU∧p )−1(X), . . . , ϵp−2(KU∧p )−1(X),

each of which is an Iwasawa module. This splitting was already given in 1969 by Adams in [1], although to our knowledge
the first published mention of Iwasawa theory in connection with this splitting was not until Ravenel’s paper [17] in 1984.

*Department of Mathematics, Wayne State University. amaison@wayne.edu
†Department of Mathematics, Wayne State University. asalch@wayne.edu
1For readers with a background in number theory but not in stable homotopy theory, we remark that the main theorems in this paper concern finite

spectra. The suspension spectrum of every finite pointed CW-complex is a finite spectrum, and conversely, every finite spectrum is a finite desuspension of
the suspension spectrum of a finite CW-complex. Our point is that, for a reader who is unfamiliar with spectra, it is harmless to think of finite spectra as
simply the stable homotopy types of finite pointed CW-complexes, as well as formal desuspensions thereof. In particular, all the theorems in this paper about
K(1)-local homotopy groups of finite spectra are also theorems about K(1)-local homotopy groups of finite pointed CW-complexes.

1



Steve Mitchell wrote several papers [15],[16] about how the Iwasawa-theoretic arguments used by number theorists could be
seen in terms of algebraic K-theory spectra, but the only published paper about Iwasawa theory of spectra themselves—that
is, the only paper which applies Iwasawa theory to draw conclusions about topology, not about number theory—is the 2007
paper [11] of Rebekah Hahn and Steve Mitchell. Hahn and Mitchell focused on category-theoretic results, e.g. a classification
of the thick subcategories of the homotopy category of weakly dualizable LK(1)S 0-module spectra, given in terms of subsets
of Spec Ẑp[Ẑ×p]. We review some of Hahn–Mitchell’s work in section 2.3.

By contrast, the aim of this paper is computational, rather than category-theoretic: we calculate the Iwasawa invariants
of all finite spectra, express them in topological terms, and we prove topological analogues of well-known Iwasawa-theoretic
results in number theory. We will now sketch the three main results in this paper—one for each of the classical Iwasawa
invariants (λ-invariant, µ-invariant, and characteristic polynomial)—together with their number-theoretic precedents.

1.2 The λ-invariant
The formula (2), above, shows the precise sense in which the λ-invariant (together with the µ-invariant, but this vanishes, as
we explain below) controls the asymptotic rate of growth of the p-part of the class number in an appropriate tower of number
fields. Our topological analogue, stated below in Theorem A, is that graded average of the orders of n consecutive K(1)-local
homotopy groups of a spectrum grows asymptotically like

− logp(n)
2 times the total λ-invariant of the spectrum. To be clear,

throughout this paper, logp denotes the ordinary base p logarithm, not any kind of p-adic logarithm. “Graded averages” are
explained in section 4.1, but the idea is very simple: instead of 1

n

∑n
j=1

∣∣∣π j(LK(1)X)
∣∣∣, the average of the orders of the first n K(1)-

local homotopy groups of X, we count the odd-degree homotopy groups as negative and the even-degree homotopy groups as
positive. This yields the alternating sum 1

n

∑n
j=1(−1) j

∣∣∣π j(LK(1)X)
∣∣∣. In our asymptotic analysis, we also allow skipping finitely

many initial homotopy groups, i.e., we consider the asymptotic properties of the alternating sum 1
n

∑n+m
j=1+m(−1) j

∣∣∣π j(LK(1)X)
∣∣∣ as

both m and n go to infinity.

Theorem A (Theorem 4.6). For all finite spectra X, the limit

lim
m→∞

lim
n→∞

1
n

∑n+m
j=1+m(−1) j

∣∣∣π jLK(1)X
∣∣∣

−λ(X) · logp(n)/2

is equal to 1.

Here λ(X) is the total λ-invariant of X, defined in Definition 4.4 as the alternating sum of the λ-invariants of the Iwasawa
modules of X:

λ(X) =
p−2∑
j=0

(
λ(ϵ j(KU∧p )0(X)) − λ(ϵ j(KU∧p )−1(X))

)
.

We remark that our proof of Theorem A involves a bit of algebraic K-theory. In Proposition 4.2, we prove that, in a
general triangulated category C satisfying appropriate hypotheses, the asymptotic growth rate of the graded average of the
orders of n consecutive homotopy groups is an additive invariant. Hence this asymptotic growth rate depends only on an
object’s equivalence class in the Grothendieck group K0(C). Since K0 of the category of finite spectra is isomorphic to Z and
generated by [S 0], we are able to prove Theorem A by reducing to the case where X is a sphere. Another consequence of the
algebraic-K-theoretic approach is that it is easy to see that the total λ-invariant of a finite spectrum is also equal to its Euler
characteristic (see Lemma 4.5).

As far as we know, the idea of treating asymptotic growth of orders of homotopy groups as an additive invariant, and using
algebraic K-theoretic methods to study it, is new. The method is general and flexible enough to be applied more broadly,
e.g. at higher heights using the noncommutative Iwasawa theory of Venjakob [21]. The authors are pursuing this approach
at height 2 at primes p > 3, but this goes beyond the scope of this paper. More generally, throughout this paper we have
attempted to use methods and ideas which appear to be generalizable to higher heights, at sufficiently large primes, using
Venjakob’s theory.

Aside from the total λ-invariant of a finite spectrum X, one can also consider the λ-invariants of each of the individual
Iwasawa modules ϵ j(KU∧p )0(X) and ϵ j(KU∧p )−1(X). These are not as exciting as the total λ-invariant: in the proof of Lemma
4.5, we show that the individual λ-invariants are described topologically by the equalities

λ(ϵ j(KU∧p )0(X)) =
∑

n≡ j mod p−1

dimQ H2n(X), and

λ(ϵ j(KU∧p )−1(X)) =
∑

n≡ j mod p−1

dimQ H2n−1(X).

1.3 The µ-invariant
Iwasawa conjectured that, in the case of a tower (1) obtained from a number field F by iteratively adjoining a primitive pth
root of unity, p2th root of unity, p3th root of unity, etc., the µ-invariant of the resulting Iwasawa module is zero. The celebrated
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theorem of Ferrero–Washington [10] proved this conjecture in the case where F is an abelian extension of Q. Our point is
that, in number theory, one often expects the µ-invariant to vanish.

In Theorem B, we prove that this expectation is borne out for finite spectra:

Theorem B (Theorem 3.4). Let X be a finite spectrum. Then, for every i, j, the µ-invariant of each of the Iwasawa modules
ϵ j(KU∧p )i(X) is zero.

1.4 The characteristic polynomial
Hahn–Mitchell define a pseudo-equivalence to be a map of spectra X → Y whose induced map in p-adic K-theory (KU∧p )i(Y)→
(KU∧p )i(X) has finite kernel and finite cokernel for each i. In Theorem 3.6 we prove that every finite spectrum X is pseudo-

equivalent to a canonical-up-to-homotopy wedge product
◦

X = (Xeven)tors f ree ∨ (Xodd)tors f ree such that

• (Xeven)tors f ree is a finite spectrum such that H∗((Xeven)tors f ree;Z(p)) is torsion-free and concentrated in even degrees, and

• (Xodd)tors f ree is a finite spectrum such that H∗((Xodd)tors f ree;Z(p)) is torsion-free and concentrated in odd degrees.

Theorem 3.6 refines a theorem of Hahn and Mitchell which we recall below as Theorem 2.7. The spectrum
◦

X appears in
the statement of Theorem C, below, which establishes that the characteristic polynomials of the Iwasawa modules of a finite

spectrum carry the information of the orders of the K(1)-local homotopy groups of
◦

X.
Before stating Theorem C, we state its number-theoretic precedent. One consequence of the classical Iwasawa Main

Conjecture, proven by Mazur and Wiles [14], is that the p-adic valuations of special values of the characteristic polynomial
of the Iwasawa module of (1) agree with the p-adic valuations of special values of a classical Dirichlet L-function. We call
this fact—stated more precisely in section 2.1—the weak form of the Iwasawa Main Conjecture.

Theorem C is a spectral analogue of the weak form of the Iwasawa Main Conjecture. Rather than the characteristic
polynomial of the Iwasawa module of a tower of number fields (1), Theorem C concerns values of the characteristic polynomial
f ϵ j(KU∧p )iX(T ) of the Iwasawa module ϵ j(KU∧p )i(X) of X, for j = 0, . . . , p−2 and for i ∈ {−1, 0}. The role of the special values of

a Dirichlet L-function is played by the orders of the K(1)-local homotopy groups of
◦

X. It is reasonable to think that the orders
of these homotopy groups are indeed analogous to special values of a Dirichlet L-function, since in [18], the orders of those
homotopy groups are shown to have, up to sign, the same p-adic valuations as the special values of a certain complex-analytic
“KU-local zeta-function of X” which is a product of Tate twists of Dirichlet L-functions.

The notation x ∼p y in the statement of Theorem C denotes that x and y have the same p-adic valuation.

Theorem C (Theorem 3.10). Let X be a finite spectrum. Let α and β be the least and greatest integers i, respectively, such
that Hi(X;Q) is nontrivial. Then we have∣∣∣∣∣π2m−1LK(1)D

◦

X
∣∣∣∣∣ ∼p f ϵ−m(KU∧p )0(X)((1 + p)−m − 1) and∣∣∣∣∣π2mLK(1)D
◦

X
∣∣∣∣∣ ∼p f ϵ−m(KU∧p )−1(X)((1 + p)−m − 1)

for all integers m satisfying m < −β2 , and also for all integers m satisfying m > −α2 .

The subscript −m of ϵ−m, in the statement of Theorem C, is to be understood as being defined modulo p − 1.
The proof of Theorem C resembles the proof of [18, Theorem 2.8], and more generally, the material on characteristic

polynomials in this paper can be seen as p-adic versions of results on complex-analytic “KU-local zeta-functions” of spectra
given in [18]. These p-adic versions are, in some ways, stronger and more general: for example, Theorem C applies to all
finite spectra, while [18, Theorem 2.8] required the relevant spectrum to have trivial homology in all odd degrees.

1.5 Conventions
• p will always be an odd prime.

• Given rational numbers a, b, we write a ∼p b to denote that a and b have the same p-adic valuation.

1.6 Acknowledgments
We thank Francesc Castella for graciously visiting Wayne State University and answering many of our questions about Iwa-
sawa theory.
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2 Background ideas from Iwasawa theory
2.1 Review of classical Iwasawa theory
In this section, we will take a brisk walk through classical Iwasawa theory, arriving at a statement of the Iwasawa Main
Conjecture. Our treatment here is based primarily on [20], [22], and [19], but it is by no means an exhaustive exposition.
Instead, we will simply highlight the objects and tools that will be used to applied to the Iwasawa modules of finite spectra in
the subsequent sections.

Consider a tower of Galois extensions of the form (1). Write Γn for the Galois group Gal(Fn/F), and Γ for the limit limn Γn

of the Galois groups. Iwasawa studied such towers in the case that Γn � Z/pnZ and Γ � Ẑp. Under such circumstances, the
tower (1) is called a Ẑp-extension. Iwasawa was interested in determining the asymptotic growth rate of the class number
hFn =

∣∣∣ClFn

∣∣∣ as n increases. Iwasawa focused in particular on the growth rate of the order of the p-Sylow subgroup An of ClFn .
We will write h(p)

Fn
for the order of this p-Sylow subgroup. Iwasawa proved the following result:

Theorem 2.1 (Iwasawa). There exist nonnegative integers λ and µ and an integer ν such that

h(p)
Fn
= pnλ+pnµ+ν

for all sufficiently large n.

Iwasawa conjectured that µ = 0 in the case of the cyclotomic Ẑp-extension, i.e., the unique Ẑp-extension F∞/F inside⋃
n F(ζpn ). This conjecture was proven for F an abelian extension of Q by Ferrero and Washington [10].

For each Ẑp-extension, let X∞ be the limit limn An of the sequence of norm maps

. . .
N
−→ A2

N
−→ A1

N
−→ A0.

Since each An is a Ẑp[Γn]-module, X∞ is a module over the Iwasawa algebra Λ = Ẑp[[Γ]]. Modules over the ring Λ are called
Iwasawa modules, and there are at least two reasons why Iwasawa modules are central in classical Iwasawa theory. First, as
observed by Serre, Λ is isomorphic to a power series ring with a single generator

Λ = Ẑp[[Γ]] � Ẑp[[T ]]

where a choice of topological generator γ ∈ Γ maps to 1 + T ∈ Ẑp[[T ]]. We will fluidly use both descriptions of Λ throughout
this paper. Second, finitely generated Iwasawa modules have a nice structure theorem, similar to finitely generated modules
over a principal ideal domain, but the structure theory describes the module up to pseudo-isomorphism rather than up to
isomorphism. A map of Iwasawa modules is called a pseudo-isomorphism if its kernel and cokernel are both finite. Given
Iwasawa modules M,N, we write M ≃ N if there exists a pseudo-isomorphism M → N.2

Theorem 2.2 (Serre, Iwasawa). For any finitely generated Iwasawa module M, we have

M ≃ Λr ⊕

s⊕
i=1

Λ/pmi ⊕

t⊕
j=1

Λ/ f j(T )n j , (3)

where each f j(T ) ∈ Ẑp[T ] is an irreducible, distinguished polynomial, that is, an irreducible, monic polynomial such that
f (T ) ≡ T deg( f ) mod p.

The invariants r,mi, n j, f j of M are unique up to permutation of the sequence (m1, . . . ,ms) and simultaneous permutation
of the sequences (n1, . . . , nt) and ( f1(T ), . . . , ft(T )). The nonnegative integer r is, of course, the rank of M. The rank of an
Iwasawa module is a pseudo-isomorphism invariant. When M is also Λ-torsion (i.e., of rank zero), three additional pseudo-
isomorphism invariants of M play special roles in classical Iwasawa theory:

• The µ-invariant of M is µ(M) =
∑s

i=1 mi.

• The λ-invariant of M is λ(M) =
∑t

j=1 n j deg( f j).

• The characteristic polynomial of M is f M(T ) = pµ(M)∏t
j=1 f j(T )n j .

It turns out that X∞ is Λ-torsion, and µ(X∞) and λ(X∞) agree with the numbers µ and λ from Theorem 2.1. In other words, the
structure of X∞ determines the asymptotic growth rates of the p-part of class groups in a Ẑp-extension.

For the remainder of this section, we will focus our attention on the cyclotomic Ẑp-extension in which Fn = Q(ζpn ) for
each n, and its corresponding Iwasawa module X∞. In this case we have Γ = limn→∞ Gal(Q(ζpn )/Q(ζp)). As a consequence of
our running assumption that p is an odd prime, the profinite group Ẑ×p of p-adic units splits as a product Ẑp × F

×
p . In terms of

Galois groups, this splitting takes the form Γ′ � Γ × ∆, where:

• Γ′ = Gal(F∞/Q) � Ẑ×p ,

• and ∆ = Gal(F/Q) � F×p .

2It is worth noting that M ≃ N does not imply N ≃ M unless M,N are both finitely-generated Λ-torsion Iwasawa modules.
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We furthermore define Λ′ as Ẑp[[Γ′]]. We have an isomorphism of topological Ẑp-algebras Λ′ � Λ[∆]. Using the product
decomposition Γ′ � Γ × ∆, it is natural to think of Γ as the group of principal units 1 + pẐp � Ẑp, and of ∆ as the (p − 1)st
roots of unity, both sitting inside Ẑ×p .

The theory of Iwasawa modules can be extended very simply to Λ′-modules in the following way. There exist idempotent
elements ϵ0, ϵ1, . . . , ϵp−2 ∈ Ẑp[∆] of the form

ϵ j =
1

p − 1

p−1∑
a=1

ω− j(σa)σa.

For a = 1, 2, . . . , p − 1, σa ∈ ∆ sends ζp to ζa
p, and ω : ∆ → Ẑ×p denotes the Teichmüller character, given by letting ω(σa) be

the unique (p − 1)st root of unity in Ẑp such that ω(σa) ≡ a mod p.
The idempotents ϵ0, . . . , ϵp−2 yield a splitting Λ′ � ϵ0Λ′ × · · · × ϵp−2Λ

′, in which each factor ϵ jΛ
′ is isomorphic, as a

topological ring, to Λ. Hence, for any Λ′-module M, we have a canonical splitting M �
⊕p−2

j=0 ϵ j M where each eigenspace
ϵ j M is an Iwasawa module. Since X∞ is, in fact, a Λ′-module, we can consider its eigenspaces ϵ jX∞ and the associated
characteristic polynomials f ϵ jX∞ (T ).

In [13], Kubota and Leopoldt analytically constructed p-adic L-functions which interpolate the special values of Dirichlet
L-functions. Specifically, if χ is a Dirichlet character, then there exists a p-adic L-function Lp(s, χ), with s taking values in the
domain Ẑp, such that

Lp(1 − n, χ) = (1 − χω−n(p)pn−1) · L(1 − n, χω−n)

for all n ≥ 1. The essential point here is that the Kubota–Leopoldt p-adic L-function is constructed by means of p-adic
analysis, and it is constructed in such a way that its special values are known in advance to be meaningful.

Iwasawa [12] constructed p-adic L-functions of Dirichlet characters by an entirely different method, exploiting the iso-
morphism Ẑp[[Γ]] � Ẑp[[T ]] to great effect. Iwasawa constructed a power series f (T, ω1− j) ∈ Ẑp[[T ]] such that, after a change
of variable,

f ((1 + p)s − 1, ω1− j) = Lp(s, ω1− j)

and he famously made the following conjecture which was later proved by Mazur and Wiles [14].

Theorem 2.3 (Iwasawa Main Conjecture). For j = 3, 5, . . . , p − 2, the following is an equality of ideals in Λ.

( f ϵ jX∞ (T )) = ( f (T, ω1− j)) (4)

The left-hand side of (4) is an algebraic p-adic L-function, i.e., a p-adic L-function extracted in a simple way from
an Iwasawa module, but whose special values at integers are a priori of uncertain significance. The right-hand side of (4)
is an analytic p-adic L-function (like those constructed by Kubota–Leopoldt), with a priori meaningful special values at
negative integers, but of completely uncertain connection to algebraic constructions like cohomology or Iwasawa modules.
The Iwasawa Main Conjecture asserts that, up to multiplication by a unit in the power series ring Ẑp[[T ]], the algebraic p-adic
L-function coincides with the analytic p-adic L-function.

The equality (4) yields that

f ϵ jX∞ ((1 + p)1−n − 1) ∼p L(1 − n, ω1− j−n)

for all n ≥ 1. The moral is that, as a consequence of the Iwasawa Main Conjecture,

The p-adic valuations of the special values of the characteristic polynomial f ϵ jX∞ agree with the p-adic valuations of the
special values of a classical Dirichlet L-function.

(5)
We will refer to statement (5) as the weak form of the Main Conjecture. It is this weak form for which we will be able to
formulate a spectral analogue, in Theorem 3.10.

2.2 The p-adic complex K-theory of a spectrum yields a 2(p− 1)-tuple of Iwasawa mod-
ules
Let KU denote the periodic complex K-theory spectrum, and KU∧p its p-adic completion. For a spectrum X, the splitting of the
Λ′-module (KU∧p )0(X) as a direct sum ϵ0(KU∧p )0(X) ⊕ · · · ⊕ ϵp−2(KU∧p )0(X) is well-known in topology, dating back to Adams;
our understanding is that [1] is the original reference. This splitting is described in explicitly Iwasawa-theoretic terms in [15]
and in [11]. Similarly, in odd degrees, we have the (p − 1)-tuple of Iwasawa modules ϵ0(KU∧p )−1(X) ⊕ · · · ⊕ ϵp−2(KU∧p )−1(X).
By Bott periodicity, we do not need to work with the p-adic K-groups in all degrees: it suffices to consider the 2(p − 1)-tuple
of Iwasawa modules coming from any single even degree and any single odd degree. In this paper we choose to work with
(KU∧p )0 and (KU∧p )−1.
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2.3 Review of Hahn–Mitchell’s results
In [11], Rebekah Hahn and Steve Mitchell developed some basic ideas and results in spectral Iwasawa theory. We review the
most relevant ideas from their paper.

Definition 2.4. A map of K(1)-local spectra X → Y is a pseudo-equivalence if the induced maps in p-adic K-theory
(KU∧p )0(Y)→ (KU∧p )0(X) and (KU∧p )−1(Y)→ (KU∧p )−1(X) each have finite kernel and finite cokernel.

Hence a map of K(1)-local spectra X → Y is a pseudo-equivalence if and only if its induced map of Iwasawa modules
ϵ j(KU∧p )i(Y) → ϵ j(KU∧p )i(X) is a pseudo-isomorphism for all i, j—or equivalently, a pseudo-isomorphism for all i ∈ {0,−1}
and all j ∈ {0, 1, . . . , p − 2}.

Definition 2.5. An Iwasawa module M is elementary cyclic if M is isomorphic to either Λ, or Λ/pi for some positive integer
i, or Λ/ f i for some positive integer i and some irreducible distinguished polynomial f .

An Iwasawa module M is elementary if it is a direct sum of elementary cyclic Iwasawa modules.
A K(1)-local spectrum X is elementary if the Iwasawa module ϵ j(KU∧p )i(X) is elementary for all i, j.

Recall that we have a single fixed odd prime p throughout this paper. Consequently it is safe to use the terms defined in
Definitions 2.4 and 2.5 more broadly, by saying that:

• a spectrum X (not necessarily K(1)-local) is elementary if its K(1)-localization is elementary.

• A map of (not necessarily K(1)-local) spectra X → Y is a pseudo-equivalence if the induced maps (KU∧p )0(Y) →
(KU∧p )0(X) and (KU∧p )−1(Y)→ (KU∧p )−1(X) each have finite kernel and finite cokernel.

• Spectra X,Y are pseudo-equivalent if there is a zigzag of pseudo-equivalences connecting X and Y .

Theorem 2.6. ([11, Theorem 9.3]) Let X be a K(1)-local spectrum such that the Λ′-modules (KU∧p )0(X) and (KU∧p )−1(X) are
each finitely generated. Then there exist K(1)-local spectra Y and Z, and pseudo-equivalences

X
∼
−→ Y

∼
←− Z,

with Z elementary.

One has to be a bit careful when writing something like “X and Y are pseudo-equivalent,” since if there exists a pseudo-
equivalence X → Y , there does not necessarily exist a pseudo-equivalence Y → X.

Under slightly stronger hypotheses, there is a convenient particular case of Theorem 2.6 in which Hahn–Mitchell get a
slightly stronger result:

Theorem 2.7. ([11, Theorem 9.6]) Let X be a K(1)-local spectrum such that the Λ′-modules (KU∧p )0(X) and (KU∧p )−1(X)
are each finitely generated, and such that each of the Λ-modules ϵ j(KU∧p )i(X) is Λ-torsion for all i, j. Then there exists an
elementary K(1)-local spectrum X̃ and pseudo-equivalences

X
∼
−→ X̃ and X̃

∼
−→ X.

We will refer to X̃ as the Hahn–Mitchell replacement for X.
In Theorem 2.7, the phrase “for all i, j” can be safely replaced by “for all i ∈ {0,−1} and all j ∈ {0, 1, . . . , p − 2}”.

3 The characteristic polynomials and Iwasawa µ-invariants of finite spec-
tra
3.1 KU∧p of the Spheres
As a warm-up exercise, we let X be an even-dimensional sphere S 2i, and we consider the Iwasawa-theoretic properties of the
Iwasawa modules ϵ0(KU∧p )∗(X), . . . , ϵp−2(KU∧p )∗(X). We have the isomorphism (KU∧p )0(S 2i) � Ẑp for all i ∈ Z, and Γ′ � Ẑ×p
acts on (KU∧p )0(S 2i) via the stable Adams operations, i.e. for all u ∈ Ẑ×p and all x ∈ (KU∧p )0(S 2i),

u · x = ui x.

Among the p − 1 eigenspaces ϵ j(KU∧p )0(S 2i) of (KU∧p )0(S 2i), it turns out that only one is nontrivial:

Proposition 3.1. ϵ j(KU∧p )0(S 2i) �

(KU∧p )0(S 2i) if i ≡ j mod p − 1
0 otherwise
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Proof. We can think of ∆ as sitting inside Ẑ×p via the Teichmüller character which means that σa ∈ ∆ acts on (KU∧p )0(S 2i) by
multiplication by ωi(σa). So, for 1 ∈ (KU∧p )0(S 2i), we have

ϵ j · 1 =
1

p − 1

p−1∑
a=1

ω− j(σa)σa · 1

=
1

p − 1

p−1∑
a=1

ωi− j(σa)

=

1 if i ≡ j mod p − 1
0 otherwise.

□

This mean that ϵ j(KU∧p )0(S 2i) is a finitely generated Λ-torsion Iwasawa module such that µ(ϵ j(KU∧p )0(S 2i)) = 0 for all
j, and it is nontrival when j ≡ i mod p − 1. We now restrict our attention to the nontrivial case j ≡ i mod p − 1. The
characteristic polynomial of an Iwasawa module essentially records the action of a topological generator in Γ � 1 + pẐp, so
we can construct the characteristic polynomial of ϵ j(KU∧p )0(S 2i), which we will denote as fi, j(T ) for ease of notation, in the
following way. Recall that there exists an isomorphism Ẑp[[1 + pẐp]] � Ẑp[[T ]] which is defined by sending the topological
generator 1 + p ∈ 1 + pẐp to 1 + T ∈ Ẑp[[T ]]. Hence, in Ẑp[[T ]], we identify 1 + T and (1 + p)i and conclude that the
characteristic polynomial of ϵ j(KU∧p )0(S 2i) is

fi, j(T ) =

T − (1 + p)i + 1 if i ≡ j mod p − 1
1 otherwise

Note that this implies that ϵ j(KU∧p )0(S 2i) ≃ Λ/ fi, j(T ) and λ(ϵ j(KU∧p )0(S 2i)) = 1 in the nontrivial case. Otherwise, the λ-
invariant is 0.

In the same vein as the weak form of the Main Conjecture, (5), the p-adic valuations of the special values of the charac-
teristic polynomials fi, j(T ) agree with the orders of the stable homotopy groups of the K(1)-local sphere. Specifically, we get
the following relationship.

Proposition 3.2. For the characteristic polynomial fi, j of the Iwasawa module ϵ j(KU∧p )0(S 2i), where j = 0, 1, . . . , p − 2, we
have

fi, j((1 + p)1−n − 1) ∼p

∣∣∣π2(n+i−1)−1LK(1)S 0
∣∣∣

for all n ≡ 1 − j mod p − 1.

We do not write out a proof of Proposition 3.2, since it merely amounts to a rephrasing, in Iwasawa-theoretic terms, of the
classical calculation (essentially [17, Theorem 8.10])

πtLK(1)S 0 =


Ẑp if t = −1, 0
Z/pk+1Z if t = 2(p − 1)pkr − 1, r . 0 mod p
0 otherwise

The stable homotopy groups of LK(1)S 0 are trivial in degrees . −1 modulo 2(p− 1), with the one exception of π0(LK(1)S 0),
which is isomorphic to Ẑp. Hence Proposition 3.2 recover the orders of all the nontrivial stable homotopy groups of LK(1)S 0

other than π0LK(1)S 0.
There is one special case of Proposition 3.2 which requires a bit of explanation: if n = 1 − i, then 3.2 makes a claim about

the order of π−1(LK(1)S 0), which is the infinite group Ẑp. Since Ẑp = limm Z/pmZ, we formally treat the p-adic valuation of∣∣∣Ẑp

∣∣∣ as the limit

νp

(∣∣∣Ẑp

∣∣∣) = lim
m
νp (|Z/pmZ|) = ∞,

which is consistent with the claim 0 ∼p

∣∣∣Ẑp

∣∣∣ made by Proposition 3.2.

Remark 3.3. The Λ′-module (KU∧p )0(S 2i) also arises number-theoretically. Consider the cyclotomic Ẑp-extension F∞/F
where Fn = Q(ζpn ). If we let Rn denote the group of roots of unity sitting inside the p-adic completion of O×Fn

, then Rn =

⟨ζpn ⟩ � Z/pnZ. We can arrange these groups into a tower by considering the norm maps N : Rn+1 → Rn. The reader can
check that N(ζpn+1 ) = ζpn . Hence we have that R = limn Rn � Ẑp. Each (Z/pnZ)× � Gal(Fn/Q) acts on Z/pnZ � Rn by left
multiplication, and, in the limit, Ẑ×p � limn Gal(Fn/Q) acts on Ẑp � R by left multiplication. Therefore, we get the Λ′-module
isomorphism R � (KU∧p )0(S 2).

Suppose we “twist” the Galois action of (Z/pnZ)× on Z/pnZ � Rn so that, for a ∈ (Z/pnZ)× and x ∈ Z/pnZ, a · x = ai x.
Denote the resulting Λ′-module as R(i). Then R(i) � (KU∧p )0(S 2i).
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3.2 The µ-invariants of finite spectra.
There is little to say about µ-invariants of finite spectra: they are all zero, for easy reasons.

Theorem 3.4. Let X be a finite spectrum. Then, for every i, j, the µ-invariant of each of the Iwasawa modules ϵ j(KU∧p )i(X) is
zero.

Proof. If the µ-invariant of ϵ j(KU∧p )i(X) were nonzero, then ϵ j(KU∧p )i(X) would be pseudo-isomorphic to an Iwasawa module
with Λ/pk � Z/pkZ[[T ]] as a summand, for some positive integer k. Hence Λ/pk, an Iwasawa module with uncountably many
linearly independent p-torsion elements, would occur as a summand in that Iwasawa module. A pseudo-isomorphism could
only eliminate finitely many of these elements, after which ϵ j(KU∧p )i(X) ⊂ (KU∧p )i(X) would still have uncountably many
linearly independent p-torsion elements. This is impossible for a finite spectrum. Hence the µ-invariant of ϵ j(KU∧p )i(X) must
have been zero. □

3.3 The characteristic polynomials and Iwasawa main conjecture for finite spectra
We begin with an easy lemma about pseudo-equivalences.

Lemma 3.5.

• A map of spectra f : X → Y with homotopy fiber fib f is a pseudo-equivalence if and only if (KU∧p )i(fib f ) is finite for
all i.

• If X,Y are finite spectra and f : X → Y is a pseudo-equivalence, then f induces an isomorphism in rational homotopy.

Proof.

• Elementary from the long exact sequence induced in p-adic K-theory by the homotopy fiber sequence fib f → X
f
−→ Y .

• Suppose, by contrapositive, that HQ ∧ f : HQ ∧ X → HQ ∧ Y is not an equivalence. Then the Spanier-Whitehead dual
of f , D f , would also have the property that HQ ∧ D f is not an equivalence. Hence KU∧p ∧ HQ ∧ D f would also not be
an equivalence, since KU∧p ∧ HQ splits as a wedge of copies of suspensions of HQ. Now by the chain of isomorphisms

(KU∧p )i(X) ⊗Z Q � (KU∧p )i(X)[p−1] (6)

� colimp(KU∧p )i(X)

� π−i(hocolimp F(X,KU∧p ))

� π−i(F(X, hocolimp KU∧p ))

� π−i(F(X,HQ ∧ KU∧p ))

� π−i(F(X, S 0) ∧ HQ ∧ KU∧p )

� (KU∧p )−i(DX ∧ HQ), (7)

the map f does not induce an isomorphism in rationalized p-adic K-theory. Hence the map induced by f in p-adic
K-theory must have infinite kernel or infinite cokernel in at least one degree, i.e., f is not a pseudo-equivalence.

□

Theorem 3.6. Let X be a finite spectrum. Then X is pseudo-equivalent to a canonical-up-to-homotopy wedge sum

(Xeven)tors f ree ∨ (Xodd)tors f ree

of finite spectra, such that H∗
(
(Xeven)tors f ree;Z(p)

)
is torsion-free and concentrated in even degrees, and H∗

(
(Xodd)tors f ree;Z(p)

)
is torsion-free and concentrated in odd degrees.

Proof. A size argument analogous to that used to prove Theorem 3.4 shows that, for all i, j, the Iwasawa module ϵ j(KU∧p )i(X)
is finitely generated, and must have rank zero, hence must also be torsion. Theorem 2.7 then tells us that X is pseudo-equivalent
to its Hahn–Mitchell replacement X̃, whose p-adic K-theory admits an isomorphism

(KU∧p )i(X̃) � ⊕p−2
j=0 ϵ j(KU∧p )i(X̃)

for each i, such that ϵ j(KU∧p )i(X̃) is a direct sum of finitely many Λ-modules of the form Λ/ f (T )m with f (T ) an irreducible
distinguished polynomial, and m a positive integer. Our point is simply that (KU∧p )∗(X̃) is p-torsion-free.

Hahn–Mitchell use Bousfield’s algebraicity results from [3] to construct X̃. Among other results in [3], Bousfield shows
that every graded (KU(p))∗(KU(p))-comodule M splits into the direct sum of a summand Meven concentrated in even degrees,
and a summand Modd concentrated in odd degrees, and for each of these summands, if its injective dimension in the category of
(KU(p))∗(KU(p))-comodules is ≤ 1, then that summand is realizable as the (KU(p))-homology of a spectrum, and this spectrum
is unique up to KU(p)-local equivalence. Bousfield also proves a finiteness result [3, Theorem 9.7]: if Meven is finitely generated
in each degree as a Z(p)-module, then one can find a finite spectrum whose KU(p)-homology is Meven; and similarly for Modd.
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Analogous results hold for KU∧p , and are used by Hahn–Mitchell to prove the existence of X̃. There is no difficulty with
switching between p-adic K-homology and p-adic K-cohomology in this argument, since X is finite, so we may take Spanier-
Whitehead duals to exchange the K-homology and K-cohomology whenever convenient. Consequently X̃ splits as a wedge
X̃even ∨ X̃odd, with X̃even and X̃odd each finite spectra, with the p-adic K-theory of X̃ concentrated in even degrees, and with the
p-adic K-theory of X̃ concentrated in odd degrees.

By Theorem 2.7, X̃ has torsion-free p-adic K-theory, and hence X̃even and X̃odd each have torsion-free p-adic K-theory.
We are not quite done, since we do not know that X̃even and X̃odd have torsion-free p-local homology. Torsion-free homology
implies torsion-free K-theory, but the converse is not true: the Smith-Toda complex V(1) is a counterexample.

We will now modify X̃even and X̃odd each by a pseudo-equivalence to produce finite spectra whose p-local homology is
torsion-free. Here is our construction, which uses only very classical tools. Let Y be a finite spectrum. Then there exists a
finite sequence of maps of spectra

pt. // Ya // Ya+1 // . . . // Yb (8)

such that Yb = Y and such that the cofiber of the map Y j−1 → Y j is a p-local Moore spectrum3 of type (H j(Y;Z(p)), j). Such
a sequence is called a “homology decomposition,” and in the unstable case, dates back to the 1959 papers [4] and [8]; the
method used in those papers also works to produce the stable construction in spectra.

Now we begin an inductive construction. We start in the bottom degree of the homology decomposition (8): write Y((a))
for Y with the torsion summand M(tors Ha(Y;Z(p)), a) pinched off. That is, Y((a)) is the homotopy cofiber of the composite
map M(tors Ha(Y;Z(p)), a) → Ya → Y . The map Y → Y((a)) is a pseudo-equivalence by the first part of Lemma 3.5, and the
homology H∗(Y((a));Z(p)) is torsion-free in degrees ≤ a.

That was the first step in an induction. Here is the inductive hypothesis: suppose that j is some integer, and suppose we
have already constructed a sequence of pseudo-equivalences of finite spectra

Y → Y((a))→ Y((a + 1))→ · · · → Y(( j))

such that, for each i ≤ j, the homology H∗(Y((i));Z(p)) is torsion-free in degrees ≤ i. Choose a homology decomposition

· · · → Y(( j)) j−1 → Y(( j)) j → Y(( j)) j+1 → . . . (9)

for Y(( j)). The homology group H j+1(Y(( j));Z(p)) decomposes, as a Z(p)-module, into the direct sum of a torsion summand
and a torsion-free summand. This induces a wedge splitting of the Moore spectrum M = Y(( j)) j+1/Y(( j)) j as

M(tors H j+1(Y;Z(p)), j + 1) ∨ M(torsfree H j+1(Y;Z(p)), j + 1).

Write f for the composite map

Σ−1 M(tors H j+1(Y;Z(p)), j + 1) ↪→ Σ−1
(
M(tors H j+1(Y;Z(p)), j + 1) ∨ M(torsfree H j+1(Y;Z(p)), j + 1)→

)
→ Y(( j)) j → Y(( j)).

Let Y(( j+1)) denote the homotopy cofiber of the map f . Then, from analysis of the long exact sequences induced in homology
by the homotopy cofiber sequence

Σ−1 M(tors H j+1(Y;Z(p)), j + 1)→ Y(( j))→ Y(( j + 1)),

we get that the p-local homology groups of Y(( j + 1))′ agree with those of Y(( j)) in degrees , j + 1, hence are torsion-free in
degrees ≤ j, and furthermore H j+1(Y(( j + 1));Z(p)) is torsion-free. The map Y(( j)) → Y(( j + 1)) is a pseudo-equivalence by
the first part of Lemma 3.5. This completes the inductive step.

Since Y is finite, its homology is trivial except in finitely many degrees, so after finitely many steps in the induction, we
have killed off all the torsion in H∗(−;Z(p)). Hence the homotopy colimit hocolim j Y(( j)) is in fact reached after finitely many
steps. We define Ytors f ree to be that homotopy colimit, so that Y → Ytors f ree is a pseudo-equivalence. At each stage in the
induction, we have attached finitely many cells to Y , hence Ytors f ree is finite, as desired.

There is one last claim to explain: by construction, (Xeven)tors f ree has torsion-free p-local homology, and has p-adic K-
theory concentrated in even degrees. We need to show that H∗

(
(Xeven)tors f ree;Z(p)

)
is also concentrated in even degrees. By a

theorem of Dold (see 14.18 of [6] or Corollary 2.6 of [7]), the shortest nonzero differential in the Atiyah-Hirzebruch spectral
sequence H∗((Xeven)tors f ree; (KU∧p )∗)⇒ (KU∧p )∗((Xeven)tors f ree) is torsion-valued. Since (KU∧p )∗ is torsion-free and (Xeven)tors f ree

has torsion-free p-local homology, this Atiyah-Hirzebruch spectral sequence collapses immediately. Hence, if (Xeven)tors f ree

had any nonvanishing p-local homology in odd degrees, it would also have nonvanishing p-adic K-homology in some odd
degree. This is impossible by the following argument: by the universal coefficient sequence for the p-adic K-theory of a finite
CW-complex ([2], [23], [9, Theorem IV.4.5]):

0→ Ext1
Ẑp

(
(KU∧p )n−1

(
(Xeven)tors f ree

)
, Ẑp

)
→ (KU∧p )n

(
(Xeven)tors f ree

)
→ homẐp

(
(KU∧p )n

(
(Xeven)tors f ree

)
, Ẑp

)
→ 0,

the torsion-freeness of (KU∧p )∗
(
(Xeven)tors f ree

)
and the vanishing of (KU∧p )∗

(
(Xeven)tors f ree

)
in odd degrees implies that

(KU∧p )∗
(
(Xeven)tors f ree

)
also vanishes in odd degrees. We conclude that (Xeven)tors f ree must have had trivial p-local homol-

ogy in all odd degrees. A completely similar argument shows that (Xodd)tors f ree must have had trivial p-local homology in all
even degrees. □

3By a p-local Moore spectrum of type (A, n), we mean a spectrum M such that H j(M,Z(p)) is trivial if j , n, and is isomorphic to A if j = n.
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Definition 3.7. Given a finite spectrum X, we write
◦

X as an abbreviation for the spectrum (Xeven)tors f ree ∨ (Xodd)tors f ree con-

structed in Theorem 3.6. We call
◦

X the torsion-free replacement of X.

Theorem 3.8. Let X be a finite spectrum. Then, for each i, j, the λ-invariant, µ-invariant, and characteristic polynomial of
the Iwasawa module ϵ j(KU∧p )i(X) depend only on the rational homotopy type of X.

Proof. The characteristic polynomial of an Iwasawa module is a pseudo-isomorphism invariant, so X has the same Iwasawa
modules as the wedge of finite spectra (Xeven)tors f ree ∨ (Xodd)tors f ree constructed in Theorem 3.6. Since Xeven (respectively, Xodd)
has its p-local homology concentrated in even (respectively, odd) degrees, the Atiyah-Hirzebruch spectral sequence implies
that its p-adic K-theory is also concentrated in even (respectively, odd) degrees.

Hence, for each i, j, the Iwasawa module ϵ j(KU∧p )2i(X) is pseudo-isomorphic to ϵ j(KU∧p )2i((Xeven)tors f ree). Since (Xeven)tors f ree

has torsion-free p-local homology, it also has torsion-free p-adic K-theory by Dold’s Atiyah-Hirzebruch argument (mentioned
already in the proof of Theorem 3.6). Hence the p-adic K-theory of (Xeven)tors f ree embeds into its rationalization. The Adams
operations on the rationalized K-theory of a finite spectrum depend only on the rationalization of the spectrum; this is an old
observation, and easily provable by the chain of isomorphisms (6) through (7) together with the fact that HQ ∧ DX splits as
a wedge of suspensions of HQ. Hence the characteristic polynomial of each Iwasawa module ϵ j(KU∧p )2i(X) is determined by
the rational homotopy type of (Xeven)tors f ree.

A completely analogous argument shows that the characteristic polynomial of each Iwasawa module ϵ j(KU∧p )2i+1(X) is
determined by the rational homotopy type of (Xodd)tors f ree. Hence the characteristic polynomials of the Iwasawa modules of X
are determined by the rational homotopy type of (Xeven)tors f ree ∨ (Xodd)tors f ree. The second part of Lemma 3.5 then gives us that
the the characteristic polynomials of the Iwasawa modules of X are determined by the rational homotopy type of X itself. □

Lemma 3.9. Let X be a finite spectrum such that H∗(X;Z(p)) is torsion-free and concentrated in even degrees. Let a and b be
the least and greatest integers i, respectively, such that H2i(X;Q) is nontrivial. Then, for each j = 0, 1, . . . , p − 2, we have

f ϵ j(KU∧p )0(X)((1 + p)1−n − 1) ∼p

∣∣∣π2(n−1)−1LK(1)DX
∣∣∣

for all n ≡ 1 − j mod p − 1 and n < (1 − b, 1 − a].

Proof. To prove this, we will need two ingredients: Proposition 3.2 and the Atiyah-Hirzebruch spectral sequence

E s,t
2 � H s(X, π−tLK(1)S 0) =⇒ π−s−t(DX ∧ LK(1)S 0) (10)

dr : E s,t
r → E s+r,t−r+1

r .

As a consequence of Proposition 3.2, we can relate the special values f ϵ j(KU∧p )0(X)((1 + p)1−n − 1) to the product of the
orders of certain bidegrees in the E2-term of (10), as follows. Since X is assumed to have torsion-free p-local homology, the
universal coefficient theorem yields

H2i(X; π−tLK(1)S 0) � H2i(X; π−tLK(1)S 0)

� (π−tLK(1)S 0)ri ,

where ri = rank(H2i(X;Z(p))). So, for each factor fi, j(T )ri of f ϵ j(KU∧p )0(X)(T ) and each integer n congruent to 1− j modulo p−1,
we have

fi, j((1 + p)1−n − 1)ri ∼p

∣∣∣π2(n+i−1)−1LK(1)S 0
∣∣∣ri

∼p

∣∣∣E2i,1−2(n+i−1)
2

∣∣∣
Hence,

f ϵ j(KU∧p )0(X)((1 + p)1−n − 1) ∼p

∏
i≡ j(p−1)

∣∣∣E2i,1−2(n+i−1)
2

∣∣∣ (11)

We still need to show that the product on the right-hand side of (11) is, in fact,
∣∣∣π2(n−1)−1LK(1)DX

∣∣∣ when n < (1 − b, 1 − a].
Because H∗(X;Z(p)) is concentrated in even degrees and because E s,t

2 � Hs(X; π−tLK(1)S 0), the E2-term of (10) is concentrated
in bidegrees in which s is even and t is either 0 or of the form 1 − 2m(p − 1) for m ∈ Z. For degree reasons, this means that
the domain or codomain of any nonzero differential must be on the t = 0 line. This, coupled with the fact that H∗(X;Z(p))
is concentrated between degrees 2a and 2b, gives us that E s,t

2 will not be hit by a nonzero differential when s + t < 2a or
s + t > 2b. Thus, when m < 2a or m > 2b, ∣∣∣π−m(DX ∧ LK(1)S 0)

∣∣∣ = ∏
s+t=m

∣∣∣E s,t
2

∣∣∣
A quick calculation shows that, more specifically, when n ≡ 1 − j mod p − 1 and n < (1 − b, 1 − a],∣∣∣π2(n−1)−1(DX ∧ LK(1)S 0)

∣∣∣ = ∏
i≡ j(p−1)

∣∣∣E2i,1−2(n+i−1)
2

∣∣∣ (12)

Finally, we need to know that DX ∧ LK(1)S 0 is weakly equivalent to LK(1)DX. This is, of course, not true for arbitrary
spectra X, since K(1)-localization is not smashing. However,
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• we have a natural transformation ξ : − ∧ LK(1)S 0 → LK(1)−,

• ξ is a weak equivalence when evaluated on a sphere,

• and both the domain and codomain of ξ are functors which send homotopy cofiber sequences to homotopy cofiber
sequences.

Consequently ξ is a weak equivalence when evaluated on any finite spectrum. Hence, since X is assumed finite, (11) and (12)
give us

f ϵ j(KU∧p )0(X)((1 + p)1−n − 1) ∼p

∣∣∣π2(n−1)−1LK(1)DX
∣∣∣ .

□

We are now in a position to prove that, for a finite spectrum X, the characteristic polynomials of the 2p − 2 Iwasawa
modules ϵ0(KU∧p )0(X), . . . , ϵp−2(KU∧p )0(X), ϵ0(KU∧p )−1(X), . . . , ϵp−2(KU∧p )−1(X) of X determine the orders of the K(1)-local

homotopy groups of the torsion-free replacement
◦

X of X. This is the content of Theorem 3.10. In particular, in the special
case that X already has p-local homology which is torsion-free and concentrated in even degrees—like a complex projective
space—Theorem 3.10 describes the orders of the K(1)-local homotopy groups of X itself.

Theorem 3.10 (Weak form of Iwasawa Main Conjecture for spectra). Let X be a finite spectrum. Let α and β be the least and
greatest integers i, respectively, such that Hi(X;Q) is nontrivial. Then we have∣∣∣∣∣π2m−1LK(1)D

◦

X
∣∣∣∣∣ ∼p f ϵ−m(KU∧p )0(X)((1 + p)−m − 1) and∣∣∣∣∣π2mLK(1)D
◦

X
∣∣∣∣∣ ∼p f ϵ−m(KU∧p )−1(X)((1 + p)−m − 1)

for all integers m satisfying m < −β2 , and also for all integers m satisfying m > −α2 .

Proof. Corollary of Theorem 3.6 and Lemma 3.9. □

To be clear, in the statement of Theorem 3.10, the subscript −m in ϵ−m is to be understood as being defined modulo p − 1.

Remark 3.11. Here is a comment on the prospects for a strong form of the Iwasawa Main Conjecture for spectra, i.e.,
a theorem to the effect that the algebraic p-adic L-function given simply by the characteristic polynomial of ϵ j(KU∧p )i(X)
generates the same ideal in Ẑp[[T ]] as some analytic p-adic L-function, presumably constructed by p-adically interpolating
some sequence of special values of some complex-analytic L-function. The paper [18] constructed, for each finite spectrum
X with torsion-free homology concentrated in even degrees, a “provisional KU-local zeta-function” ζ̇KU (s, X). The function
ζ̇KU (s, X) is a meromorphic function on the complex plane, and the denominators of its special values in a left-hand half-plane
are proven in [18] to coincide with the orders of the KU-local stable homotopy groups of X.

All the zeta-functions and L-functions considered in [18] are products of Tate twists of L-functions of primitive Dirichlet
characters. Consequently, by Kubota–Leopoldt [13], after removing the Euler factors at p, the special values at negative
integers can be p-adically interpolated to yield a p-adic L-function. One might hope that this p-adic L-function is the correct
“analytic side” of a spectral Iwasawa Main Conjecture. We do not expect this to be true in full generality, but we find it
plausible for odd regular primes p. This is because, given an odd regular prime p and a finite spectrum X with torsion-free
homology concentrated in even degrees, the p-adic valuations of the special values of the algebraic p-adic L-function to X are
equal to p-adic valuations of the special values of the analytic p-adic L-function obtained by p-adic interpolation of ζ̇KU (s, X),
as a consequence of [18, Theorem 2.8] and Theorem 3.10, above.

4 The Iwasawa λ-invariants of finite spectra.
In section 2.1, we explained the precise sense in which the λ-invariant and µ-invariant control the asymptotic growth rate of
the p-part of the class number, as one moves up a suitable tower of number fields.

Consider topological analogues of these results. We have already shown in Theorem 3.4 that the µ-invariants of finite
spectra are all trivial, so we focus on the question of what numerical invariant of a finite spectrum X has its asymptotic growth
rate described by the λ-invariants of the 2(p − 1)-tuple of Iwasawa modules

ϵ0(KU∧p )0(X), ϵ1(KU∧p )0(X), . . . , ϵp−2(KU∧p )0(X), ϵ0(KU∧p )−1(X), ϵ1(KU∧p )−1(X), . . . , ϵp−2(KU∧p )−1(X)

associated to X in section 2.2. In this section we prove that, just as the λ-invariant of the Iwasawa module of a Ẑp-extension of
number fields controls the asymptotic growth rate of the p-parts of the class numbers, the λ-invariants of the Iwasawa modules
of a finite spectrum X control the asymptotic growth rate of the graded average order of the K(1)-local homotopy groups of X.

Our method of proof is centered on using additive invariants and algebraic K0 of the category of finite spectra, since this
approach is one that can potentially be generalized to higher-height analogues, using noncommutative Iwasawa theory, in the
sense of [21] and [5]. The authors hope to pursue this idea in later work.
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4.1 Asymptotic graded averages.
In this section we will study the average values of the orders of the K(1)-local homotopy groups of finite spectra. Given a
finite spectrum X, we would like to consider the average of the first n terms in the sequence∣∣∣π1LK(1)X

∣∣∣ , ∣∣∣π2LK(1)X
∣∣∣ , ∣∣∣π3LK(1)X

∣∣∣ , . . . (13)

However, the average 1
n

∑n
j=1

∣∣∣π jLK(1)X
∣∣∣ is not necessarily defined: the trouble is that the sequence (13) may include finitely

many terms which are infinite. Since we are interested in asymptotics, it is harmless to skip the first m terms, and consider the
average 1

n

∑n+m
j=1+m

∣∣∣π jLK(1)X
∣∣∣ for m >> 0.

There is another point that needs explaining. It will be extremely convenient to arrange for our asymptotic growth rates to
be additive invariants of spectra, i.e., if X → Y → Z is a cofiber sequence of spectra, then the sum of the growth rates for X
and Z ought to be the growth rate for Y . In the special case Y = 0, we see that the growth rate for ΣX must then somehow be
equal to −1 times the growth rate for X. The way to arrange this is to study the asymptotics of the alternating sum

1
n

n+m∑
j=1+m

(−1) j
∣∣∣π jLK(1)X

∣∣∣
as n→ ∞, for m >> 0. The heuristic is that we are studying the asymptotic growth rate of the average order of the K(1)-local
stable homotopy groups of X, but “average” must be understood as a graded average, in which the even-dimensional elements
are counted as positive, while the odd-dimensional elements are counted as negative.

It turns out that the graded average order of n successive K(1)-local homotopy groups of a finite spectrum X grows like
logp(n)/2 times a constant. Furthermore, it turns out that this constant is determined by the λ-invariants of the Iwasawa
modules of X. The main result establishing these facts is Theorem 4.6.

Definition 4.1. Let α be a nonzero real number. Given a bi-infinite sequence . . . , k−1, k0, k1, k2, . . . , we will say that its graded
average grows like α · logp(n) if the limit

lim
m→∞

lim
n→∞

1
n

∑n+m
j=1+m(−1) jk j

α · logp(n)

exists and is equal to 1.

Proposition 4.2. Let C be a triangulated category. Fix an object S of C, and write πi for the functor [ΣiS ,−] : C → Ab. Make
the following assumptions:

• X → Y → Z in C is a cofiber sequence in C.

• αX , αZ are real numbers such that the graded average of . . . , |π−1(X)| , |π0(X)| , |π1(X)| , . . . grows like αX logp(n), and the
graded average of . . . , |π−1(Z)| , |π0(Z)| , |π1(Z)| , . . . grows like αZ logp(n).

• The limit limn→∞
|πn(X)|

n logp(n) exists and is equal to zero.

Then the graded average of . . . , |π−1(Y)| , |π0(Y)| , |π1(Y)| , . . . grows like (αX + αZ) logp(n).

Proof. We have the long exact sequence

. . .
gn+1
−→ πn+1(Z)

hn+1
−→ πn(X)

fn
−→ πn(Y)

gn
−→ πn(Z)

hn
−→ πn−1(X)

fn−1
−→ . . .

and consequently equalities

1
n(αX + αZ) logp(n)

n+m∑
j=1+m

(−1) j
∣∣∣π j(Y)

∣∣∣ = 1
n(αX + αZ) logp(n)

n+m∑
j=1+m

(−1) j (|im fn| + |im gn|) (14)

=
1

n(αX + αZ) logp(n)

n+m∑
j=1+m

(−1) j
(∣∣∣π j(X)

∣∣∣ + ∣∣∣π j(Z)
∣∣∣ − ∣∣∣im h j+1

∣∣∣ − ∣∣∣im h j

∣∣∣)
=

1
n(αX + αZ) logp(n)

(−1)m |im h1+m| − (−1)m+n |im h1+m+n| +

n+m∑
j=1+m

(−1) j
(∣∣∣π j(X)

∣∣∣ + ∣∣∣π j(Z)
∣∣∣) .

(15)

Since im h j is a subgroup of π j−1(X), the assumption that limn→∞
πn(X)

n logp(n) = 0 is enough to ensure that applying limm→∞ limn→∞

to (15) yields

lim
m→∞

lim
n→∞

1
(αX + αZ) logp(n)

n+m∑
j=1+m

1
n

(−1) j
(∣∣∣π j(X)

∣∣∣ + ∣∣∣π j(Z)
∣∣∣) ,

i.e., 1. Hence limm→∞ limn→∞ applied to (14) yields 1, and hence the homotopy groups of Y have graded average which grows
like (αX + αZ) logp(n). □
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As a consequence of Proposition 4.2 and a simple algebraic-K-theoretic argument, we have:

Theorem 4.3. Let p be an odd prime, and let X be a finite spectrum with Euler characteristic
χ(X) =

∑
n(−1)n dimQ Hn(X;Q). Then the graded average of the orders of n consecutive K(1)-local homotopy groups of

X grows like −χ(X)
2 · logp(n).

Proof. We first prove the claim in the case that X = S 0. Let sn denote the graded average 1
2(p−1)pn

∑2(p−1)pn

j=1 (−1) j
∣∣∣π jLK(1)S 0

∣∣∣.
By elementary algebra and the calculation of the K(1)-local homotopy groups of spheres, we have

sn =
1

2(p − 1)pn

pn∑
i=1

(1 − pνp(i)+1)

=
1

2(p − 1)pn

pn − p
pn∑
i=1

pνp(i)


=

1
2(p − 1)pn

(
pn − p((n + 1)pn − npn−1)

)
=

1
2(p − 1)pn (n + 1)(pn − pn+1)

=
−1 − n

2
.

Consider the sequence of nonpositive rational numbers

1
2 logp(2)

2∑
j=1

(−1) j
∣∣∣π j(LK(1)S 0)

∣∣∣ , 1
3 logp(3)

3∑
j=1

(−1) j
∣∣∣π j(LK(1)S 0)

∣∣∣ , 1
4 logp(4)

4∑
j=1

(−1) j
∣∣∣π j(LK(1)S 0)

∣∣∣ , . . . . (16)

The least (i.e., highest absolute value) terms in (16) are taken in the subsequence

1
(2(p − 1)p0 − 1) logp(2(p − 1)p0 − 1)

2(p−1)p0−1∑
j=1

(−1) j
∣∣∣π j(LK(1)S 0)

∣∣∣ ,
1

(2(p − 1)p1 − 1) logp(2(p − 1)p1 − 1)

2(p−1)p1−1∑
j=1

(−1) j
∣∣∣π j(LK(1)S 0)

∣∣∣ ,
1

(2(p − 1)p2 − 1) logp(2(p − 1)p2 − 1)

2(p−1)p2−1∑
j=1

(−1) j
∣∣∣π j(LK(1)S 0)

∣∣∣ ,
1

(2(p − 1)p3 − 1) logp(2(p − 1)p3 − 1)

2(p−1)p3−1∑
j=1

(−1) j
∣∣∣π j(LK(1)S 0)

∣∣∣ , . . . .

(17)

Write tn for the nth term, counting from zero, in the sequence (17). Then we have

tn =
2(p − 1)pn sn − 1

(2(p − 1)pn − 1) logp(2(p − 1)pn − 1)
,

and consequently

lim
n→∞

tn = lim
n→∞

(2(p − 1)pn − 1)(−1 − n)/2 + (−1 − n)/2 − 1
(2(p − 1)pn − 1) logp(2(p − 1)pn − 1)

= lim
n→∞

(−1 − n)/2
logp(2(p − 1)pn − 1)

=
−1
2
.

Consequently the graded average of the orders of n consecutive K(1)-local homotopy groups of spheres grows no slower than

13



− logp(n)
2 . To bound the growth from above, consider the subsequence of (16) given by

1
(2(p − 1)p0 − 2) logp(2(p − 1)p0 − 2)

2(p−1)p0−2∑
j=1

(−1) j
∣∣∣π j(LK(1)S 0)

∣∣∣ ,
1

(2(p − 1)p1 − 2) logp(2(p − 1)p1 − 2)

2(p−1)p1−2∑
j=1

(−1) j
∣∣∣π j(LK(1)S 0)

∣∣∣ ,
1

(2(p − 1)p2 − 2) logp(2(p − 1)p2 − 2)

2(p−1)p2−2∑
j=1

(−1) j
∣∣∣π j(LK(1)S 0)

∣∣∣ ,
1

(2(p − 1)p3 − 2) logp(2(p − 1)p3 − 2)

2(p−1)p3−2∑
j=1

(−1) j
∣∣∣π j(LK(1)S 0)

∣∣∣ , . . . .

(18)

The greatest (i.e., least absolute value) terms in (16) are taken in the subsequence (18). Write un for the nth term in (18),
counting from zero. Then we have

un =
2(p − 1)pn sn − 1 + pn+1

(2(p − 1)pn − 2) logp(2(p − 1)pn − 2)
,

and consequently

lim
n→∞

un = lim
n→∞

(2(p − 1)pn − 2)(−1 − n)/2 − n − 2 + pn+1

(2(p − 1)pn − 2) logp(2(p − 1)pn − 2)

= lim
n→∞

−n/2
logp(2(p − 1)pn − 2)

=
−1
2
.

Consequently (16) converges to −1/2, i.e., the graded average of the orders of n consecutive K(1)-local homotopy groups of
spheres grows like

− logp(n)
2 .

In the sequence of positive rational numbers
∣∣∣π2(LK(1)S 0)

∣∣∣ /(2 logp(2)),
∣∣∣π3(LK(1)S 0)

∣∣∣ /(3 logp(3)),
∣∣∣π4(LK(1)S 0)

∣∣∣ /(4 logp(4)), . . . ,
the highest values are taken at terms of the form∣∣∣π2pn(p−1)−1(LK(1)S 0)

∣∣∣
(2pn(p − 1) − 1) logp(2pn(p − 1) − 1)

=
pn+1

(2pn(p − 1) − 1) logp(2pn(p − 1) − 1)
.

As n → ∞, even these highest values go to zero. Hence limn→∞

∣∣∣πn(LK(1)S 0)
∣∣∣ /(n logp(n)) = 0. By induction on cells using

Proposition 4.2, we have a well-defined additive invariant of finite spectra, given by sending a finite spectrum X to the unique
real number α(X) such that the graded average of the orders of n consecutive K(1)-local homotopy groups of X grows like
α(X) · logp(n).

Since X 7→ α(X) is an additive invariant of finite spectra, it depends only on the value of the universal additive invariant
of finite spectra, i.e., the Euler characteristic. Hence we can calculate the value of α on any finite spectrum X by multiplying
the Euler characteristic χ(X) by the value of α on the generator S 0 of K0(FinS ∧p ). The calculation α(S 0) = −1/2, above, yields
the claim in the statement of the theorem. □

4.2 The λ-invariants of a finite spectrum
Definition 4.4. Let X be a finite spectrum. By λ(X), the total λ-invariant of X, we mean the sum of differences

p−2∑
j=0

(
λ(ϵ j(KU∧p )0(X)) − λ(ϵ j(KU∧p )−1(X))

)
of the λ-invariants of the Iwasawa modules associated to X.

Lemma 4.5. The total λ-invariant is equal to the Euler characteristic. Consequently the total λ-invariant is an additive
invariant of finite spectra.

Proof. It is probably possible to give an intrinsic proof, based on formal properties of the characteristic polynomial and not
reliant on the fact, established by Theorem 3.8, that the characteristic polynomial of each Iwasawa module of a finite spectrum
X depends only on the rational homotopy type of X. However, the shortest and simplest proof certainly uses that fact, in order
to recognize that the λ-invariant of ϵ j(KU∧p )n(X) is equal to the λ-invariant of ϵ j(KU∧p )0(Y) where Y is a wedge of spheres with
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the same rational homology as X. In section 3.1, we calculated the characteristic polynomials and λ-invariants of the Iwasawa
modules ϵ j(KU∧p )0(S 2i). In particular, those calculations yield that

λ(ϵ j(KU∧p )0(S 2i)) = λ(ϵ j(KU∧p )−1(S 2i−1))

=

{
1 if j ≡ i mod p − 1
0 otherwise.

λ(ϵ j(KU∧p )−1(S 2i)) = λ(ϵ j(KU∧p )0(S 2i−1))

= 0.

From this, and the straightforward observation that λ(ϵ j(KU∧p )n(X ∨ X′)) = λ(ϵ j(KU∧p )n(X)) + λ(ϵ j(KU∧p )n(X′)) for all finite
spectra X, X′, we have the formula

λ(ϵ j(KU∧p )0(X)) =
∑

n≡ j mod p−1

dimQ H2n(X)

λ(ϵ j(KU∧p )−1(X)) =
∑

n≡ j mod p−1

dimQ H2n−1(X),

and consequently the total λ-invariant is equal to the Euler characteristic. □

Theorem 4.3 and Lemma 4.5 then jointly imply:

Theorem 4.6. Let X be a finite spectrum. Then the graded average of the orders of n consecutive K(1)-local homotopy groups
of X grows like −λ(X)

2 · logp(n).
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