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Abstract. In this note, for each odd prime p, we show that the orders of
the KU-local homotopy groups of the mod p Moore spectrum are equal to

denominators of special values of certain quotients of Dedekind zeta-functions

of totally real number fields. With this observation in hand, we give a cute
topological proof of the Leopoldt conjecture for those number fields, by showing

that it is a consequence of periodicity properties of KU -local stable homotopy

groups.
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1. Introduction.

This note combines a calculation in stable homotopy theory from the 1970s with
some number-theoretic ideas of Leopoldt and Carlitz from the 1950s. In [1], J. F.
Adams famously proved the following theorem:

Theorem 1.1. (Adams.) Let n be a positive integer, and let denompζp´nqq be
the denominator of the rational number ζp´nq when written in reduced form. Then
the image of the Whitehead J-homomorphism

Z – π4n`3pSOq
J
ÝÑ πS4n`3pS

0q

is a cyclic group of order equal to the denominator of ζp´2n´1q, up to multiplication
by a power of 2.
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2 A. SALCH

Here ζ is the Riemann zeta-function, π4n`3pSOq is the p4n ` 3qrd (unstable)
homotopy group of the infinite special orthogonal group, and πS4n`3pSq is the p4n`
3qrd stable homotopy group of the zero-sphere S0.

Very closely related to the above result of Adams, one has Ravenel’s computation
(see [22], where it is mentioned that early versions of this computation were done
by Adams and Baird):

Theorem 1.2. (Ravenel.) Let KU be periodic complex K-theory, and let LKUS
be the Bousfield localization of the sphere spectrum S at KU . Then, for all positive
integers n, the order #pπ2npLKUSqq of the 2nth stable homotopy group π2npLKUSq
is a power of 2, and #pπ2n´1pLKUSqq “ denompζp1 ´ nqq up to multiplication by
a power of 2.

In Theorem 1.2 we are adopting the convention that the denominator of the
rational number 0 is 1. (This matters since ζp´nq “ 0 for all even positive integers
n.)

To date, Theorem 1.2 is unique in the literature, as the only description of the
orders of the homotopy groups of a Bousfield-localized finite spectrum in terms
of special values of L-functions. The purpose of this note is to give an infinite
collection of new examples of this phenomenon, by extending Theorem 1.2 to a
family of spectra other than the sphere spectrum: we prove that the orders of the
groups π˚pLKUS{pq, where S{p is the mod p Moore spectrum (i.e., the homotopy
cofiber of the degree p map S Ñ S), are also denominators of special values of
a natural L-function, when p ą 2. The work involved is not difficult, once one
pinpoints what the correct L-function should be; the hard part in this project was
simply finding that L-function to begin with.

The main result in this note (proven in Proposition 4.4, Theorem 4.8, and Corol-
lary 4.9) is as follows:

Theorem 1.3. Let p be an odd prime. Then for all positive integers n, if we agree
to write denompxq for the denominator of a rational number x when written in
reduced form, we have equalities

(1.1) denom

ˆ

ζF p1´ nq

ζp1´ nq

˙

“ #pπ2npLKUS{pqq “ #pπ2n´1pLKUS{pqq,

where LKUS{p is the Bousfield localization of the mod p Moore spectrum S{p at pe-
riodic complex K-theory KU , and where F {Q is the (unique) minimal subextension
of Qpζp2q{Q in which p is wildly ramified.

In Theorem 5.3, we prove the Leopoldt conjecture, at the prime p, for each of
the number fields F described in the statement of Theorem 1.3. These number
fields are all abelian, so the Leopoldt conjecture was already proven for them, by
the work of Baker and Brumer [4]. The proof we offer for Theorem 5.3 has the
curious feature that it deduces the relevant cases of the Leopoldt conjecture from
Colmez’s p-adic class number formula, and Theorem 1.3, and v1-periodicity in stable
homotopy groups. One naturally wants to know if other, perhaps nonabelian, cases
of the Leopoldt conjecture can be verified using a similar topological approach. We
describe the general approach in Observation 5.4:

Observation. If F is a totally real number field and if we have integers j, k and
spectra E,X such that
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(1) the order of π2ppk´1qpn´1pLEXq is equal to the denominator of the rational

number ζF p1´p
n
ppk´1qq

ζp1´pnppk´1qq
,

(2) X admits a self-map Σp2p
k
´2qjX Ñ X which induces an isomorphism in

E˚-homology, and
(3) π´1pLEXq is finite,

then the Leopoldt conjecture holds for F at the prime p.

The periodicity theorem of Hopkins-Smith (see [13], or Theorem 1.5.4 of [23])
gives an ample supply of spectra X satisfying the second of the three conditions;
see Remark 5.5 for some discussion.

In the appendix, section 6, we give some examples of computed special values (in-
cluding numerators) of ζF p1´nq{ζp1´nq, and an amusing relationship between the
orders of homotopy groups of LKUS{p and the probability that certain “random”
collections of integers satisfy certain coprimality conditions.

Remark 1.4. There are various known and conjectured relationships between or-
ders of algebraic K-groups of number rings, and special values of Dedekind zeta-
functions, such as Lichtenbaum’s conjecture, from [18]. Since the algebraic K-group
KipRq of a ring R is the homotopy group πipK pRqq of the algebraic K-theory spec-
trum K pRq, one naturally wants to know how Theorem 1.3 fits with algebraic
K-theory. The answer is this: it follows from Thomason’s identification (in [26]) of

p-complete πn

´

pLKUK pRqqpp
¯

with p-complete étale K-theory Ket
n pRq

p

p, for n " 0,

together with Quillen’s calculation of the K-groups of finite fields in [21], that the
p-completion of LKUS is homotopy-equivalent to the p-completion of LKUK pF`q
for any prime ` which is a primitive root modulo p2. So, with some effort, one can
rewrite the homotopy groups appearing in Ravenel’s theorem reproduced above as
Theorem 1.2 as algebraic K-groups. But LKUS{p is not homotopy-equivalent to
the algebraic K-theory spectrum of any finite field, or any number ring, or any
number field, even after p-completion, even after restricting attention to homotopy
groups in degrees " 0. So the results of this note do not seem to fit cleanly into any
known or conjectured relationships between algebraic K-groups and special values.

History and status of this paper. I wrote most of this material in 2016, but
never publicly posted it, because I had the sense that there ought to be a more
compelling, deeper, and more generalizable way to prove the same results. It took
a few years for me to learn enough Iwasawa theory to find that better proof of these
results, a proof that generalizes far beyond the mod p Moore spectra, for example.
But perhaps there is some value in making this note publicly available, since I think
the ideas are quite interesting, and they are presented here in a way that doesn’t
require the reader to make an investment in learning Iwasawa theory, and because
some versions of this note were privately circulated and I have been asked about
it by several people. So I hope the reader will forgive me for presenting in this
note only a precursor of what I think must be the really effective techniques for
relating orders of stable homotopy groups to special values of ζ-functions. Below,
in Remark 1.5, I sketch how to prove the main result of this note using those more
effective (Iwasawa-theoretic) techniques.

The author wants to emphasize that the proofs in this document are all pretty
easy; the hard work involved in this project was finding the correct function
Lps, S{pq “ ζF psq{ζpsq and fields F . The homotopy groups π˚pLKUS{pq for p ą 2
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are very simple (namely, πnpLKUS{pq is isomorphic to Z{pZ if n is congruent to 0
or ´1 modulo 2p ´ 2, and is trivial otherwise), but “handcrafting” an L-function
to have rational special values with specified denominators at negative integers
is a nontrivial task: “most” L-functions (in the usual families: Dedekind, Hasse-
Weil, Artin...) with rational special values at negative integers typically vanish at
negative integers, and of those which do not vanish, most are integral at negative
integers, and of those which have nonzero noninteger rational special values, most
seem to follow the same pattern of denominators as the Riemann zeta-function.
Finding ζF psq{ζpsq, and the particular number fields F described in Theorem 1.3,
took the author some work; but once you have the right idea for F and the idea to
study ζF psq{ζpsq, the pieces fall into place using established methods.

Remark 1.5. The argument we present for (1.1) in this note is simply that one

computes the denominators of denom
´

ζF p1´nq
ζp1´nq

¯

, one compares it to the (already

computed) order of π2npLKUS{pq and of π2n´1pLKUS{pq, and one sees that they
are equal. So it is important to ask: is equation (1.1) just a coincidence? I think
the really compelling argument that it isn’t a coincidence comes from an Iwasawa-
theoretic proof of (1.1), which proceeds by not computing both sides of the equation
(1.1), but instead by showing that the input for the descent spectral sequence
(described below, in (2.2)) computing π˚pLKUS{pq is the cohomology of a certain
unit group Iwasawa module, whose cohomology groups are also (by the totally real
case of the Iwasawa main conjecture, as in [28]) the denominators of the special
values of ζF psq{ζpsq at negative integers; then the vanishing of the differentials
in the spectral sequence gives equality (1.1). That Iwasawa-theoretic argument is
beyond the scope of this note, and I will have to present it elsewhere. Since that
Iwasawa-theoretic argument requires much more knowledge of algebraic number
theory than the more classical, Dirichlet-character-theoretic approach in this note,
I believe this note will be far more readable to an audience of topologists than a
paper which describes the more general and powerful Iwasawa-theoretic approach.

I have tried to make this note readable for number theorists, but I think this
note will still be most accessible to a reader which is, like the author, trained in
homotopy theory but not in number theory. A “crash course” in the necessary
results from number theory can be found in section 3, and a briefer crash course
on the relevant topological results in section 2.

It is a pleasure to thank R. Bruner for many fruitful conversations relating to
this material, D. Ravenel for support and inspiration in studying connections be-
tween special values and orders of homotopy groups, and an anonymous referee for
helpful comments. The computer algebra packages MAGMA and SAGE were also
indispensable in making large-scale systematic calculations of special values that
led me, eventually, to zero in on the correct families of L-functions and finally the
correct definition of Lps, S{pq.

Conventions 1.6. Throughout, we write S for the sphere spectrum, ζ for the
Riemann zeta-function, and νppxq for the p-adic valuation of a number x.

2. Review of KU-localization and the KU-local mod p Moore
spectrum.

This section explains some well-known ideas from stable homotopy theory which
we will use. An excellent reference for this material is [22].
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Definition 2.1. Fix a spectrum E.

‚ We say that a map of spectra f : X Ñ Y is an E-local equivalence if E^ f
is a weak equivalence. In other words: f is an E-local equivalence if and
only if f induces an isomorphism E˚pXq Ñ E˚pY q.

‚ We say that a spectrum X is E-acyclic if E ^X is contractible.
‚ We say that a spectrum X is E-local if, for each E-acyclic spectrum Y ,

every map of spectra Y Ñ X is nulhomotopic.
‚ We say that a map of spectra f : X Ñ LEX is the E-localization map on
X, and we call LEX the Bousfield E-localization of X, if LEX is E-local
and f is an E-local weak equivalence.

Uniqueness (up to weak equivalence) of the Bousfield E-localization of X is
not difficult to see. More difficult is the theorem of Bousfield that the Bousfield
E-localization of X exists, for all E and all X.1

Bousfield localization is, among other things, an analogue (for spectra) of the fa-
miliar notion of localization in commutative algebra: if HZppq is the Eilenberg-Mac
Lane spectrum of the p-local integers (uniquely determined by the property that
π0pHZppqq – Zppq and πnpHZppqq – 0 for all n ‰ 0), then π˚

`

LHZppqX
˘

– π˚pXqppq

for all spectraX whose homotopy groups are bounded below, and π˚

´

LLHZppqS
X
¯

–

π˚pXqppq for all spectra X (without any bound required on homotopy groups). So
some Bousfield localizations (like the ones just described, which simply p-localize
the homotopy groups) have a predictable effect on the homotopy groups of spectra.

However, Bousfield localization LE typically has a much more subtle effect on
homotopy groups when E is a spectrum which admits a homotopy equivalence

ΣnE
–
ÝÑ E for some n ą 0. The effect of such Bousfield localizations on homotopy

groups is at the core of the approach to stable homotopy groups of spheres via
periodic phenomena in the chromatic tower and/or the Adams-Novikov spectral
sequence; see [23] for a survey. Let’s consider the simplest case, the case where E
is KU , the periodic complex K-theory spectrum. Here is a very well-known and
classical computation, dating back to at least the earlier circulated versions of [22]:

Theorem 2.2. Let p be an odd prime, and let S{p be the mod p Moore spectrum.
Then there is an isomorphism of graded abelian groups2

π˚pLKUS{pq – Epα1q bFp Fprv
˘1
1 s,

where Epα1q is an exterior Fp-algebra on a single generator α1 in degree 2p ´ 3,
and v1 is in degree 2p´ 2.

Consequently πnpLKUS{pq – Fp if n is congruent to 0 or ´1 modulo 2p´2, and
πnpLKUS{pq – 0 otherwise.

1The approach to Bousfield localization we have presented here is close to the original 1970s

approach, as summarized in [22]. There are later approaches as well: if we work with a model cat-
egory of spectra which satisfies appropriate set-theoretic conditions, then there exists a “coarser”
model structure on that same underlying category of spectra, whose cofibrations are the same,

and whose “coarse” weak equivalences are precisely the E-local weak equivalences. Fibrant re-
placement in this “coarse” model structure is Bousfield E-localization. The book [12] is a very

good reference for this elegant approach.
2This is also an isomorphism of graded rings, but we do not give a proof of that additional

fact, because we do not work with multiplicative structure in this note.
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Sketch of proof. Here is one way (popularized by [9], where the ideas are general-
ized to formal groups of higher heights) to prove this result, which uses the spectral
sequence

(2.2) H˚c pAutpG1q, EpG1q˚pXqq ñ π˚pLKp1qXq

of [9]. (Here H˚c denotes profinite group cohomology, G1 is a formal group over Fp
of height 1, EpG1q is its associated Morava/Lubin-Tate E-theory spectrum, and
Kp1q is the first Morava K-theory at the prime p.) It is classical (see e.g. [19]) that
the profinite automorphism group AutpG1q is isomorphic to the p-adic unit group

Ẑˆp , and that (see e.g. [8]) EpG1q˚ is isomorphic to Ẑprw˘1s with w in degree ´2,

with AutpG1q acting on Ẑptwnu by the nth power of the cyclotomic character, i.e.,
u ¨ wn is defined as the product unwn.

Consequently EpG1qnpS{pq vanishes if n is odd, and is isomorphic to Z{pZ with

AutpG1q – Ẑˆp acting transitively if n is even but not divisible by 2p´2, and acting
trivially if n is divisible by 2p´2. Easy Lyndon-Hochschild-Serre spectral sequence
arguments then show that H˚c pAutpG1q;EpG1qnpS{pqq vanishes unless n is divisible
by 2p´ 2, and

H˚c pAutpG1q;EpG1qnpS{pqq – H˚c p1` pẐp;Fpq

if n is divisible by 2p ´ 2. Here 1 ` pẐp is the subgroup of Ẑˆp consisting of units
congruent to 1 modulo p.

For p ą 2, convergence of the p-adic exponential map yields an isomorphism of

profinite groups pẐp
–
ÝÑ 1` pẐp, hence

Hj
c p1` pẐp;Fpq – colimmH

j
c pZ{pmZ;Fpq

is isomorphic to Fp if j “ 0 or j “ 1, and vanishes otherwise.
There is no room for differentials in spectral sequence (2.2), so we get an iso-

morphism of graded abelian groups

π˚pLKp1qS{pq – Epα1q bFp Fprv
˘1
1 s.

with the degrees of α1 and v1 as stated.
Now since S{p is already Sppq-local, the KU -localization of S{p coincides with

the KUppq-localization of S{p. The well-known splitting KUppq »
šp´2
j“0 Σ2jEp1q,

where Ep1q is the p-local height 1 Johnson-Wilson spectrum, establishes that LKUppq
agrees with LEp1q. The well-known homotopy pullback square3

LEp1qX //

��

LKp1qX

��
LEp0qX // LEp0qLKp1qX,

in the case X “ S{p, then yields a weak equivalence LEp1qX » LKp1qX, since Ep0q-
localization coincides with rationalization and so LEp0qS{p and LEp0qLKp1qS{p are
both contractible. So

LKUS{p » LKUppqS{p » LEp1qS{p » LKp1qS{p

3The existence of this homotopy pullback square seems to have been known since at least the
1980s, but as far as I know, there is no clear person or paper to whom the result is attributed. A

nice modern writeup appears in Bauer’s chapter [3] in the book [10].
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has homotopy groups as stated. l

So the homotopy groups of LKUS{p, for p odd, are of a very simple form:
πnpLKUS{pq has order p if n is congruent to 0 or´1 modulo 2p´2, and πnpLKUS{pq
is trivial otherwise. To describe these groups in terms of special values of an L-
function, as the work of Adams and Ravenel did (away from 2) for LKUS as de-
scribed in Theorem 1.2, we need to find, for each odd prime, an L-function whose
special values at negative integers are rational numbers whose denominators follow
this same pp´ 1q-periodic pattern. We accomplish this in section 4.

3. Review of some ideas from number theory.

3.1. Review of Dirichlet characters and their L-functions. This section ex-
plains some well-known ideas from number theory which we will use. Excellent
textbook references for this material include [2] and [20].

The definition of a Dirichlet L-series and Dirichlet characters is classical:

Definition 3.1. The Dirichlet L-series of a function χ : NÑ C is the series

(3.3)
ÿ

ně1

χpnq

ns
.

If s is a complex number such that the series (3.3) converges, then we write Lps, χq
for the number that the series converges to4.

Given two functions χ1, χ2 : NÑ C, we define their Dirichlet convolution as the
function χ1 ˚ χ2 : NÑ C given by

pχ1 ˚ χ2qpnq “
ÿ

d|n

χ1pdqχ2p
n

d
q,

so that Lps, χ1 ˚ χ2q “ Lps, χ1qLps, χ2q. (See Theorem 11.5 of [2] for a proof.)

Definition 3.2. Let f be a positive integer. A Dirichlet character of modulus f is
a function χ : ZÑ C satisfying the axioms:

‚ χp1q “ 1,
‚ χpn` fq “ χpnq for all n P Z,
‚ χpmnq “ χpmqχpnq for all m,n, and
‚ χpnq “ 0 if gcdpn, fq ‰ 1.

A Dirichlet character is a Dirichlet character of modulus f for some f .
The Dirichlet character χ0 of modulus f such that χ0pnq “ 1 for all n coprime

to f is called the principal Dirichlet character of modulus f .
The Dirichlet L-function of a Dirichlet character χ is the Dirichlet L-series

ř

ně1
χpnq
ns , which converges to a complex number Lps, χq for all complex numbers

s with real part ą 1.

4To be clear: for many functions χ of number-theoretic interest, the function Lps, χq is mero-
morphic on some part of the complex plane, and admits a unique analytic continuation to a
meromorphic function on a larger part of the complex plane. That analytic continuation is still

called Lps, χq for all s in its domain, even though Lps, χq only agrees with the series
ř

ně1
χpnq

ns

for all complex s such that the series
ř

ně1
χpnq

ns
actually converges. For example: as we explain

below, when χ is a Dirichlet character, the series
ř

ně1
χpnq

ns
converges for all complex s with

<psq ą 1, but it analytically continues to a meromorphic function on all of C, and we write

Lp´1, χq for that value of that meromorphic function at s “ ´1, even when the series
ř

ně1
χpnq

ns

fails to converge when s “ ´1.



8 A. SALCH

For example, if χ0 is the (unique) character of modulus 1, i.e., χ0pnq “ 1 for all
n, then Lps, χ0q “ ζpsq, the Riemann zeta-function.

The Dirichlet characters of modulus f form a group Dirpfq under pointwise
multiplication; this group has order φpfq, and is cyclic if f is a power of an odd
prime. The Dirichlet characters of modulus f do not form a group under Dirichlet
convolution (see Definition 3.1), since the Dirichlet convolution of two Dirichlet
characters is not necessarily a Dirichlet character.

Definition 3.3. Let χ be a Dirichlet character of modulus f . A divisor d of f is
called an induced modulus for χ if χpnq “ 1 for all n relatively prime to f such
that n ” 1 modulo d.

A Dirichlet character χ of modulus f is called primitive if the smallest induced
modulus of χ is f itself.

Definition 3.4 originally appeared in [16].

Definition 3.4. (Generalized Bernoulli numbers.) Let χ : ZÑ C be a Dirich-
let character of modulus f . Let the sequence of numbers

Bχ1 , B
χ
2 , B

χ
3 , ¨ ¨ ¨ P Qpζφpfqq Ď C

be defined as the Maclaurin coefficients of
řf
r“1 χprq

tert

eft´1
, so that

f
ÿ

r“1

χprq
tert

eft ´ 1
“

ÿ

ně0

Bχn
tn

n!
.

The Euler product of Lps, χq is classical:

(3.4) Lps, χq “
ź

primes p

1

1´ χppqp´s

for all complex numbers s with <psq ą 1.
See e.g. Theorem VII.2.9 of [20] for Theorem 3.5:

Theorem 3.5. The Dirichlet L-series
ř

ně1
χpnq
ns admits a unique analytic contin-

uation to a meromorphic function Lps, χq on the complex plane, and a functional
equation such that

Lp1´ n, χq “
´Bχn
n

for positive integers n.
Specifically, if χ is a primitive Dirichlet character of modulus f , then

(3.5) Lp1´ s, χq “
fs´1Γpsq

p2πqs

´

e´πis{2 ` χp´1qeπis{2
¯

Gp1, χqLps, χq,

where Γ is the classical gamma-function (so Γpnq “ pn´1q! for positive integers n),

χ is the complex-conjugate Dirichlet character of χ (so χpnq “ χpnq), and Gp1, χq

is the Gauss sum
řf
r“1 χprqe

2πir{f .

See e.g. Theorem 12.11 of [2] for equation (3.5). It is also classical that Lps, χq
is an entire function on the complex plane, if χ is nonprincipal; see e.g. Theorem
12.5 of [2].
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Observation 3.6. If χ is a nonprincipal Dirichlet character with χp´1q “ 1, then

it is an easy exercise to show that the function F ptq “
řf
r“1 χprq

tert

eft´1
satisfies

F ptq “ F p´tq, and hence that Bχn “ 0 for all odd positive integers n, hence that
Lp1´ n, χq “ 0 for all odd positive integers n.

Since a Dirichlet character χ of modulus f takes values in the φpfqth roots of
unity, the numbers Bχn and Lp1 ´ n, χq lie in the number field Qpζφpfqq. Here is a
theorem of Carlitz (see [5] for full proofs, or [6] for a shorter version) on how far
these numbers are from being in the ring of integers of that number field:

Theorem 3.7. Let χ be a primitive Dirichlet character of modulus f .

‚ If f is not a prime power, then
Bχn
n is an algebraic integer for all n.

‚ If f “ p for some prime p ą 2, then let g be a primitive root modulo pr for
all r, i.e., g P N is a topological generator of the group Ẑˆp of p-adic units.

The number
Bχn
n is an algebraic integer unless pp, 1´ χpgqq ‰ p1q, in which

case pBχn ” p´ 1 modulo pp, 1´ χpgqqn`1.
‚ If f “ pµ for some prime p ą 2 and some integer µ ą 1, then let g be

a primitive root modulo pr for all r, i.e., g P N is a topological generator

of the group Ẑˆp of p-adic units. The number
Bχn
n is an algebraic integer

unless pp, 1 ´ χpgqgnq ‰ p1q, in which case p1 ´ χp1 ` pqq
Bχn
n ” 1 modulo

pp, 1´ χpgqgnq.
‚ When f is a power of a prime number p, then for all positive integers

n,
Bχn
n P OQpζφpfqqr1{ps. That is,

Bχn
n p

a is an algebraic integer for some

(sufficiently large) positive integer a.

3.2. Review of Dedekind zeta-functions. This material is classical; see e.g.
chapter 3 of [27].

Definition 3.8. Let F {Q be a finite field extension with ring of integers OF . Then
the Dedekind zeta-function of F is defined as the series

ÿ

IĎOF

1

p#OF {Iq
s ,

where the sum is taken over all nonzero ideals I of OF , and #OF {I is the number
of elements in the residue ring OF {I. This series converges for complex numbers
s with real part <psq ą 1, and uniquely analytically continues to a meromorphic
function ζF psq on the complex plane.

The function ζF has the Euler product

ζF psq “
ź

pĎOF

1

1´# pOF {pq
´s

for <psq ą 1, where the product is taken over all nonzero prime ideals p of OF .

Definition 3.9. Let f be a positive integer and let A be a subgroup of the group
Dirpfq of Dirichlet characters of modulus f . Let kerA denote the subgroup of
pZ{fZqˆ consisting of those residue classes x such that χpxq “ 1 for all χ P A. Fi-
nally, let G denote the subgroup of GalpQpζf q{Qq corresponding to kerA Ď pZ{fZqˆ

under the usual isomorphism pZ{fZqˆ –
ÝÑ GalpQpζf q{Qq. Then the number field

associated to A is defined as the fixed field Qpζf qG.
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Theorem 3.10 combines Corollary 3.6 and Theorem 4.3 from [27].

Theorem 3.10. Let f be a positive integer, let A be a subgroup of the group Dirpfq
of Dirichlet characters of modulus f , and let F be the number field associated to
A. Then a prime p P Z is unramified in OF if and only if χppq ‰ 0 for all χ P A.
Furthermore:

(3.6) ζF psq “
ź

χPA

Lps, χq.

Theorem 3.10 requires a bit of care; the version of it expressed as Theorem 4.3
in [27] leaves one small (but important for getting correct Euler factors at ramified
primes) point unexplained. The point is that the product should be taken over
primitive representatives for Dirichlet characters in the group A. For the sake of the
present work, what this means is the following: if p ą 2 and we let A be the group
Dirpp2qrps of p-torsion elements in the group of Dirichlet characters of modulus
p2, then every nonidentity element in the group Dirpp2qrps is a primitive Dirichlet
character, but the identity element in Dirpp2qrps is the principal Dirichlet character
of modulus p2, which is imprimitive. Formula (3.6) is valid if, for the L-function
factor corresponding to the identity element of Dirpp2qrps, we use the Dirichlet
L-function of the primitive, and consequently modulus 1, representative for that
identity element; i.e., we use the Riemann zeta-function. If we had instead used
the Dirichlet L-series of the (imprimitive) principal Dirichlet character of modulus
p2, then formula (3.6) would be off by an Euler factor at p.

4. The L-function of the mod p Moore spectrum.

Definition 4.1. Let p be an odd prime. Since the group Dirpp2q of Dirichlet char-
acters of modulus p2 is cyclic of order φpp2q “ ppp ´ 1q, there exists a unique
subgroup of index p ´ 1 in Dirpp2q. We will write Dirpp2qrps for this subgroup.
Since Dirpp2qrps consists of the Dirichlet characters χ of modulus p2 such that χpnq
is a pth root of unity for all n, the Galois group GQpζpq{Q – Cp´1 acts on Dirpp2qrps.

Definition 4.2. Let χ be a generator of Dirpp2qrps, and let Lps, S{pq denote the
product

Lps, S{pq “
ź

σPGQpζpq{Q

Lps, χσq.

Since the set of Dirichlet characters tχσuσPGQpζpq{Q
is exactly the set of nontriv-

ial elements (i.e., nonprincipal characters) in Dirpp2qrps, the function Lps, S{pq is
independent of the choice of χ.

Since each Lps, χσq converges for all complex numbers s with real part s ą 1,
the same is true of Lps, S{pq. Since each Lps, χσq has analytic continuation to a
meromorphic function on the complex plane, the same is true of Lps, S{pq.

Observation 4.3. Here are some easy observations about Lps, S{pq:

‚ Since each χσ is nonprincipal, Lps, χσq is entire, so the product Lps, S{pq
is entire.

‚ The function Lps, S{pq can be written as a single L-series, as follows: let
oppq denote the set of elements of order exactly p in the group Dirpp2q of
Dirichlet characters of modulus p2, i.e., oppq is the set of nonzero elements
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of Dirpp2qrps. Let ˚χPoppq χ denote the Dirichlet convolution (see Defini-
tion 3.1) of the elements in oppq. Then

Lps, S{pq “ L

ˆ

s, ˚
χPoppq

χ

˙

“
ÿ

ně1

`

˚χPoppq χ
˘

pnq

ns
.

‚ It follows immediately from Observation 3.6 that Lp1´ n, S{pq “ 0 for all
odd positive integers n.

‚ We have the action of GQpζpq{Q on Dirpp2qrps described in Definition 4.1,

and GQpζpq{Q of course acts on Qpζpq, where the elements of Dirpp2qrps
take their values. Using Definition 3.4, one can compute Bχn , for any fixed
value of n, by solving for Taylor coefficients in a way which only involves a
finite sum, and in particular, finitely many applications of χ. So χ being a

field automorphism implies B
pχσq
n “ pBχnq

σ, for any σ P GQpζpq{Q, without
needing to know anything about continuity of the Galois action.

‚ In particular, since Qpζpq{Q is Galois,

Lp1´ n, S{pq “
ź

σPGQpζpq{Q

Lp1´ n, χσq

“
ź

σPGQpζpq{Q

Lp1´ n, χqσ

“ NQpζpq{QpLp1´ n, χqq,

the field norm of the extension Qpζpq{Q, evaluated at Lp1 ´ n, χq. Conse-
quently Lp1´ n, S{pq P Q.

In Proposition 4.4 we provide an Euler product formula for Lps, S{pq. The result
is not number-theoretically novel at all: the method used is classical and very well-
known. The resulting formula involves a division by ζpsq, and consequently the
numerators in special values of ζpsq contribute (in an indirect way) to denominators
in special values of Lps, S{pq. In Theorem 4.8 and Corollary 4.9 we prove that the
special values of Lps, S{pq agree with the orders of the KU -local stable homotopy
groups of the mod p Moore spectrum S{p; consequently numerators of Bernoulli
numbers are entering (again, in an indirect way) into the orders of KU -local stable
homotopy groups.

Proposition 4.4. Let p ą 2 be a prime, and let Gp be the set of prime numbers `
such that ` is a primitive root modulo p2 (i.e., ` generates the group pZ{p2Zqˆ). Let
Np be the set of prime numbers ` ‰ p not contained in Gp. Then, for all complex
numbers s with real part ą 1, we have an equality

(4.7) Lps, S{pq “
1´ p´s

ζpsq

¨

˝

ź

`PNp

1

1´ `´s

˛

‚

p¨

˝

ź

`PGp

1

1´ `´sp

˛

‚.

Proof. The product of the Euler products (3.4) of the L-functions Lps, χσq over all
σ P GQpζpq{Q, together with the Euler product of ζpsq “ Lps, χ0q, has three types
of factors:
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‚ the L-factor at `, for primes ` P Gp, is

ζ`psqL`ps, S{pq “
1

1´ `´s

¨

˝

ź

σPGQpζpq{Q

p1´ χσp`q`´sq

˛

‚

´1

.

Since ` P Gp, the prime ` is a primitive root modulo p2, hence χp`q is a
primitive pth root of unity. Hence

`ps

ζ`psqL`ps, S{pq
“

p
ź

j“1

p`s ´ ζjpq “ p1´ `
sqΦpp`

sq “ 1´ `ps,

with j a primitive pth root of unity, and where Φp is the pth cyclotomic
polynomial. Solving for ζ`psqL`ps, S{pq yields 1

1´`´ps .

‚ For the L-factor at `, for primes ` P Np, we first observe that χ “ χp´1
p2

for an appropriately chosen primitive character χp2 of modulus p2. Hence
χpnq “ χp2pnq

p´1 is a pth root of unity which is primitive if and only if
n is a primitive root modulo p2. Consequently, if ` P Np, then χp`q is a
non-primitive pth root of unity, i.e., χp`q “ 1. This lets us simplify an Euler
factor:

ζ`psqL`ps, S{pq “ p1´ `
´sq´1

¨

˝

ź

σPGQpζpq{Q

p1´ χσp`q`´sq

˛

‚

´1

“
`

1´ `´s
˘´p

.

‚ The third type of L-factor is simply the ` “ p L-factor. Since χppq “ 0, the
p-local L-factor in ζpsqLps, S{pq is simply the p-local L-factor in ζpsq, i.e.,
p1´ p´sq´1.

Taking a product over all primes ` yields the formula (4.7). �

Lemma 4.5. The number field associated to the group Dirpp2qrps is the unique
minimal subextension of Qpζp2q{Q in which p is wildly ramified. (See Definition 4.1
for the definition of Dirpp2qrps, and see Definition 3.9 for the definition of the
number field associated to a group of Dirichlet characters.)

Proof. Elementary exercise. �

Proposition 4.6. Let p be an odd prime, and let F {Q be the minimal subextension
of Qpζp2q{Q in which p ramifies wildly. Then:

(4.8)
ζF psq

ζpsq
“ Lps, S{pq.

Proof. Among the p elements of the group Dirpp2qrps, there are p ´ 1 primitive
Dirichlet characters, i.e., there are p´ 1 nonprincipal Qpζpq-valued Dirichlet char-
acters of modulus p2. In the group Dirpp2qrps we also have the one imprimitive
character, namely, the principal Dirichlet character of modulus p2, which is the
identity element of the group Dirpp2qrps. Lemma 4.5 and Theorem 3.10 together
let us express ζF psq as a product over primitive representatives of the elements of
Dirpp2qrps. So let us write Dirpp2qrps1 for the set of primitive representatives for
the elements of Dirpp2qrps, and let us write χp for any generator for the group
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Dirpp2qrps. The Galois group GQpζpq{Q acts freely on the Qpζpq-valued primitive

Dirichlet characters of modulus p2, so that

Dirpp2qrps1 “ tχ0u Y tχ
σ
p : σ P GQpζpq{Qu,

where χ0 is principal and modulus 1. Now we have equalities:

ζF psq

ζpsq
“

ś

χPDirpp2qrps1 Lps, χq

ζpsq
(4.9)

“
Lps, χ0q ¨

ś

σPGQpζpq{Q
Lps, χσp q

ζpsq

“
Lps, χ0q ¨ Lps, S{pq

ζpsq
(4.10)

“ Lps, S{pq,(4.11)

where (4.9) is from Lemma 4.5 and Theorem 3.10, and (4.10) is from Definition 4.2.
Of course (4.11) comes simply from the observation that the Riemann zeta-function
is the Dirichlet L-function of the principal Dirichlet character of modulus 1. �

Lemma 4.7. Let p ą 2 be a prime, let g P N be a primitive root modulo p2, let n
be a positive integer divisible by p ´ 1, let ζp denote a primitive pth root of unity,
and let OQpζpq denote the ring of integers in Qpζpq. Then the ideal p1 ´ ζpg

nq in
OQpζpq is contained in the ideal p1´ ζpq.

Proof. We will use the well-known factorization ppq “ p1 ´ ζpq
p´1 in the ring of

integers OQpζpq (see e.g. Lemma 10.1 of [20]), and its corollary, that p1 ´ ζpq is a
maximal ideal in OQpζpq with residue field Fp. Obviously 1 ´ ζpg

n is congruent to

1´ gn modulo 1´ ζp. Since g is nonzero modulo p, we have gp´1 ” 1 in the residue
field OQpζpq{p1 ´ ζpq – Fp. So gn ” 1 modulo p1 ´ ζpq, so 1 ´ ζpg

n ” 0 modulo
1´ ζp. So p1´ ζpg

nq Ď p1´ ζpq. �

In Theorem 4.8, we adopt the convention that, given a rational number x, we
write denompxq for the denominator of x when written in reduced form, and we let
denompxq be 1 if x “ 0.

Theorem 4.8. Let p ą 2 be a prime. Then, for each positive integer n, the
following four numbers are equal:

‚ the order of π2npLKUS{pq, the p2nqth stable homotopy group of the KU -
local mod p Moore spectrum,

‚ the order of π2n´1pLKUS{pq, the p2n ´ 1qth stable homotopy group of the
KU -local mod p Moore spectrum,

‚ denompLp1´ n, S{pqq, and

‚ denom
´

ζF p1´nq
ζp1´nq

¯

, where F {Q is the (unique) smallest subextension of

Qpζp2q{Q in which p is wildly ramified.

Proof. By Theorem 2.2, π2npLKUS{pq – π2n´1pLKUS{pq – Z{pZ if pp ´ 1q | n,
and π2npLKUS{pq and π2n´1pLKUS{pq are trivial if pp ´ 1q - n, so there are just
two cases to consider:

If p´ 1 | n: The Dirichlet character χ of Definition 4.2 has the property that
χpgq is a primitive pth root of unity, for any primitive root g modulo p2. So
by Lemma 4.7, p1´ χpgqgnq Ď p1´ ζpq, so pp, 1´ χpgqgnq Ď p1´ ζpq since
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p1´ ζpq
p´1 “ ppq. In particular, pp, 1´ χpgqgnq is contained in a maximal

ideal of OQpζpq, so pp, 1´χpgqgnq ‰ p1q. (For this manipulation of ideals, it
does not really matter which primitive pth root of unity ζp we choose, or
whether or not it is actually equal to χpgq: there is a unique maximal ideal
of OQpζpq over p, and it is of the form p1´ ζq for any primitive pth root of
unity ζ we choose. So p1´ ζpq “ p1´ ζq for any primitive pth root of unity
ζ.)

Now we invoke Carlitz’s result, Theorem 3.7: since pp, 1´χpgqgnq ‰ p1q,

we have that p1 ´ χp1 ` pqq
Bχn
n is congruent to 1 modulo pp, 1 ´ χpgqgnq.

Since pp, 1´ χpgqgnq Ď p1´ ζpq, we now have

p1´ χp1` pqqp´1Lp1´ n, S{pq “ p1´ χp1` pqqp´1
ź

σPGQpζpq{Q

´Bχ
σ

n

n

” 1 mod p1´ ζpq,(4.12)

and, on taking p-adic valuations of both sides of the equation (4.12) in
OQpζpq, we have

(4.13) pp´ 1qνp p1´ χp1` pqq ` νppLp1´ n, S{pqq “ 0.

Now remember that χ is a generator of Dirpp2qrps, and in particular, χ
takes primitive pth roots of unity in Z{p2Z to primitive pth roots of unity.
By a very easy elementary computation, 1`p is a primitive pth root of unity
in Z{p2Z; and since we have an equality of ideals p1´ ζq “ p1´ ζpq for any
primitive pth root of unity ζ in OQpζpq, we now have νpp1´χp1`pqq “ νpp1´

ζpq “
1
p´1 . Hence equation (4.13) gives us that νppLp1 ´ n, S{pqq “ ´1,

i.e., the denominator of the rational number Lp1´n, S{pq is divisible by p,
but not by p2.

Carlitz’s result, Theorem 3.7, also implies that
paBχn
n P OQpζpq for some

sufficiently large integer a. So the product Lp1´n, S{pq “
ś

σPGQpζpq{Q

´Bχn
n

has denominator divisible by no primes other than the prime p.
Consequently the denominator of Lp1´ n, S{pq is exactly p, when p´ 1

divides n.
If p´ 1 - n: Let g P N be a primitive root modulo p2. We have the congruence

1´χpgqgn ” 1´ gn modulo 1´ ζp, for the same reasons as in the previous
part of this proof.

The difference is now that, since p´ 1 does not divide n, gn ı 1 modulo
p. So 1´ gn ı 0 modulo p1´ ζpq Ď ppq, so pp, 1´ χpgqgnq “ p1q Ď OQpζpq.

Now Theorem 3.7 implies that
Bχn
n is an algebraic integer. Hence, taking a

product over Galois conjugates, we have

Lp1´ n, S{pq “
ź

σPGQpζpq{Q

´Bχ
σ

n

n
P Z,

as desired.

Finally, the equality denompLp1 ´ n, S{pqq “ denom
´

ζF p1´nq
ζp1´nq

¯

is immediate

from Proposition 4.6. �
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Theorem 3 in [11] is very similar to Carlitz’s theorem reproduced as Theorem 3.7,
above. Consequently the role of of Carlitz’s theorem in the proof of Theorem 4.8
can also be filled by part 2 of Theorem 3 in Fresnel’s paper.

Corollary 4.9 ought to be understood as a distant descendant of the classical

theorem that ζpnq
πn is rational for positive even integers n.

Corollary 4.9. Let p ą 2 be a prime, and let n be a positive even integer. Then
Lps, S{pq satisfies the functional equation

Lpn, S{pq “

ˆ

2n´1πn

p2n´1pn´ 1q!

˙p´1

Lp1´ n, S{pq,

up to sign. Consequently the number Lpn, S{pq is equal to
´

2n´1πn

p2n´1pn´1q!

¯p´1

times a

rational number which, when written in reduced form, has denominator equal to the
order of π2npLKUS{pq and of π2n´1pLKUS{pq , the p2nqth and p2n´1qst KU -local
stable homotopy groups of the mod p Moore spectrum.

Proof. Let χ be as in Definition 4.2, i.e., χ is any primitive Dirichlet character
of modulus p2 taking values in Qpζpq. The function Lp1 ´ n, χq vanishes when n
is an odd positive integer (by Observation 3.6); so suppose instead that n is an
even positive integer. Taking the complex norm of both sides of the functional
equation (3.5), we have that:

‚ |Gp1, χq| “ p (since, for χ any primitive Dirichlet character of modulus f ,
we have |Gp1, χq| “

?
f ; see e.g. Theorem 8.15 of [2]),

‚ since χp´1q “ 1 and since n is an even positive integer, we have
ˇ

ˇ

ˇ
e´πin{2 ` χp´1qeπin{2

ˇ

ˇ

ˇ
“ 2.

Consequently functional equation (3.5) yields

|Lp1´ n, χq| “
p2n´1pn´ 1q!

2n´1πn
|Lps, χq|(4.14)

for all positive even integers n.
In the group Dirpp2qrps of Dirichlet characters of modulus p2 taking values in

Qpζpq (see Definition 4.1), complex conjugation acts freely on the nonprincipal char-
acters; consequently, taking a product of the equation (4.14) over all nonprincipal
χ P Dirpp2qrps, we get

(4.15)

ˆ

2n´1

p2n´1pn´ 1q!

˙p´1

|Lp1´ n, S{pq| “
1

πnpp´1q
|Lpn, S{pq|

for all positive even integers n.
Now it follows from the Euler product for Lps, S{pq (see Proposition 4.4) that

Lpn, S{pq is a real number, and it follows from the definition of Lps, S{pq as a
product of Galois conjugates of Dirichlet L-functions that Lp1´n, S{pq, for positive
integers n, is a product of Galois conjugates of generalized Bernoulli numbers, hence
is rational. Consequently equation (4.15) now reads

Lpn, S{pq “ ˘

ˆ

2n´1πn

p2n´1pn´ 1q!

˙p´1

Lp1´ n, S{pq

for all positive even integers n. Now the description of the denominator of Lp1 ´
n, S{pq given in Theorem 4.8 implies the claimed result. �
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5. Consequences for the Leopoldt conjecture.

For a totally real number field F , the classical class number formula5 reads:

lim
sÑ1

ps´ 1qζF psq “
2rF :Qs regF hF

wF
?

∆F

,(5.16)

where regF is the classical regulator of F , hF the class number of F , wF the number
of roots of unity in F , and ∆F the discriminant of F . In [7], Colmez proved an
analogue of (5.16) for the p-adic Dedekind ζ-function of F :

Theorem 5.1. (Colmez.)

(5.17) lim
sÑ1

ps´ 1qζF,ppsq “
2rF :Qs regF,p hF

ś

p|p

´

1´ 1
Nppq

¯

wF
?

∆F

,

where hF , wF , and ∆F are the same as in (5.16), Nppq is the norm of the prime
ideal p, and regF,p is Leopoldt’s p-adic regulator of F , whose definition we give
somewhat informally as follows:

Definition 5.2. Fix a prime number p, and6 an embedding Cp ãÑ C. Let σ1, . . . , σr
be the embeddings of F into Cp (only list the complex embeddings “once”—leave
their conjugates off the list). Let e1, . . . , es be a Z-linear basis for OF ; it follows
from the Dirichlet unit theorem that s “ r ´ 1. The p-adic regulator of F is

(5.18) regF,p “ detpδi logppσipejqqq1ďi,jďs,

where δi is 1 if σi is real and 2 if σj is complex, and where logp is the p-adic
logarithm (take the Maclaurin series for lnp1 ` xq, but regard the coefficients as
p-adic rationals).

In Definition 5.2, we see that we naturally get an s-by-ps ` 1q matrix of p-
adic logarithms of the numbers σipejq, and in (5.18) we simply ignore one of the
columns to get a square matrix, whose determinant we define as the p-adic regulator;
omitting a different column swaps the sign of the determinant, and so regF,p is only
well-defined up to sign. See [17] for further explanation.

The Leopoldt conjecture is simply the conjecture that regF,p is nonzero for all
primes p and all number fields F .

Siegel [25] and Klingen [14] proved that ζF p1´nq is an algebraic rational number
when n is a positive integer, so we can think of the sequence

(5.19) ζF p0q, ζF p´1q, ζF p´2q, . . .

as a sequence of p-adic numbers, and we can ask whether there exists some con-
tinuous function on the p-adic integers whose values at negative integers recovers
the sequence (5.19). This doesn’t work, but for only two reasons, and each can be
dealt with by modifying the question appropriately: what does work is to cancel
out the Euler factors in ζF psq corresponding to primes (of the ring of integers OF )

5The form we give here is somewhat simpler than a typical textbook statement of the class
number formula, since we give the formula only for totally real F . For example, for totally real
F , the discriminant ∆F is always positive, so there is no need to take the absolute value of ∆F

before taking its square root.
6This embedding is used only so that, given an embedding F ãÑ Cp, we can say it’s “real” or

“complex.”
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over p, and then to evaluate the result at s “ 1 ´ pp ´ 1q, 1 ´ 2pp ´ 1q, 1 ´ 3pp ´
1q, 1´ 4pp´ 1q, . . . instead of at s “ 0,´1,´2, . . . .

One then arrives at the result, from [24], that there exists a unique p-adically
continuous function ζF,ppsq such that, for n ą 1 an integer,

ζF,pp1´ npp´ 1qq “ ζF p1´ npp´ 1qq
ź

p|p

´

1´Nppqnpp´1q´1
¯

(5.20)

if p ą 2, and

ζF,pp1´ 2nq “ ζF p1´ 2nq
ź

p|p

`

1´Nppq2n´1
˘

(5.21)

if p “ 2; this result extends the results of [15], which assumed F abelian. In
particular, νp pζF p1´ npp´ 1qqq “ νp pζF,pp1´ npp´ 1qqq and ν2 pζF p1´ 2nqq “
ν2 pζF,2p1´ 2nqq for positive integers n.

Since ζF,p is p-adically continuous and since the sequence of integers
`

1´ pp´ 1q, 1´ ppp´ 1q, 1´ p2pp´ 1q, 1´ p3pp´ 1q, . . .
˘

converges p-adically to 1, using (5.17) we get an equality:

2rF :Qs regF,p hF
ś

p|p

´

1´ 1
Nppq

¯

wF
?

∆F

“ lim
jÑ8

p´pjpp´ 1qqζF,p
`

1´ pjpp´ 1q
˘

.(5.22)

The trick now is to compare (5.22) for a nontrivial choice of F to (5.22) for the
trivial choice of F , i.e., F “ Q, and to compare the resulting ratio to the order
of a homotopy group using Theorem 4.8. Suppose now that F is the smallest
subextension of Qpζp2q{Q in which p is wildly ramified. Then we have:

p “ #
`

π2pp´1qpn´1pLKUS{pq
˘

“ denom

ˆ

ζF p1´ p
npp´ 1qq

ζ p1´ pnpp´ 1qq

˙

,

“ denom

ˆ

ζF,p p1´ p
npp´ 1qq

ζQ,p p1´ pnpp´ 1qq

˙

,

so the order of vanishing of ζK,ppsq at s “ 1 is equal to the order of vanishing of
ζQ,ppsq at s “ 1. We have that

ˆ

1´
1

p

˙

regQ,p “ lim
sÑ1

ps´ 1qζQ,ppsq,

which is nonzero, so limsÑ1ps ´ 1qζF,ppsq also converges and is nonzero. Colmez’s
class number formula (5.17) then yields that

(5.23)
2rF :Qs regF,p hF

ś

p|p

´

1´ 1
Nppq

¯

wF
?

∆F

must be nonzero. Each factor in (5.23) is automatically nonzero, except possibly
for regF,p; so the p-adic regulator regF,p of F must also be nonzero, i.e.,

Theorem 5.3. Let F be the smallest subextension of Qpζp2q{Q in which p is wildly
ramified. Then the Leopoldt conjecture holds for F at the prime p.
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As we already pointed out, the Leopoldt conjecture for abelian extensions of Q
has been settled since [4], over 50 years ago, so Theorem 5.3 is not a new case of
the Leopoldt conjecture at all. The noteworthy thing about the argument we have
given, above, is its use of the v1-periodicity π´1pLKUS{pq – π2pp´1q´1pLKUS{pq –
π4pp´1q´1pLKUS{pq – π6pp´1q´1pLKUS{pq – . . . in homotopy groups to deduce
nonvanishing of the p-adic regulator. More generally:

Observation 5.4. If F is a totally real number field and if we have integers j, k
and spectra E,X such that

(1) for n " 0, the order of π2ppk´1qpn´1pLEXq is equal to the denominator of

the rational number ζF p1´p
n
ppk´1qq

ζp1´pnppk´1qq
,

(2) X admits a self-map Σp2p
k
´2qjX Ñ X which induces an isomorphism in

E˚-homology, and
(3) π´1pLEXq is finite,

then the Leopoldt conjecture holds for F at the prime p.
The argument is as follows: the sequence

#pπ´1pLEXqq,#pπ2pjppk´1q´1pLEXqq,#pπ2p2jppk´1q´1pLEXqq, . . .

is constant, so the order of vanishing of ζF,ppsq at s “ 1 is equal to the order of
vanishing of ζQ,ppsq at s “ 1, so by the same argument using Colmez’s p-adic class
number formula as above, regF,p is nonzero.

Remark 5.5. Every Epk ´ 1q-acyclic finite CW-complex X admits a self-map

Σp2p
k
´2qjX Ñ X, for some j, which induces an isomorphism in Epkq-homology, by

the periodicity theorem of Hopkins-Smith (see [13], or Theorem 1.5.4 of [23]). Here
Epkq˚ is the height k p-primary Johnson-Wilson theory. So we have a very powerful
mechanism for arranging for the second condition in Observation 5.4 to be satisfied,
and the third condition is, in many situations, amenable to explicit computation. It
remains an open question how to produce spectra X and nonabelian number fields
F satisfying the first condition in Observation 5.4, in order to prove potentially
new cases of the Leopoldt conjecture. The Iwasawa-theoretic perspective sketched
in Remark 1.5 represents my best hope for how one might go about producing such
X and F .

6. Appendix: a few entertaining numerical calculations.

6.1. Computed examples of values of Lp1 ´ n, S{pq. While Theorem 4.8 de-
scribes the denominators of Lp1´n, S{pq completely for positive integers n, it says
nothing about the numerators. These numerators are much less predictable than
the denominators. We include a table of a few values of Lp1 ´ n, S{pq and the
prime factorizations of their numerators, which might give the reader a sense of
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this unpredictability:

Lp0, S{3q “ 0

Lp´1, S{3q “
4

3

“
22

3
Lp´2, S{3q “ 0

Lp´3, S{3q “
796

3

“
22 ¨ 199

3
Lp´4, S{3q “ 0

Lp´5, S{3q “
1409884

3

“
22 ¨ 7 ¨ 43 ¨ 1171

3
Lp´6, S{3q “ 0

Lp´7, S{3q “
10595003836

3

“
22 ¨ 2648750959

3

Lp0, S{5q “ 0

Lp´1, S{5q “ 1136

“ 24 ¨ 71

Lp´2, S{5q “ 0

Lp´3, S{5q “
607045659856

5

“
24 ¨ 37940353741

5
Lp´4, S{5q “ 0

Lp´5, S{5q “ 1293561684322985119376

“ 24 ¨ 412 ¨ 3331 ¨ 2486381 ¨ 5807071

Lp´6, S{5q “ 0

Lp´7, S{5q “
1280828318043498475058726863755856

5

“
24 ¨ 401 ¨ 1151 ¨ 1171 ¨ 281677007771 ¨ 525827079851

5
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Lp0, S{7q “ 0

Lp´1, S{7q “ 17624384

“ 26 ¨ 113 ¨ 2437

Lp´2, S{7q “ 0

Lp´3, S{7q “ 60081275301219900531392

“ 26 ¨ 547 ¨ 659 ¨ 7477 ¨ 348304469143

Lp´4, S{7q “ 0

Lp´5, S{7q “
1448428968939581787932808098954336691322688

7

“
26 ¨ 138054547 ¨ 163933047708171216095114393777711

7
Lp´6, S{7q “ 0

Lp´7, S{7q “ 58235259522755629726600502123583976556247364608948281462604992

“ 26 ¨ 14912003737 ¨ 61019695682165635074111760577075533607839054420619.

These examples were computed by solving for Taylor coefficients to compute Bχn
for χ P Dirpp2qrps, as in Definition 3.4, and then multiplying the resulting values of
Bχn as in the definition of Lps, S{pq in Definition 4.2. This process is not difficult
to implement in a computer algebra package (the author did this in both MAGMA
and SAGE).

So, for example, as a special case of Theorem 1.3, we have that the denomi-
nator of Lp´3, S{5q is the order of π7pLKUS{5q, i.e., the 5 in the denominator of
Lp´3, S{5q “ 607045659856

5 is the numerical “shadow” of α1 P π7pS{5q, while the 5 in

the denominator of Lp´7, S{5q “ 1280828318043498475058726863755856
5 is the numerical

“shadow” of v1α1 “ α2 P π15pS{5q.

6.2. Some amusing probability arguments associated to homotopy groups.
The functional equation of Corollary 4.9, the Euler product of Proposition 4.4, and
a computation of Lp´n, S{pq, for a positive integer n, implies an asymptotic prime
count. The fact that the denominator of Lp´n, S{pq also counts the order of a
homotopy group of LKUS{p tells us that the homotopy groups of LKUS{p have a
relationship to the probability that certain “randomly chosen” collections of inte-
gers satisfy appropriate coprimality conditions. These arguments are straightfor-
ward extensions of the classical interpretation of 1{ζp2q as the probability of two
“randomly chosen” integers being coprime. For example:

Question 6.1. Choose an odd prime p. Given a sequence pm1, n1,m2, n2, . . . ,mp, npq
of “randomly chosen” integers, what is the probability that the conditions:

(1) the integers m1, n1,m2, n2, . . . ,mp, np do not all share a common prime
factor ` which is a primitive root modulo p2, and

(2) none of the pairs mi, ni share a common prime factor ` ‰ p which is not a
primitive root modulo p2,

both hold?

The answer to Question 6.1 is

1

p1´ p´2qζp2qLp2, S{pq
,
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since `2p´1
`2p is the probability that m1, n1, . . . ,mp, np are not all in the same residue

class modulo `, and
´

`2´1
`2

¯p

is the probability that, for each i P t1, . . . , pu, mi

and ni are not in the same residue class modulo `. Then the Euler product of
Proposition 4.4 gives us

¨

˝

ź

`RGp

`2 ´ 1

`2

˛

‚

p¨

˝

ź

`PGp

`2p ´ 1

`2p

˛

‚“
1

p1´ p´2qζp2qLp2, S{pq
.

We can use the functional equation in Corollary 4.9 to simplify Lp2, S{pq. For
example:

Example 6.2. Given a sequence pm1, n1,m2, n2,m3, n3q of “randomly chosen”
integers, let P denote the probability that the conditions:

(1) the integers m1, n1,m2, n2,m3, n3 do not all share a common prime factor
` which is a primitive root modulo 9, and

(2) none of the pairs mi, ni share a common prime factor ` which is not a
primitive root modulo 9,

both hold. Then

P “
1

p1´ 3´2q

1

ζp2q

1

Lp2, S{3q

“
9

8

6

π2

ˆ

33

2π2

˙2
1

Lp´1, S{3q

“
39

24π6

3

4
(6.24)

“
59049

64π6
,

which is approximately a 96 percent chance. The factor of 3{4 in (6.24) is the
reciprocal of Lp´1, S{3q “ 4{3, given above. By Theorem 4.8, the factor of three
in the denominator of Lp´1, S{3q, which is responsible for the probability P being
approximately 96 percent instead of approximately 32 percent, is the same factor
which accounts for the nonvanishing of the fourth KU -local stable homotopy group
π4pLKUS{3q of the mod 3 Moore spectrum.
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