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Abstract. Begin with the Hasse-Weil zeta-function of a smooth projective variety over
Q. Replace the variety with a finite CW-complex, replace étale cohomology with com-
plex K-theory KU∗, and replace the p-Frobenius operator with the pth Adams operation
on K-theory. This simple idea yields a kind of “KU-local zeta-function” of a finite CW-
complex. For a wide range of finite CW-complexes X with torsion-free K-theory, we show
that this zeta-function admits analytic continuation to a meromorphic function on the com-
plex plane, with a nice functional equation, and whose special values in the left half-plane
recover the KU-local stable homotopy groups of X away from 2.

We then consider a more general and sophisticated version of the KU-local zeta-
function, one which is suited to finite CW-complexes X with nontrivial torsion in their K-
theory. This more sophisticated KU-local zeta-function involves a product of L-functions
of complex representations of the torsion subgroup of KU0(X), similar to how the Dedekind
zeta-function of a number field factors as a product of Artin L-functions of complex repre-
sentations of the Galois group. For a wide range of such finite CW-complexes X, we prove
analytic continuation of the zeta-function, and we show that the special values in the left
half-plane recover the KU-local stable homotopy groups of X away from 2 if and only if
the skeletal filtration on the torsion subgroup of KU0(X) splits completely.

1. Introduction.

1.1. The main ideas and results. Recall (e.g. Theorem 8.10 from [26]) the calculation
of the KU[1/2]-local stable homotopy groups of spheres1 by Adams-Baird and Ravenel:

Theorem 1.1. The ring of homotopy groups π∗(LKU[1/2]S 0) of the KU[1/2]-local sphere
is determined by the following:

• π0(LKU[1/2]S 0) � Z[1/2].
• π−1(LKU[1/2]S 0) � 0.
• π−2(LKU[1/2]S 0) � (Q/Z)[1/2].
• For all n > 0, π2n−1(LKU[1/2]S 0) is a cyclic group of order equal to the denomina-

tor2 of the rational number ζ(1 − n), up to a power of 2. Here ζ(1 − n) is the value
of the Riemann zeta-function at 1 − n.
• For all n > 0, π2n(LKU[1/2]S 0) is trivial.
• For each integer n, the multiplication map πn(LKU[1/2]S 0) × π−2−n(LKU[1/2]S 0) →
π−2(LKU[1/2]S 0) � (Q/Z)[1/2] is a perfect pairing. In particular, for positive n,
π−1−2n(LKU[1/2]S 0) is also cyclic of order equal to the denominator of ζ(1 − n), up
to a power of 2.
• For each n, the multiplication map πn(LKU[1/2]S 0)×π j−n(LKU[1/2]S 0)→ π j(LKU[1/2]S 0)

is zero unless j = −2 or j = n or n = 0.

Date: June 2023.
1The reader who is not already familiar with stable homotopy groups of Bousfield localizations is advised to

skip ahead to section 1.2, below, where we give a brief introduction to the idea, and its place within computational
stable homotopy theory.

2We adopt the convention that the denominator of 0 ∈ Q is 1.
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It is appealing to be able to describe the orders of Bousfield-localized stable homotopy
groups of a finite CW-complex in terms of special values of a zeta-function of some kind.
Very few results of this kind are already known3: the only other example is [29], where for
odd primes p, it was shown that the orders of the KU-local stable homotopy groups of the
mod p Moore spectrum S 0/p are given by denominators of special values of ζF(s)/ζ(s),
where ζ(s) is the Riemann zeta-function, and ζF(s) is the Dedekind zeta-function of the
smallest subfield F of the cyclotomic field Q(ζp2 ) in which p is wildly ramified.

In this paper we prove that the orders of the KU-local stable homotopy groups of a
much wider class of finite CW-complexes are given by special values of certain zeta-
functions. The most important definition is Definition 3.8, in which we define a KU-local
zeta-function, written ζKU(s, X), for every finite CW-complex X such that

• the complex K-theory KU∗(X) is concentrated in even degrees, and
• the order of the torsion subgroup of KU0(X) is square-free4.

The zeta-function ζKU(s, X) is defined as a product of two factors, a “provisional KU-local
zeta-function” ζ̇KU(s, X), and a “torsion KU-local L-function” Ltors KU(s, X):

ζKU(s, X) = ζ̇KU(s, X) · Ltors KU(s, X), where

ζ̇KU(s, X) =
∏

p

1

det
(
id−p−sΨp | ˆKU0

ℓp (X)

) , and(1)

Ltors KU(s, X) =
∏
w∈Z

∏
ρw

∏
p

1

det
(
id−pw−sΨρw,p,iw (p)

) .(2)

The Euler products (1) and (2) are understood to be valid only in a suitable right-hand half-
plane. The former, (1), is a straightforward Euler product of characteristic polynomials of
Adams operations acting on K-theory of X completed at a prime at which the K-theory is
torsion-free. By contrast, the Euler product (2) is a product of characteristic polynomials of
Adams operations acting on the torsion in the K-theory of X, taken not merely over prime
numbers p, but also prime representations ρ of the torsion subgroup tors KU0(X) of the
K-theory of X; in this paper, a complex representation is said to be prime if it is irreducible
and its image has prime order. See section 3 for details.

In Proposition 3.6, ζKU(s, X) is shown to analytically continue to a meromorphic func-
tion on the complex plane. Proposition 3.6 also yields a factorization of ζKU(s, X) as a
product of shifts (i.e., Tate twists) of L-functions of even Dirichlet characters. Its func-
tional equation is discussed in section 3.2. In Example 2.6 we also see that, for a smooth

3On the other hand, Bousfield-localized stable homotopy groups of algebraic K-theory spectra are well-
known to admit deep relationships to special values of zeta-functions: see Example 4.8 of [34], for example. But
even after a Bousfield localization, algebraic K-theory spectra are almost never finite CW-complexes (except in
the case of the algebraic K-theory of a finite field). We are compelled, by the classical topological applications
of stable homotopy groups, to try to understand the stable homotopy groups of finite CW-complexes, and most
importantly, spheres: for example, the stable homotopy groups of spheres are the attaching maps for stable 2-cell
complexes, so to have any hope of solving the fundamental topological problem of classifying the homotopy
types of finite CW-complexes, one must determine the stable homotopy groups of spheres! To classify the stable
homotopy types of the 3-cell complexes whose 2-skeleton is a fixed 2-cell complex X, this task amounts to
calculating the stable homotopy groups of X; and so on. The point is that calculating stable homotopy groups
of finite CW-complexes is of fundamental importance. See section 1.2 for further discussion of topological
applications of stable homotopy groups of Bousfield-localized finite CW-complexes.

4In fact X need only satisfy a slightly weaker condition than this: it suffices that the filtration quotients of
tors KU0(X) by the skeletal filtration have square-free order. See section 3.1 for details.
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projective cellular variety V over Q whose complex analytic space C(V) has rational coho-
mology concentrated in even degrees, the provisional KU-local zeta-function ζ̇KU(s,C(V))
of the space C(V) recovers the Hasse-Weil zeta-function ζV (s) of the variety V .

The main result in section 3, and in this paper, is a formula for KU-local stable ho-
motopy groups of X in terms of special values of ζKU(s, X) at negative integers. To state
the result, we must explain the factorization of ζKU(s, X) into isoweight factors. The fac-
tor ζ̇KU(s, X) of ζKU(s, X), which is sensitive to the rational K-theory of X, splits as a
product

∏
w∈Z ζ̇

(w)
KU(s, X) of weight w factors, one for each integer w. Similarly, the factor

Ltors KU(s, X) of ζKU(s, X), which is sensitive to the torsion in the K-theory of X, splits as a
product

∏
w∈Z

∏
ℓ|nw

L(w,ℓ)
tors KU(s, X) of weight (w, ℓ) factors, where ℓ is an odd prime divisor

of nw, the order of the 2wth filtration quotient in the skeletal filtration of the torsion sub-
group of KU0(X). We now state Theorem 3.10 and Corollary 3.12, which identify orders
of KU-local stable homotopy groups in terms of denominators of special values of these
“isoweight” factors:

Theorem. Let X be a finite CW-complex whose complex K-theory KU∗(X) is concentrated
in even degrees, and such that the torsion subgroup of KU0(X) has square-free order. Let
a, b be the least and greatest integers n, respectively, such that H2n(X;Z) is nontrivial.
Then the following conditions are equivalent:

(1) The filtration of tors KU0(X) by the skeleta of the CW-complex X splits completely,
i.e., for each n the restriction (tors KU0(X2n))∧p → (tors KU0(X2n−2))∧p is a split
surjection of Ẑp[Ẑ×p]-modules for each odd prime p. Here Ẑ×p acts on p-complete
K-theory via Adams operations.

(2) For all odd integers 2k−1 satisfying 2k−1 > 1−2a, the KU-local stable homotopy
group π2k−1(LKU DX) of the Spanier-Whitehead dual DX of X is finite, and up to
powers of 2, its order is equal to the product∏

w∈Z

denom
(
ζ̇(w)

KU(1 − k, X)
)
·
∏
ℓ|nw

denom
(
L(w,ℓ)

tors KU(1 − k, X)
) ,

up to powers of 2.
(3) For all odd integers 2k − 1 satisfying 2k − 1 < −2b − 3, the KU-local stable

homotopy group π2k−1(LKU DX) is finite of order∏
w∈Z

denom
(
ζ̇(w)

KU(k + 1, X)
)
·
∏
ℓ|nw

denom
(
L(w,ℓ)

tors KU(k + 1, X)
)

up to powers of 2.

Corollary. Suppose that the the skeletal filtration of tors KU0(X) splits completely. Write
N for the order of the group tors KU0(X). Then, for all odd integers 2k − 1 ≥ 1 − 2a, the
order of π2k−1(LKU DX) is equal to the denominator of ζKU(1 − k, X) up to powers of 2 and
powers of F-irregular primes, where F ranges across the wildly ramified subfields of the
cyclotomic field Q (ζN2 ).

“F-irregular primes” are studied in algebraic number theory, e.g. in [17] and [20]. The
Q-irregular primes are merely the ordinary irregular primes. A brief definition of the F-
irregular primes is given preceding Corollary 3.12.

Theorem 3.10 and Corollary 3.12 demonstrate that the Adams-Baird-Ravenel calcula-
tion, Theorem 1.1, is not an isolated phenomenon, but in fact, KU-local stable homotopy
groups of finite CW-complexes are quite commonly expressible in terms of special values
of zeta-functions which are
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• constructed in a natural way (mimicking Hasse-Weil zeta-functions—see below),
• have good properties (e.g. analytic continuation due to Proposition 3.6, functional

equations due to Theorem 2.7 and the discussion in section 3.2),
• and are directly connected to number theory (since they are nontrivially equal to

products of Tate twists of L-functions of Dirichlet characters, by Proposition 3.6)
and arithmetic geometry (since ζV (s) = ζ̇KU(s,C(V)) for many cellular varieties
V).

We remark that the definitions and results of section 3 are more general than what is
stated here in the introduction. In section 3, we allow for a set of primes P at which
KU∗(X) is not necessarily concentrated in even degrees, and has torsion subgroup which
does not necessarily have square-free order. We define an “away-from-P” KU-local zeta-
function ζKU[P−1](s, X) such that the denominators of the special values of ζKU[P−1](s, X)
at negative integers are related to the orders of the KU-local stable homotopy groups of
the Spanier-Whitehead dual of X, up to powers of 2 and primes in P. Consequently, the
methods and results of section 3 can be applied to all finite CW-complexes whose rational
cohomology is concentrated in even degrees.

In this paper, the exposition is oriented toward building up the theory of KU-local zeta
functions of finite CW-complexes in an incremental way: in section 2, we begin with the
Hasse-Weil zeta-function of a smooth projective variety over Q, and we make the simple
change of replacing the Weil cohomology with complex K-theory, and replacing the p-
Frobenius operator on the Weil cohomology with the pth Adams operator on K-theory.
This yields the “provisional KU-local zeta-function” ζ̇KU(s, X) which, as mentioned above,
is sensitive only to information visible to the rational K-theory of X—and consequently
sensitive only to the rational cohomology of X. From there, we make amendments and
improvements to the provisional KU-local zeta-function, eventually arriving at the (non-
“provisional”) KU-local zeta-function ζKU(s, X) in section 3. The author hopes that this
step-by-step method of exposition makes the definitions seem more natural, makes the
motivations more obvious, and makes it more satisfying when we find (in Theorems 2.8
and 3.10) that the special values of these zeta-functions count orders of KU-local stable
homotopy groups.

The subject matter of this paper has significant overlap with that of [38], but the con-
structions and results in this paper are quite different from those of [38], and the aim of
[38] is the opposite of what this paper sets out to do. In [38], Zhang begins with a (p-
adic) Dirichlet character χ, and from that character, constructs a KU-local spectrum whose
homotopy groups are describable in terms of the denominators of the L-values of χ at
negative integers. However, most KU-localizations of finite CW-complexes—e.g. the
KU-localization of any spectrum whose rational homotopy groups have rank > 1—do not
arise from a character in this way. By contrast, in the present paper, we begin with a fi-
nite CW-complex, and from it, we build a zeta-function (which, in the end, will always be
equal to a product of shifts of Dirichlet L-functions, but this is nontrivial!) such that the
denominators of its L-values recover the orders of the KU-local homotopy groups of X. So
the “dictionary” we construct goes in the reverse direction from that of [38]. Having “dic-
tionaries” in both directions is worthwhile, and we hope the reader agrees that this paper
and [38] complement each other.

1.2. The broader program. Given a generalized homology theory E∗ and a spectrum X,
by [7] there exists a Bousfield localization of X at E∗, written LE X. The spectrum LE X
is defined by a certain universal property; see section 1 of [26] for a very approachable
introduction to LE and its basic properties. In the case that E∗ is π∗(−)[P−1], i.e., stable
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homotopy groups with some set P of prime numbers inverted, the effect of the Bousfield
localization LE X on stable homotopy groups is merely to invert the primes in P. That is,
π∗

(
Lπ∗(−)[P−1]X

)
� π∗(X)[P−1]. In that sense, Bousfield localization generalizes the classical

theory of localization in algebra, by which one inverts a set of primes.
However, there are many more generalized homology theories E∗ than those of the form

π∗(−)[P−1] for a set of primes P. For many choices of E∗, the relationship between π∗X and
π∗LE X is more mysterious and subtle than any classical algebraic localization, but yields
data of great topological importance.

Here is the most pressing class of examples. For each prime p and each nonnega-
tive integer n, there exists a generalized homology theory E(n)∗, the p-primary height n
Johnson-Wilson theory. In the base case n = 0, E(0)∗ is merely classical rational homol-
ogy, H∗(−;Q), regardless of the prime p. On the other hand, for all positive integers n,
the generalized homology theory E(n)∗ depends on the choice of prime number p, but the
choice of p is traditionally suppressed from the notation E(n)∗.

In the case n = 1, the generalized homology theory E(1)∗ is the Adams summand of
p-local complex K-theory, and consequently we have isomorphisms5

(3) π∗(LE(1)X) ≃ π∗(LKU(p) X) ≃ π∗(LKU X)(p).

The KU-local and E(1)-local stable homotopy groups have been studied systematically in
[8] and [9]. They have been useful: for example, Thomason [34] showed that KU-local
stable homotopy groups of certain algebraic K-theory spectra agree with the étale K-theory
groups of [14] and [15], and used this fact to great effect in calculations.

The E(n)-localizations LE(n)X for n > 1 are less familiar, but also important. Fix a prime
p and a finite CW-complex X. The chromatic tower is a tower of spectra

· · · → LE(2)X → LE(1)X → LE(0)X

whose homotopy limit is weakly equivalent [27, Theorem 7.5.7] to the p-localization of
X. The calculation of the stable homotopy groups of each individual stage LE(n)X is, at
least in principle, approachable by a sequence of spectral sequences and homotopy fiber
squares (“fracture squares”) which begins with the continuous cohomology of the profinite
automorphism group of a formal group law of height h over a finite field [12], for each
h ≤ n.

In the base case, X = S 0, the chromatic tower plays a central role in many alge-
braic topologists’ understanding of the stable homotopy groups of spheres, i.e., the “sta-
ble stems”: the p-local stable stems are recoverable from the infinite sequence · · · →
π∗LE(2)S 0 → π∗LE(1)S 0 → π∗LE(0)S 0, and each stage in the sequence is, at least in prin-
ciple, calculable starting from certain cohomology calculations arising from formal group
laws.

For n ≥ 2, the stable homotopy groups of LE(n)X have generally been so complicated
that the outcome of making a long and difficult calculation of π∗LE(n)X is a theorem whose
statement—let alone the proof!—is prohibitively long and complicated; see for example
the discussion in [5] of the pioneering calculations of [31]. It puts the subject in a difficult
position when the outcomes of deep and important fundamental calculations are theorems
which are extremely cumbersome to state, even to an audience of experts.

5To be clear: the expression π∗(LKU X)(p) in (3) means the localization, in the classical sense, of the graded
abelian group π∗(LKU X) at the prime p.
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The description of π∗(LE(1)S 0) in terms of special values of ζ(s) (i.e., the p-local version
of Theorem 1.1) suggests a way forward: rather than attempt to describe π∗(LE(n)X) in el-
ementary terms for each m, we might write down a description of the order of πm(LE(n)X),
or of various natural summands of πm(LE(n)X), in terms of special values of various L-
functions or zeta-functions. While πm(LE(n)X) would remain a somewhat mysterious ob-
ject, at least the mystery would be fruitfully identified with some other compelling and
well-studied mystery. Theorem 1.1 demonstrates that even in the case n = 1 and X = S 0,
this approach already yields rewards, in the form of shorter and more natural statements of
theorems.

The main theorem of this paper, Theorem 3.10, demonstrates that in the case n = 1,
there is a simple and natural special-values description of π∗(LKU[1/2]X) for a wide range
of finite CW-complexes X, not merely the case X = S 0 demonstrated by Adams-Baird
and Ravenel, and not merely the case X = S 0/p demonstrated in [29]. The author regards
this as incremental progress toward more fully realizing the perspective described in the
previous paragraph.

1.3. The intended audience and scope of this paper. The author has made an effort to
write this paper so that it can be read by algebraic topologists who do not already know a
lot about zeta-functions, and also number theorists who do not already know a lot about
stable homotopy theory. As a consequence, sometimes a notion is explained which is very
elementary and well-known to one audience, but not to the other. The author apologizes to
any reader who finds this annoying.

Beginning in section 3, the author assumes that the reader is comfortable with basic
notions about Dirichlet characters, e.g. primitivity and conductors. Such material is cov-
ered in many textbooks, like [3], but section 3 of the recent paper [29] is intended to be a
“crash course” in those ideas specifically suited for an audience of algebraic topologists,
so perhaps that reference can be particularly useful to some readers.

Remark 1.2. The results in this paper admit generalizations in several directions. One di-
rection of generalization is to higher heights, i.e., describing E-local zeta-functions of finite
CW-complexes, where E is the spectrum representing a complex-orientable cohomology
theory whose p-height is > 1 for some primes p. However, that direction of generalization
is entirely outside the scope of this paper: it is important to get the KU-local story right
first, and that is what this paper tries to do.

Even within the KU-local story, in some places it is possible to generalize the results
beyond what is described in this paper. For instance, beginning in section 3.1, we restrict
our attention to CW-complexes whose K-theory is concentrated in even degrees. This is
not strictly necessary, but yields cleaner statements and proofs, and makes the ideas and
their motivations more obvious. In this paper the author has chosen to prioritize simplicity
and well-motivatedness of the constructions, rather than reaching for the very greatest
generality.

Remark 1.3. An alternative approach to producing KU-local L-functions and zeta-functions
of finite CW-complexes is to construct p-adic L-functions using Iwasawa’s machinery.
Here is a sketch of the construction for p > 2. One begins with a finite CW-complex
X, splits the group Ẑ×p of p-adic Adams operations as F×p × Ẑp, then considers the ωi-

eigenspace ei ˆKU
0
p(X) of the action of a generator for F×p on ˆKU

0
p(X), where ω is a fixed

primitive (p − 1)th root of unity in Ẑp. Using the structure theory for Iwasawa modules
(see Theorem 13.12 of [35] for a textbook account) and the finiteness of X, each ei ˆKU

0
p(X)
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is pseudo-isomorphic to a direct sum
⊕di

j=1 Λ/ fi, j(T ) of quotients of the Iwasawa algebra
Λ � Ẑp[[T ]] by characteristic polynomials fi,1(T ), . . . , fi,di (T ). If di = 1 for all i, then we
define Lp(s, ωi) := fi(q1−s−1), with q a principal unit in Ẑ×p (see discussion preceding The-
orem 11.6.7 of [23] for a precise account), obtaining a set of (p−1) p-adic L-functions of X;
compare with Iwasawa’s theorem ei(U/C) ∼ Λ/ fi(T ) as in Theorem 11.6.18 of [23]. The
resulting “KU-local p-adic L-functions of finite CW-complexes” have some good proper-
ties but are not guaranteed to be the p-adic interpolations of complex-analytic functions.
More fundamentally, this Iwasawa-theoretic way of building a p-adic L-function yields a
p-adic power series which is only defined up to multiplication by an invertible series in
Ẑp[[T ]]×, so without further work to pin down this indeterminacy, only the p-adic valua-
tions of the special values are well-defined. These functions do not quite have well-defined
special values at negative integers (or anywhere else)!

The author and his student A. Maison are investigating the resulting theory of p-adic
L-functions for finite CW-complexes, but we regard that theory as beyond the scope of this
paper, which is concerned with the complex-analytic case instead.

Conventions 1.4. Throughout this paper, all our CW-complexes will be implicitly under-
stood to be pointed, and all our generalized homology and cohomology theories, including
ordinary homology and K-theory and stable homotopy, are implicitly understood to be re-
duced. There is only one place in this paper, Lemma 2.3, where we think these conventions
might lead to any confusion. We include a reminder of these conventions immediately be-
fore the statement of that lemma.

Furthermore, all our topological constructions on CW-complexes are stable construc-
tions. Consequently, for the sake of the definitions and theorems in this paper, the reader
is welcome to mentally replace every instance of a CW-complex X in this paper with the
suspension spectrum of X, and more generally, to allow a finite spectrum (i.e., an arbitrary
desuspension of a finite CW-complex) in place of X. For example, spheres of negative
dimension are perfectly acceptable finite CW-complexes for the purposes of all the defini-
tions and theorems in this paper!

We also consistently write π∗ for stable homotopy groups. There are no unstable homo-
topy groups appearing in this paper.

I am grateful to an anonymous referee for helpful comments on this paper, especially
for noticing and pointing out that the version of Definition 3.2 that appeared in the first
draft of this paper did not make sense.

2. The provisional KU-local zeta-function of a finite CW-complex.

2.1. Defining the provisional KU-local zeta-function. We begin with a cursory account
of what global Hasse-Weil zeta-functions (henceforth simply called “Hasse-Weil zeta-
functions”) are. For a fuller story, Weil’s original article [36] is a very good starting place.

When constructed via cohomology, the Hasse-Weil zeta-function of a smooth projective
variety X over Q begins as an Euler product over primes p of good reduction for X:

(4)
∏
p<P

∏
n≥0

det(id−p−s Frp |Hn
ét(X/Fp;Qℓ))

(−1)n+1
,

where P is the set of primes of bad reduction, and where Hn
ét(X/Fp;Qℓ) is ℓ-adic étale co-

homology, for a prime ℓ , p, applied to Fp-points of an integral model for X. The notation
Frp denotes the pth-power relative Frobenius operator acting on the étale cohomology. The
Euler product (4) converges for complex numbers s with Re(s) >> 0, and is then (when all
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goes well, depending on X!) analytically continued to a meromorphic function on the com-
plex plane. With a bit more trouble, one can also include appropriate p-local Euler factors
at the primes p ∈ P of bad reduction. Since the set P is finite, such changes only affect
finitely many Euler factors, hence do not affect many of the important analytic properties
of the zeta-function. Special values of the resulting function ζX(s) are of deep interest in
arithmetic geometry; for example, the strong form of the Birch-Swinnerton-Dyer conjec-
ture predicts the behavior of ζE(s) at s = 1, for E an elliptic curve.

The element Frp is a topological generator for the profinite Galois group Gal(Fp/Fp).
The definition (4) makes good sense because the ℓ-adic étale cohomology of the variety
X has, at each prime p , ℓ, a natural action of the topologically cyclic profinite group
Gal(Fp/Fp).

Described in that way, étale cohomology resembles complex topological K-theory,
KU∗. Recall that, for each prime number ℓ, the ℓ-adically complete complex topologi-
cal K-theory ˆKUℓ admits an natural action of the profinite group Ẑ×ℓ of units in the ℓ-adic
integers. This is the action by Adams operations, introduced in [1].

A comparison between Frobenius actions on ℓ-adic étale cohomology and Adams op-
erations on ℓ-adic K-theory is, of course, not a new idea at all: see Sullivan’s paper [32],
for example, or work of Quillen in [25] establishing that, for p , ℓ, the action of Ψp on the
ℓ-completed complex K-theory spectrum ˆKUℓ agrees with the action of the p-Frobenius
operator on the ℓ-completed algebraic K-theory spectrum K (Fp )̂ℓ under the Suslin rigidity
equivalence K (Fp )̂ℓ ≃ ˆKUℓ. In that sense, Ψp really is the p-Frobenius operator.

Our aim in this section is to take that idea seriously, by mimicking the construction of
Hasse-Weil zeta-functions of varieties but using Adams operations in place of Frobenius
operations, to yield some kind of Hasse-Weil-like zeta-function of a topological space X
(not a variety!), and to derive useful topological invariants of X from the special values of
that zeta-function. The idea is simple: write down the Euler product (4) for the Hasse-Weil
zeta-function, but

• rather than X being a smooth projective variety, let X be a finite CW-complex,
• for each prime ℓ, replace ℓ-adic étale cohomology with ℓ-adic complex topological

K-theory,
• for each prime p, replace the Frobenius operator Frp on ℓ-adic étale cohomology

with the pth Adams operation Ψp on ℓ-adic complex topological K-theory,
• and, since complex topological K-theory is 2-periodic, rather than taking the Euler

product over all degrees, we will merely take the Euler product over degrees 0 and
1.

Here is the resulting definition:

Definition 2.1. Let X be a finite CW-complex. Let P be the set of primes consisting of 2
and all of the primes at which the cohomology of X has p-torsion, i.e.,

P = {2} ∪ {p prime : H∗(X;Z) has nontrivial p-torsion} .

For each prime number p, suppose we have chosen a prime number ℓp < P such that p is
a topological generator for the group of ℓp-adic units Ẑ×ℓp . Then the KU-theoretic Euler
product for X is defined as the product over all primes p:

∏
p

∏
n∈{0,1}

det(id−p−sΨp | ˆKUn
ℓp (X))

(−1)n+1
=

∏
p

det
(
id−p−sΨp | ˆKU1

ℓp (X)

)
det

(
id−p−sΨp | ˆKU0

ℓp (X)

) .(5)
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The prime 2 will have to be avoided or excluded in various small ways later in this
paper, simply due to the slightly different properties of 2-local K-theory as compared to
K-theory localized at an odd prime (compare Theorem 8.10 to Theorem 8.15 in [26], for
example). This happened in a small way in Definition 2.1 by including 2 in the set of
primes P. Note that this did not cause any missing Euler factors in the Euler product (5):
the 2-local Euler factor is still present in (5). The author suspects that the prime 2 can be
incorporated elegantly into the theory presented in this paper, by using methods along the
lines of Bousfield’s “united K-theory” [9]. That extension of the theory goes beyond the
scope of this paper, though.

In (5), we chose to use ℓp-adically completed K-theory to maintain the similarity with
the Euler product (4) of a Hasse-Weil zeta-function. It would have worked just as well to
use KU[P−1, p−1]∗, that is, complex K-theory with:

• p inverted, so that the stable Adams operation Ψp is defined, and
• all the primes in P inverted, so that KU∗(X)[P−1, p−1] is a torsion-free (hence free)
Z[P−1, p−1]-module6.

This change would not affect the determinants in (4), hence would not affect the resulting
zeta-function or the theorems we prove about it, below.

Remark 2.2. The author would like to emphasize how naı̈ve the Euler product (5) is: it
comes from blindly mimicking the Euler product of the Hasse-Weil zeta-function, and in
the process, losing hold of any clear interpretation in terms of Lefschetz fixed-point theory.

Recall from Conventions 1.4 that our CW-complexes in this paper are understood to be
pointed, and our generalized (co)homology theories are understood to be reduced. Conse-
quently KU∗(X ∨ Y) � KU∗(X) ⊕ KU∗(Y). The reader who dislikes working with pointed
spaces and reduced theories is welcome to drop the basepoints and work with non-reduced
theories throughout this paper; the one place to be careful is that the wedge product in the
statement of Lemma 2.3 would become a disjoint union.

Lemma 2.3. The KU-theoretic Euler product of a wedge sum X∨Y is equal to the product
of the KU-theoretic Euler products of X and of Y.

Proof. The splitting KU∗(X ∨ Y) � KU∗(X) ⊕ KU∗(Y) respects the Adams operations.

Hence each of the characteristic polynomials det
(
id−p−sΨp | ˆKUn

ℓp (X∨Y)

)
in (5) splits as the

product of the characteristic polynomials det
(
id−p−sΨp | ˆKUn

ℓp (X)

)
and det

(
id−p−sΨp | ˆKUn

ℓp (Y)

)
.

□

Theorem 2.4 establishes the basic properties of the KU-theoretic Euler product, which
are all straightforward consequences of the basic properties of the Chern character:

Theorem 2.4. Let X be a finite CW-complex. Let P be as in Definition 2.1. Write b for the
greatest integer n such that at least one of the two vector spaces H2n(X;Q),H2n+1(X;Q) is
nontrivial. Then the following claims are each true:

• The KU-theoretic Euler product (5) converges absolutely for all complex numbers
s with Re(s) > 1 + b.

• The KU-theoretic Euler product (5) analytically continues to a meromorphic func-
tion ζ̇KU(s, X) on the complex plane.

6If KU∗(X)[P−1, p−1] were not free, we would have to exercise a bit of care about what the determinant ofΨp

acting on KUn(X)[P−1, p−1] ought to mean. We generalize and extend these ideas to handle torsion in K-theory
starting in section 3.
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• The meromorphic function ζ̇KU(s, X) is equal to the L-function of a cellular motive.
That is, ζ̇KU(s, X) is equal to a product of “shifts” of the Riemann zeta-function
ζ(s). The product is as follows:

ζ̇KU(s, X) =
∏
w∈Z

ζ(s − w)β2w(X)−β2w+1(X),(6)

where βn(X) = dimQ Hn(X;Q) is the nth Betti number of X.
• The order of vanishing of ζ̇KU(s, X) at an integer s = m is equal to

(7) −β2m−2(X) + β2m−1(X) +
∑
k≥1

(β2m+4k(X) − β2m+4k+1(X)) .

If the rational cohomology of X is concentrated in even degrees, then all poles of
ζ̇KU(s, X) occur at integers, and their orders are calculated by formula (7).

Proof. Of course the determinant of the linear operator id−p−sΨp |( ˆKUℓp )n(X) acting on the

free Ẑℓp -module ( ˆKUℓp )n(X) is unchanged by first passing to the fraction field Qℓp of Ẑℓp .
However, since all the attaching maps in a minimal S [P−1]-cell decomposition for X[P−1]
are rationally trivial, the action of the Adams operation Ψp on the rationalized ℓp-adic
K-groups

Q ⊗Z ( ˆKUℓp )n(X) � (ℓ−1
p

ˆKUℓp )n(X)

agrees with the Adams operations on the rationalized ℓp-adic K-groups of a wedge of
spheres. We have Adams-operation-preserving isomorphisms

(ℓ−1
p

ˆKUℓp )0(X) �
∐
n∈Z

ℓ−1
p ( ˆKUℓp )0

(
S 2n(H2n(X;Q))

)
and

(ℓ−1
p

ˆKUℓp )1(X) �
∐
n∈Z

ℓ−1
p ( ˆKUℓp )1

(
S 2n+1(H2n+1(X;Q))

)
,

where S m(V) denotes the wedge of spheres whose rational homology in degree m is V , and
whose homology in all other degrees is trivial7.

The point is that the KU-theoretic Euler product for X agrees with the KU-theoretic
Euler product for a wedge of spheres. The number of n-spheres in this wedge is equal to the
Q-linear dimension of Hn(X;Q), i.e., βn. By Lemma 2.3, the KU-theoretic Euler product
of X is equal to the product of the KU-theoretic Euler products of each of the spheres in
that wedge. The Adams operation Ψp acts on ( ˆKUℓp )0(S 2n) � Ẑℓp as multiplication by
pn. Hence the Euler factor for S 2n at the prime p is 1

1−p−s pn =
1

1−pn−s , i.e., it is the Euler
factor of S 0 with s − n “plugged in” for s. Similarly, the Euler factor for S 2n+1 is 1 − pn−s.
This yields that the Euler product for X factors as

∏
w∈Z

∏
p

(
1

1−pw−s

)β2w(X)−β2w+1(X)
, which is

precisely the Euler product for (6). The third claim is now proven.
The product (6) converges absolutely for all complex numbers s with Re(s) > 1 + b,

since the Riemann zeta-function converges absolutely and is zero-free to the right of the
line Re(s) = 1. Each of the factors ζ(s −w) in (6) analytically continues to a meromorphic
function on the complex plane, so the finite product (6) of those factors also analytically
continues to the plane. By uniqueness of analytic continuation, the meromorphic function
ζ̇KU(s, X) is well-defined. This proves the first and second claims.

7This kind of observation is, of course, quite old: it is essentially just the statement of what the Chern character
does to Adams operations, and it is why Bousfield imposes “rational diagonalizability conditions” on the objects
of his categories A(p) and B(p) constructed in [8], for example.
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The fourth claim, about the poles of ζ̇KU(s, X), follows from the fact that the only pole
of the Riemann zeta-function in the complex plane occurs at s = 1, and the fact that the
only poles of 1

ζ(s) at integers are the trivial zeroes of ζ(s), which are simple, and occur at
all negative even integers. □

Theorem 2.4 suggests that we define the KU-local zeta-function of a finite CW-complex
as the analytic continuation of the KU-theoretic Euler product (5). This seems natural from
the point of view of Hasse-Weil zeta-functions: after all, we were led to the KU-theoretic
Euler product by a very simple analogy with the Hasse-Weil zeta-function. It is reasonable
to study the analytic continuation described in Theorem 2.4, but when we reach section 3,
we will have good reason to define the KU-local zeta-function of a finite CW-complex as
a modification and refinement of that analytic continuation, one which pays attention to
torsion in K-theory. For now, we will take the analytic continuation of (5) as a provisional
version of the KU-local zeta-function:

Definition 2.5. Let P be a finite set of primes, with 2 ∈ P. Suppose that X is a finite CW-
complex. We refer to the meromorphic function ζ̇KU(s, X) of Theorem 2.4 as the provisional
KU-local zeta function of X. That is,

ζ̇KU(s, X) =
∏
w∈Z

ζ(s − w)β2w(X)−β2w+1(X).(8)

Finally, for an integer w, we write

ζ̇(w)
KU(s, X) = ζ(s − w)β2w(X)−β2w+1(X),

and we refer to ζ̇(w)
KU(s, X) as the weight w factor in ζ̇KU(s, X). Any single such factor will

be called an isoweight factor.

The provisional KU-local zeta-function is clearly a very crude invariant of a finite CW-
complex. If X and Y are finite CW-complexes whose rational cohomology is concentrated
in even degrees (which will be the case of greatest interest for much of the rest of this
paper), then ζ̇KU(s, X) = ζ̇KU(s,Y) if and only if X and Y are rationally stably homotopy-
equivalent. In other words, ζ̇KU(s,−) is really a HQ-local invariant, not only a KU-local
invariant. It is a peculiar fact that, on the finite CW-complexes whose cohomology is
torsion-free and concentrated in even degrees, the orders of the KU-local stable homotopy
groups are also a HQ-local invariant, and in fact are recoverable from the special values of
ζ̇KU(s,−): see Theorem 2.4, below.

Example 2.6. Here is a very simple example of a provisional KU-local zeta-function of a
finite CW-complex. It is easy to use the methods in this section to see that, for any integer
n, the complex projective space CPn satisfies8

ζ̇KU(s,CPn) =
n∏

w=0

ζ(s − w).(9)

This is precisely the Hasse-Weil zeta-function of the projective space Pn regarded as a
variety over Q.

8To be careful about basepoints: the left-hand side of equation (9) is the provisional KU-local zeta-function of
CPn regarded as a spectrum, i.e., the suspension spectrum of CPn with a disjoint basepoint adjoined. Similarly,
in the left-hand side of (10), we are taking the provisional KU-local zeta-function of the suspension spectrum of
C(V) with a disjoint basepoint adjoined.
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A trivial zero in one zeta-factor in (9) may cancel with the pole in another zeta-factor,
occasionally yielding amusing calculations like

ζ̇KU(1,CP3) = ζ(1)ζ(0)ζ(−1)ζ(−2)

=
−γ · ζ(3)

96π2 ,

where γ is the Euler constant. This example demonstrates that, while ζ(s) has a pole at
s = 1, it is not always true that ζ̇KU(s, X) has a pole at s = 1.

More generally, suppose V is a smooth projective cellular variety overQwith associated
complex analytic space C(V). Suppose that the cohomology H∗(C(V);Q) is concentrated
in even degrees. Then the provisional KU-local zeta-function of the space C(V) recovers
the Hasse-Weil zeta-function of the variety V:

ζ̇KU (s,C(V)) = ζV (s).(10)

One cannot expect (10) to generalize to non-cellular varieties V , like elliptic curves, since
the zeta-functions of such varieties are not products of shifts of ζ(s). Put another way, the
Hasse-Weil zeta-function of a non-cellular variety captures genuinely arithmetic informa-
tion about the variety, not merely topological information. Hence for non-cellular V one
cannot expect to recover ζV (s) from a topological invariant of C(V) like ζ̇KU (s,C(V)).

2.2. The functional equation of the provisional KU-local zeta-function. For each given
weight w, the weight w factor ζ̇(w)

KU(s, X) satisfies a functional equation relating ζ̇(w)
KU(s, X) to

ζ̇(w)
KU(1+w− s, X). This functional equation is easily extracted from the functional equation

from the Riemann zeta-function:
(11)

ζ̇(w)
KU(s, X) =

(
2s−wπs−w−1 sin

(
π(s − w − 1)

2

)
Γ(1 + w − s)

)β2w(X)−β2w+1(X)

ζ̇(w)
KU(1 + w − s, X).

The functional equation (11) is of the usual form of the functional equation of the L-
function of a weight w motive M, which relates L(s,M) to L(1 + w − s,M).

One ought to compare this situation to the situation of the classical Hasse-Weil zeta-
function of a smooth projective variety over Q. That Hasse-Weil zeta-function does admit
a functional equation—it is not only that each of its isoweight factors has a functional
equation, but the whole zeta-function itself also does. But the existence of that functional
equation relies crucially on the (Weil) cohomology of a smooth projective variety satisfying
Poincaré duality.

As an example, consider the case of the projective line. An elementary and classical
calculation of the Hasse-Weil zeta-function yields ζP1 (s) = ζ(s)ζ(s−1). If we agree to write
ζ̂P1 (s) for the completed zeta-function ζ̂(s)ζ̂(s − 1), where ζ̂(s) is the completed Riemann
zeta-function satisfying ζ̂(s) = ζ̂(1 − s), then we have

ζ̂P1 (s) = ζ̂(s)ζ̂(s − 1)

= ζ̂(1 − s)ζ̂(2 − s)

= ζ̂P1 (2 − s),(12)

yielding a functional equation for ζP1 (s). However, the equation (12) exchanged the weight
zero ζ̂-factor coming from the Weil H0(P1) with its Poincaré dual weight 1 ζ̂-factor coming
from the Weil H2(P1)!

In the general story of KU-local zeta-functions of finite CW-complexes, we have not
restricted our attention to finite CW-complexes satisfying any form of Poincaré duality, so
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we cannot expect to get a simple functional equation relating ζ̇KU(s, X) to ζ̇KU(n − s, X)
for any single value of n. Without assuming some kind of self-duality properties on X, it
seems we must compromise:

• either settle for having only a functional equation for each isoweight factor of
ζ̇KU(s, X),
• or settle for having a functional equation relating ζ̇KU(s, X) to ζ̇KU(s, X∗) for some

kind of dual X∗ of X.

We already gave the outcome of the first compromise above, in (11).
The second compromise yields a better result. One formulation of the functional equa-

tion for motivic L-functions is as follows: if M is a motive, with dual motive M∨, then a
functional equation relates L(s,M) to L(1 − s,M∨). The functional equation for ζ̇KU(s, X)
has an especially nice expression in similar terms. Let us write ˆ̇ζKU(s, X) for the com-
pleted provisional KU-local zeta-function of X, which we define naı̈vely by replacing each
zeta-factor ζ(s − w) in (8) with its completion ζ̂(s − w) in the classical sense:

ˆ̇ζKU(s, X) :=
∏
w∈Z

ζ̂(s − w)β2w(X)−β2w+1(X)

=
∏
w∈Z

(
π−(s−w)/2Γ(

s − w
2

)ζ(s − w)
)β2w(X)−β2w+1(X)

.

Theorem 2.7. If we write D for the Spanier-Whitehead dual of a finite spectrum X with
torsion-free cohomology concentrated in even degrees, then we have the functional equa-
tion

ˆ̇ζKU(s, X) = ˆ̇ζKU(1 − s,DX).(13)

Proof. Elementary from (11), Theorem 2.4, and the fact that Hn(DX;Q) � H−n(X;Q). □

2.3. Special values of the provisional KU-local zeta-function. We now study the special
values of the provisional KU-local zeta-function of a finite CW-complex X at negative
integers. Theorem 2.8 generalizes Theorem 1.1, the Adams-Baird-Ravenel calculation of
the KU[1/2]-local stable homotopy groups of spheres in terms of special values of ζ(s).

Theorem 2.8. Let X be a finite CW-complex, and let P be the set of primes defined in
Definition 2.1. Suppose that H∗(X;Z[P−1]) is concentrated in even dimensions. Write
DX for the Spanier-Whitehead dual of X. Write a, b for the least and greatest integers n,
respectively, such that H2n(X;Q) is nontrivial. Then we have the following consequences:

• The KU-local stable homotopy group π2k(LKU DX)[P−1] is trivial if either 2k ≥
1 − 2a or 2k < −2b − 2.
• If 2k − 1 ≥ 1 − 2a, then the group π2k−1(LKU DX) is finite of order equal to9

(14)
∏
w∈Z

denom
(
ζ̇(w)

KU(1 − k, X)
)
,

up to factors of primes in P. We furthermore have an equality

|π2k−1(LKU DX)| = denom
(
ζ̇KU(1 − k, X)

)
(15)

9The integer (14) is indeed well-defined, i.e., the special value ζ̇(w)
KU (1−k, X) of the weight w factor of ζ̇KU (1−

k, X) is rational for all 2k − 1 ≥ 1 − 2a. Similar observations yield well-definedness of (15), (16), and (17).
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up to powers of irregular primes10 and primes in P.
• If 2k − 1 < −2b − 3, the group π2k−1(LKU DX) is finite of order equal to

(16)
∏
w∈Z

denom
(
ζ̇(w)

KU(1 + k, X)
)
.

up to factors of primes in P. We furthermore have an equality

|π2k−1(LKU DX)| = denom
(
ζ̇KU(1 + k, X)

)
(17)

up to powers of irregular primes and primes in P.

Proof. A simple spectral sequence argument suffices. Because P includes all primes at
which the cohomology of X has nontrivial torsion, the Atiyah-Hirzebruch spectral se-
quence for the generalized cohomology theory represented by LKU[1/2]S 0 takes the form

E s,t
2 � Hs(X;Z[P−1]) ⊗Z[1/2] π−t(LKU[1/2]S 0)⇒ π−s−tF

(
X[P−1], LKU[1/2]S 0

)
� π−s−t

(
LKU[1/2]DX

)
[P−1]

dr : E s,t
r → E s+r,t−r+1

r .

The spectral sequence converges strongly, since X is finite. Plotted with the Serre conven-
tions, the spectral sequence E2-term is of the following form:

10In number theory, regular primes (and their complement, the irregular primes) are classical and well-studied,
but since some of the imagined audience for this paper includes topologists who may not be familiar with regular
primes, here is a quick recap. A prime p is irregular if and only if p divides the class number of the cyclotomic
field Q(ζp). Kummer showed that p is irregular if and only if p divides the numerator of the Bernoulli number
B2n = −2n ·ζ(1−2n) for some n ∈ {1, . . . , p−3

2 }. Equivalently, by the Kummer congruences on Bernoulli numbers:
p is irregular if and only if p divides the numerator of B2n for some n ≥ 1.
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...

t = −8

t = −7

t = −6

t = −5

t = −4

t = −3

t = −2

t = −1

t = 0

t = 1

t = 2

t = 3

t = 4

...

s = 2a s = 2a + 2 s = 2a + 4 s = 2a + 6 s = 2a + 8 . . .

□

⋄

□

⋄

□

⋄

□

⋄

□

⋄

. . .

. . .

◦ ◦ ◦ ◦ ◦ . . .

◦ ◦ ◦ ◦ ◦ . . .

...
...

...
...

...

◦ ◦ ◦ ◦ ◦ . . .

◦ ◦ ◦ ◦ ◦ . . .

◦ ◦ ◦ ◦ ◦ . . .

...
...

...
...

...

• In the bidegrees marked with squares (i.e., the t = 0 row, in the even-numbered
columns), we have a direct sum of copies of Z[P−1].
• In the bidegrees marked with diamonds (i.e., the t = 2 row, in the even-numbered

columns), we have a direct sum of copies of Q/Z[P−1].
• The white-colored region is trivial in all other bidegrees.
• In the green-colored regions, in each bidegree in an even-numbered column and

an odd-numbered row, we have a finite abelian group (perhaps trivial, depending
on P and the bidegree). Those bidegrees are marked with a circle.
• The green-colored regions are trivial in all other bidegrees.

In particular, on and below the blue dashed line (i.e., the line s + t = 2a − 1), the E2-
term is concentrated in even-numbered columns and odd-numbered rows. All differentials
originating below the blue-dashed line are zero for degree reasons, and no differentials
originating above the blue-dashed line can hit elements below the blue-dashed line.
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Hence the elements below the blue-dashed line in the E2-term survive unchanged to the
E∞-term. The bidegrees below the blue-dashed line are precisely those which contribute,
in the abutment, to πn(LKU[P−1]DX) with n ≥ 1 − 2a.

An analogous argument shows that there can be no nonzero differentials involving bide-
grees strictly above the line s + t = 2b + 2. Consequently the E∞-term coincides with the
E2-term in all those bidegrees which contribute in the abutment to πn(LKU[P−1]DX) with
n < −2b − 2.

Depending on the attaching maps in the CW-complex X, there may be additive filtration
jumps, so that the abutment is not simply the direct sum of the bidegrees in the E∞-page.
However, such filtration jumps do not affect the number of elements in a given degree.
Hence, if n < −2b−2 or n ≥ 1−2a, then the order of the homotopy group πn(LKU DX)[P−1]
is equal to the product of the orders of the groups Ht(X;Z[P−1]) ⊗Z[1/2] πn+t(LKU[1/2]S 0))
for all integers t. The calculation of the orders of the groups πn(LKU[1/2]S 0)) for n < −2,
from Theorem 1.1, then yields the first claim in the statement of the theorem: if n ≥
1− 2a, then the total order of the bidegrees (s, t) below the dashed blue line contributing to
πn(LKU DX)[P−1] is equal to∏

j

∣∣∣π2 j+n(LKU[1/2]S 0)
∣∣∣β2 j(X)

=

{
1 if 2 | n∏

j denom(ζ(− j − n−1
2 ))β2 j(X) if 2 ∤ n

up to powers of primes in P. By a similar argument, if n < −2b − 3, then the total order of
the bidegrees (s, t) below the dashed blue line contributing to πn(LKU[1/2]DX) is equal to∏

j

∣∣∣π2 j+n(LKU[1/2]S 0)
∣∣∣β2 j(X)

=
∏

j

∣∣∣π−2−2 j−n(LKU[1/2]S 0)
∣∣∣β2 j(X)

=

{
1 if 2 | n∏

j denom(ζ( j + n+3
2 ))β2 j(X) if 2 ∤ n

up to powers of primes in P.
Consequently:

• πn(LKU[P−1]DX) vanishes for even integers n satisfying n ≥ 1 − 2a or n < −2b − 3.
This proves the first claim.
• If 2k − 1 ≥ 1 − 2a, then π2k−1(LKU[P−1]DX) is finite of order

∏
j denom(ζ(1 − j −

k))β2 j(X), up to factors of primes in P. This yields formula (14) in the second claim.
• If 2k − 1 < −2b − 3, then π2k−1(LKU[P−1]DX) is finite of order

∏
j denom(ζ( j + k +

1))β2 j(X), up to factors of primes in P. This yields formula (16) in the third claim.

The product (14) is equal to the denominator of ζ̇KU(1 − k, X) up to primes in P and
primes which occur in numerators of values of ζ̇(w)

KU(1 − k, X), since such factors in nu-
merators may plausibly cancel with factors in denominators of ζ̇(w′)

KU (1 − k, X) for some
weights w′ , w. By classical work of Kummer and the relationship between Riemann
zeta special-values and Bernoulli numbers, it is precisely the irregular primes which oc-
cur as numerators of special values of ζ(s) at negative integers11. Formulas (15) and (17)
follow. □

11It is possible to improve on this theorem by showing that under some conditions on X, there is no cancella-
tion between factors in numerators of special values and factors in denominators of special values. The relevant
tool here is the Herbrand-Ribet theorem [28], which, for a given irregular prime p, gives an algebraic character-
ization of which special values of ζ(s) will have numerator divisible by p. These methods are highly compatible
with those in this paper, but the resulting conditions on X are more meticulous and technical to state. We leave
off that direction of investigation for a later time.
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Corollary 2.9. Let V be a smooth projective cellular variety over Q of positive dimension,
with Hasse-Weil zeta-function ζV (s). Let C(V) denote the complex analytic space associ-
ated to V. Suppose that the cohomology H∗(C(V);Q) is concentrated in even degrees. Let
P be the set of primes

P = {2} ∪ {p prime : H∗(C(V);Z) has nontrivial p-torsion} .

Then, for each positive odd integer 2k − 1, the denominator of the Hasse-Weil zeta-value
ζV (1− k) is equal to the order of the KU-local stable homotopy group π2k−1 (LKU D(C(V)))
of the Spanier-Whitehead dual D(C(V)), up to powers of irregular primes and primes in P.

Proof. Consequence of Example 2.6 and Theorem 2.8. □

Remark 2.10. The statement of Theorem 2.8 suggests that, at irregular primes, there may
be a discrepancy between the denominator of ζ̇KU(1 − k, X) and the product (14), i.e., the
order of π2k−1(LKU DX). This indeed can happen. As an amusing example, let X be the
cofiber of the map S 1355 → S 0 given by the 227-primary α3 ∈ π1355(S 0), i.e., a generator
for the 227-torsion in the third stable stem in which nonzero 227-torsion appears12. Then
π−25LKU DX is cyclic of order equal to

denom(ζ(−11)) · denom(ζ(−689)) = 32760 · 387923085396

= 25 · 34 · 5 · 72 · 11 · 13 · 31 · 47 · 139 · 691

up to a power of 2, while the denominator of ζ̇KU(−11, X) is equal to

denom(ζ(−11) · ζ(−689)) = 25 · 34 · 5 · 72 · 11 · 13 · 31 · 47 · 139.

The discrepancy is because the prime 691 is irregular: ζ(−11) = 691
32760 , and the factor of 691

in the numerator of ζ(−11) cancels with the factor of 691 in the denominator of ζ(−689).

Here is one more comment on the “crudeness” of the provisional KU-local zeta-function.

Definition 2.11. Suppose E is a spectrum such that πn(LES 0) is finite for all n << 0. Let
say that finite spectra X and Y are E-locally numerically equivalent if there exists some
integer N such that

• for all n < N, the abelian groups πn(LE X) and πn(LEY) are each finite,
• and for all n < N, |πn(LE X)| = |πn(LEY)|.

If X and Y are E-locally equivalent (in the sense of Bousfield [7]), then X and Y are
clearly also E-locally numerically equivalent. However, the converse is not true: we see
from Theorem 2.8 that, for finite spectra X and Y with torsion-free cohomology concen-
trated in even degrees, all that is necessary for X and Y to be numerically KU-locally
equivalent is for X and Y to be rationally equivalent. Of course there are many such exam-
ples: for example, the cofiber of α1 ∈ π2p−3(S 0) is a finite spectrum X whose cohomology
is torsion-free and concentrated in even degrees. This spectrum X is not KU-locally equiv-
alent to the wedge sum S 0 ∨ S 2p−2, and yet X and S 0 ∨ S 2p−2 are rationally equivalent, and
KU-locally numerically equivalent. One can replace the role of α1 here with any one of
the divided alpha elements in the stable stems, and arrive at the same conclusion.

All those examples are merely 2-cell complexes, and of course attaching more cells to
kill KU-locally nontrivial torsion elements in π∗ in odd degrees yields many more exam-
ples. Our point is simply that there is an ample supply of KU-local stable homotopy types
to which Theorem 2.8, and more generally the results of this section, apply.

12To be clear: the numbers 227 and 691 appearing in this example are indeed prime.
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Remark 2.12. Of course the group Ẑ×p of Adams operations on p-complete K-theory is ab-
stractly isomorphic to the Galois group Gal(Q(ζp∞ )/Q). Sullivan’s approach to the Adams
conjecture [32] involved producing a particular such isomorphism. Consequently, if we
take the K-theory of a finite CW-complex and tensor it with the complex numbers, the
resulting complex vector space KU0(X) ⊗Z C is a representation of Gal(Q(ζp∞ )/Q), hence
by Kronecker-Weber, a direct sum of degree 1 representations of the absolute Galois group
Gal(Q/Q). The provisional zeta function ζ̇KU(s, X) agrees with the L-function of that Ga-
lois representation.

It is not hard to formulate the ideas in this section as a kind of “class field theory
of spectra.” Recall that the local Langlands correspondence for GLn establishes an L-
function-preserving bijection between certain irreducible representations of GLn(K) and
certain irreducible degree n representations of Gal(K/K). The n = 1 case amounts to class
field theory: the Dirichlet characters (or more generally, Hecke characters) on the “auto-
morphic side” of the correspondence are matched up with degree 1 Galois representations
on the “spectral side” of the correspondence. The Dirichlet (or Hecke) L-functions on the
automorphic side are equal to the Artin L-functions on the spectral side.

The complex K-theory of a finite CW-complex, tensored up to C, yields representations
of the abelianized Galois group Gal(Q/Q). One can match up these Galois representations
with Dirichlet characters in a way that preserves the L-functions. This is fine, but in the
state described in this section, it is not a very good theory. There are simply too few Galois
representations which arise as KU0(X) ⊗Z C for X a finite CW-complex.

Any genuinely useful class field theory of spectra ought to involve many more Galois
representations than the ones arising in this section. In the next section, we give a more
general construction of Galois representations associated to finite CW-complexes. That
construction yields a much richer supply of Galois representations and corresponding L-
functions. The essential idea is not merely to tensor the complex K-theory KU∗(X) with C,
which destroys all information about torsion elements in KU∗(X). Instead, we must find
a way to use the torsion in K-theory in the process of defining KU-local L-functions and
zeta-functions.

3. The KU-local zeta-function of a finite CW-complex with squarefree torsion in
K-theory.

3.1. Defining the KU-local torsion L-function and KU-local zeta-function. In this sec-
tion, we will modify and improve the “provisional KU-local zeta-function” ζ̇KU(s, X) of
a finite CW-complex X. It is now time to restrict the level of generality, in order to tidy
up the theory and make it far more usable. The theorems proven in section 2.3 applied
only to finite CW-complexes whose cohomology (hence also K-theory), after inverting P,
is concentrated in even degrees. Earlier, in section 2, we defined the provisional KU-local
zeta-function in such a way so as not to disallow CW-complexes with K-theory in odd de-
grees, in order to maintain similarity with the classical story of Hasse-Weil zeta-functions.
But, as the reader can see from section 2.3, when the cohomology H∗(X;Z[P−1]) is not
concentrated in even degrees, we were able to prove much less about ζ̇KU(s, X).

It will simplify our theory dramatically if, from now on, we only work with CW-
complexes whose cohomology is concentrated in even degrees, after inverting a set of
primes P. Beginning in this section, we restrict to that level of generality13.

13For the reader who may find this restricted generality disappointing, we remark that it is probably sensible
to think about two KU-local zeta-functions for a given finite CW-complex, one for the even K-groups and one
for the odd K-groups, and to simply treat them as a pair, rather than as a single function. Something roughly
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In Definition 3.8, below, we will give our improved version of the “provisional KU-local
zeta-function.” We will also need an auxiliary definition of something like a “KU-local
Dirichlet L-function.” The idea is to modify our definition of the provisional KU-local
zeta-function with some extra factors that keep track of Adams operations on torsion in the
K-theory of the CW-complex X. We cannot simply take the determinant of the action of
the Adams operations on torsion in K-theory, since we would not get well-defined complex
numbers that way. Instead, we must think of the various ways of embedding the torsion
in KU0(X) into the complex numbers. That is, we must consider the various complex
representations of the torsion subgroup of KU0(X). To each such representation (satisfying
some hypotheses) we will associate an L-function.

For a finite CW-complex X with torsion-free cohomology (hence torsion-free K-theory)
concentrated in even degrees, the filtration of K-theory by the skeleta of X coincides with
the filtration of K-theory defined by the eigenvalues of the Adams operations on KU∗(X).
The agreement of these two filtrations is lost when one begins to study torsion in K-theory:
the filtration by Adams eigenvalues is distinct from the skeletal filtration. It is the skeletal
filtration which has good properties, when considering torsion in K-theory. Here is the
relevant definition:

Definition 3.1. Let P be a set of primes14, including 2. Let X be a finite CW-complex with
cohomology H∗(X;Z[P−1]) concentrated in even degrees. Let ρ be a complex representa-
tion of the torsion subgroup of KU0(X)[P−1].

• We will say that ρ has skeletal weight w if w is the least integer n such that the
composite map

tors KU0(X/X2n)→ tors KU0(X)[P−1]
ρ
−→ GL(V)

is trivial. Here X2n denotes the 2n-skeleton of X.

similar is done already in the study of p-adic L-functions, where one begins with a classical L-function L(s) and
p-adically interpolates its values L(−a), L(1− p−a), L(2−2p−a), L(3−3p−a), . . . separately for each individual
residue class a modulo p − 1.

14Here is an explanation of the role of P here and throughout this section. Later, in Theorem 3.10, we will be
able to prove good properties of a certain zeta-function associated to a finite CW-complex X with cohomology
concentrated in even degrees, under a hypothesis which is a bit weaker than asking that the torsion subgroup
of KU0(X) has square-free order. We might reasonably want to apply these methods and results to finite CW-
complexes which fail to satisfy that hypothesis. Since X is a finite CW-complex, there is some finite set of primes
P such that, after inverting the primes in P, X does satisfy the hypotheses of Theorem 3.10. So the role of P
throughout this section is that it is a set of “bad primes” which we will invert, so that the results of this section
can be applied to any finite CW-complex X.
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• We will say that the skeletal filtration of tors KU0(X)[P−1] splits additively if each
of the subgroup inclusions in the skeletal filtration

(18)
... � _

��
ker

(
tors KU0(X)[P−1]→ tors KU0(X6)[P−1]

)
� _

��
ker

(
tors KU0(X)[P−1]→ tors KU0(X4)[P−1]

)
� _

��
ker

(
tors KU0(X)[P−1]→ tors KU0(X2)[P−1]

)
� _

��
... � _

��
tors KU0(X)[P−1]

of tors KU0(X)[P−1] is a split monomorphism of abelian groups. We will say that
the skeletal filtration of tors KU0(X)[P−1] splits completely if, after completing at
each prime ℓ, each of the subgroup inclusions in (18) is a split monomorphism of
Ẑℓ[Ẑ×ℓ ]-modules.
• Regardless of whether the skeletal filtration of tors KU0(X)[P−1] splits, we will

write tors(w) KU0(X)[P−1] for the skeletal filtration w subquotient of tors KU0(X)[P−1],
i.e.,

tors(w) KU0(X)[P−1] =
ker

(
tors KU0(X)[P−1]→ tors KU0(X2w)[P−1]

)
ker

(
tors KU0(X)[P−1]→ tors KU0(X2w+2)[P−1]

) .
Now we can define an Euler product which, again, cleaves as closely as possible to the

Hasse-Weil Euler product (4), but this time, our Euler product will “pay attention” to tor-
sion in K-theory. Let P again be a set of primes, including 2. Suppose that X is a finite
CW-complex whose cohomology H∗(X;Z[P−1]) is concentrated in even degrees. Further-
more, suppose that, for each integer w, the order of tors(w) KU0(X)[P−1] is square-free.
Let nw denote the order of tors(w) KU0(X)[P−1]. The group of units Z/n2

wZ
× decomposes

canonically as the product
∏
ℓ|nw
Z/ℓ2Z× taken over all the primes ℓ dividing nw. The group

tors(w) KU0(X)[P−1] is non-canonically isomorphic to the product, over all such primes ℓ,
of the ℓ-Sylow subgroup of Z/ℓ2Z×. Write Syl(nw) for that product of ℓ-Sylow subgroups,
and choose an isomorphism iw : Syl(nw)

�
−→ tors(w) KU0(X)[P−1].
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Now, given a complex representation ρ of tors(w) KU0(X)[P−1], we have group homo-
morphisms

Syl(nw)
iw
−→ tors(w) KU0(X)[P−1]
Ψp

−→ tors(w) KU0(X)[P−1]
ρ
−→ GL(V)

where p is any prime not dividing nw. The resulting homomorphism ρ ◦ Ψp ◦ iw extends
canonically to a group homomorphism

Ψρ,p,iw : Z/nwZ
× → GL(V)

which
• agrees with ρ ◦ Ψp ◦ iw on the summand Syl(nw) of Z/nwZ

×,
• and is trivial on the complementary summand of Syl(nw) in Z/nwZ

×.
For any such prime p, the group Z/nwZ

× furthermore has a particular element named
p—simply the integer p in Z, regarded as a residue class in Z/nwZ

×. We may evaluate
Ψρ,p,iw at p to get an element of GL(V). Consider the Euler product∏

p

det
(
id−pw−sΨρ,p,iw (p)

)−1
(19)

taken over all primes p which do not divide nw. The Euler product (19) mimics the Euler
product of the Dirichlet L-function of a Dirichlet character χ,∏

p

(
1 − p−sχ(p)

)−1

as well as the Euler product of the Artin L-function of a Galois representation ρ : Gal(F/Q)→
GL(V), ∏

p

det
(
id−p−sρ

(
Fr |V Ip

))−1
,

where Fr is a lift of the Frobenius element in Gal((OF/p)/Fp) to an element of Gal(F/Q),
and Ip is the p-inertia subgroup of Gal(F/Q). The power w − s, rather than −s, in (19)
simply arranges for the skeletal weight w torsion in K-theory to contribute to weight w fac-
tors in the L-function. In the torsion-free case (as in Definition 2.1), this was unnecessary,
since these weights all agree automatically: the action of Adams operations on rational
K-groups naturally recovers the skeletal weight, by the relationship between the skeletal
filtration and the filtration by Adams eigenvalues, discussed before Definition 3.1. Since
that relationship is lost when one considers the torsion in K-theory, the L-factors coming
from torsion in K-theory must be put into the correct weight “by hand,” i.e., by having a
factor of pw−s rather than p−s in (19).

Since Z/nwZ
× is abelian, its representations split as direct sums of one-dimensional

representations. For such a one-dimensional representation π, Ψπ,p,iw is a homomorphism

Z/nwZ
× → C×,

i.e., a Dirichlet character of modulus nw. It is not necessarily the case that the Euler product
(19) is the Dirichlet L-function of any single Dirichlet character, though. The trouble is
that, due to the effect of the Adams operations, for distinct primes p1 and p2 it may happen
that the p1-local Euler factor in (19) is the p1-local Euler factor of one Dirichlet character,
while the p2-local Euler factor in (19) is the p2-local Euler factor of some other Dirichlet
character.
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The solution is simply to take the product over sufficiently many representations: the
Euler product ought not to merely be a product over prime numbers, but also a product
over prime representations.

Definition 3.2. Let G be a finite cyclic group. A representation ρ : G → GL(V) of G is
prime if it is irreducible and the image of ρ has prime order.

Definition 3.3. Given a positive integer n, we let Dirprime(n2) be the set of Dirichlet char-
acters of modulus n2 which

• have conductor equal to ℓ2 for some prime divisor ℓ of n, and
• are trivial on the complementary summand of Sylℓ(Z/n

2Z×) ⊆ Syl(n) in Z/n2Z×.
We call the Dirichlet characters in Dirprime(n2) the prime Dirichlet characters of modulus
n2.

Examples 3.4. Given a positive integer n, the number of prime representations of a cyclic
group of order n is

∑
p|n(p − 1), where the sum is taken over all prime divisors of n. This

is also the number of prime Dirichlet characters of modulus n2. It is straightforward to
construct a bijection between the set of prime representations of a cyclic group of order n
and the set of prime Dirichlet characters of modulus n2, but we hope the reader will forgive
some very elementary examples to demonstrate how it works. We think these examples
help to make it clear how Definitions 3.2 and 3.3 play out in practice, and they make the
proof of Proposition 3.6 more transparent.

• Suppose G is a cyclic group of order 3. It is straightforward to see that G has 2
prime representations. Similarly, while there are ϕ(32) = 6 Dirichlet characters of
modulus 32, only four have conductor equal to 9, and of those, precisely two are
even, i.e., satisfy χ(−1) = 1. The complementary summand of the 3-Sylow sub-
group of Z/9Z× is generated by −1, so the prime Dirichlet characters of modulus 9
are precisely the even Dirichlet characters of modulus 9. Since each such Dirichlet
character is determined by its value on an element of order 3 in Z/9Z×, the prime
Dirichlet characters of modulus 9 are in bijection with the prime representations
of a cyclic group of order 3.
• Now suppose that G is a cyclic group of order 15 = 3 · 5. Then G has 2 irreducible

representations whose image has order 3, and 4 irreducible representations whose
image has order 5, for a total of 6 prime representations. Similarly, there are
precisely ϕ(152) = 120 Dirichlet characters of modulus 152, but only two15 of
conductor 9 which vanish on the complementary summand in Z/225Z× of the 3-
Sylow subgroup of Z/9Z× ⊆ Z/225Z×, and only four16 of conductor 25 which
vanish on the complementary summand in Z/225Z× of the 5-Sylow subgroup of
Z/15Z× ⊆ Z/225Z×. Dirichlet characters of the former kind are determined by
their value on an element of order 3 in Z/225Z×, while Dirichlet characters of the
latter kind are determined by their value on an element of order 5 in Z/225Z×. It
is easy to see the one-to-one correspondence between the prime representations of
G and the prime Dirichlet characters of modulus 225.
• For the rest of this paper, we will only use Definitions 3.2 and 3.3 in the case where

the order n of the cyclic group is square-free, but here we will give a non-square-
free example just to demonstrate how the correspondence works. Consider the

15Specifically, these are the two Dirichlet characters χ of modulus 225 such that χ(101) is a primitive third
root of unity and χ(127) = 1.

16Specifically, these are the four Dirichlet characters χ of modulus 225 such that χ(101) = 1 and χ(127) is a
primitive fifth root of unity.
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case where G is cyclic of order 9. Then G still has only 2 prime representations.
Among the ϕ(92) = 54 Dirichlet characters of modulus 92, there are 27 which van-
ish on the complementary summand of the 3-Sylow subgroup of Z/81Z×, and of
those 27, there are precisely two of conductor 9, namely, those Dirichlet charac-
ters χ in which χ(2) is a primitive cube root of unity. Each such Dirichlet character
is determined by its value on a 3-torsion element of Syl3(Z/81Z×), i.e., it corre-
sponds to a prime representation of a cyclic group of order 3.

Now consider the Euler product∏
w∈Z

∏
ρw

∏
p

det
(
id−pw−sΨρw,p,iw (p)

)−1
(20)

where:
• the product

∏
ρw

ranges over all the prime representations of tors(w) KU0(X)[P−1],
• and the product

∏
p is taken over all primes p not dividing the order of tors KU0(X)[P−1].

Of course the product
∏

w∈Z in (20) is finite, since X is a finite CW-complex, so tors(w) KU0(X)[P−1]
is trivial for all but finitely many skeletal weights w.

We reiterate our assumptions so far in this section:

Assumptions 3.5. • P is a set of primes, including 2,
• X is a finite CW-complex with cohomology H∗(X;Z[P−1]) concentrated in even

dimensions,
• and, for each integer w, the skeletal weight w subquotient of tors KU0(X)[P−1] has

square-free order nw.

We also adopt the following notation: given a Dirichlet character χ, we write χ̃ for
its associated primitive character, i.e., χ̃ is a Dirichlet character of modulus equal to the
conductor of χ, and χ is induced up from χ̃.

With those assumptions and that notation, we have the following result:

Proposition 3.6. The Euler product (20) is equal to

(21)
∏
w∈Z

∏
χ∈Dirprime(n2

w)

L(s − w, χ̃).

Consequently the Euler product (20) does not depend on the choice of iw, and it con-
verges absolutely for all s ∈ C such that Re(s) > 1 + c, where c is17 the greatest integer N
such that tors KU0(X)[P−1] has a nontrivial summand of skeletal weight N. Furthermore,
(20) analytically continues to a meromorphic function on the complex plane.

Proof. Fix an integer w. Let p be a prime not dividing nw. For each prime ℓ not dividing
nw, we know from the Atiyah-Hirzebruch spectral sequence

H∗(X; ˆKU
∗

ℓ(S
0)[P−1])⇒ ˆKU

∗

ℓ(X)[P−1]

that the Ẑℓ[Ẑ×ℓ ]-module tors(w) ˆKU
0
ℓ (X)[P−1] is a subquotient of ˆKU

0
ℓ (X

2w/X2w−1), i.e., the
ℓ-complete K-theory of a wedge of 2w-dimensional spheres, on which the Adams oper-
ation Ψp acts by multiplication by pw. The Euler product (20) is taken only over those
primes p which do not divide nw, so the action of Ψp on tors(w) KU0(X)[P−1] is by an auto-
morphism. This automorphism depends on p and on w, but of course it does not depend on
ρw. Hence, as explained in Examples 3.4, as ρ ranges over the set of prime representations

17A simple upper bound for c is the greatest integer N such that H2N (X;Z[P−1]) is nontrivial. Hence, if we
call the latter integer b, then (20) converges absolutely for all s ∈ C such that Re(s) > 1 + b.
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of tors(w) KU0(X)[P−1], the representations Ψρ,p,iw range over the elements of Dirprime(n2
w).

That is, given an element χ ∈ Dirprime(n2
w), there exists precisely one prime representation

ρw such that χ = Ψρw,p,iw .
Now consider the p-local Euler factor (1 − pw−sχ̃(p))−1 in the Dirichlet L-series of

χ̃ evaluated at w − s. This L-factor occurs precisely once as an L-factor in (20), as
det

(
id−pw−sΨρw,p,iw (p)

)−1
for precisely that prime representation ρw such that χ = Ψρw,p,iw .

The product formula (21) follows immediately. □

Remark 3.7. Choose a Dirichlet character χ of conductor ℓ2 appearing in (21). Then χ
is trivial on the complementary summand F×ℓ of the ℓ-Sylow subgroup of Z/ℓ2Z×. This is
precisely the opposite of the behavior of the mod ℓ cyclotomic character and its nontrivial
powers.

The Dirichlet L-functions considered in Mitchell’s paper [22] are L-functions only of
powers of cyclotomic characters. For that reason, the relationships between K(1)-local
homotopy theory and special values of L-functions considered in [22] are orthogonal to the
relationships considered in this paper. (The paper [22] also is about K(1)-local algebraic
K-theory, rather than localizations of finite CW-complexes. This difference is important
and fundamental, as described in a footnote in section 1.1.)

Definition 3.8. Let P be a set of primes and let X be a finite CW-complex satisfying As-
sumptions 3.5.

• The torsion KU[P−1]-local L-function of X, written Ltors KU[P−1](s, X), is the mero-
morphic function on C given by the analytic continuation of the Euler product∏

w∈Z
∏
ρw

∏
p det

(
id−pw−sΨρw,p,iw (p)

)−1
from (20).

• The KU[P−1]-local zeta-function of X, written ζKU[P−1](s, X), is the product of the
provisional KU-local zeta-function of X (defined in Definition 2.5) with the torsion
KU[P−1]-local L-function of X:

ζKU[P−1](s, X) = ζ̇KU(s, X) · Ltors KU[P−1](s, X).

• Given an integer w, we will write L(w)
tors KU[P−1](s, X) for the weight w factor∏

ρw

∏
p

det
(
id−pw−sΨρw,p,iw (p)

)−1

of Ltors KU[P−1](s, X). We will write ζ(w)
KU[P−1](s, X) for the weight w factor

ζ̇(w)
KU[P−1](s, X) · L(w)

tors KU[P−1](s, X)

of ζKU[P−1](s, X).
• Finally, given an integer w and a prime divisor ℓ of the order nw of tors(w) KU0[P−1],

we write L(w,ℓ)
tors KU[P−1](s, X) for the factor

L(w,ℓ)
tors KU[P−1](s, X) =

∏
χ

L(s − w, χ̃),(22)

of L(w)
tors KU[P−1](s, X), where the product (22) is taken over all the characters χ ∈

Dirprime(n2
w) of conductor equal to ℓ2.



KU-LOCAL ZETA-FUNCTIONS OF FINITE CW-COMPLEXES. 25

As a consequence of Definition 2.5 and Proposition 3.6, we have

ζKU[P−1](s, X) =
∏
w∈Z

ζ(s − w)dimQ H2w(X;Q) ·
∏

χ∈Dirprime(n2
w)

L(s − w, χ̃)

 ,(23)

where again nw is the order of the skeletal weight w summand of tors KU0(X)[P−1].

Proposition 3.9. The L-function Ltors KU[P−1](s, X) and the zeta-function ζKU[P−1](s, X) de-
pend only on the set of primes P and the stable homotopy type of X. That is, Ltors KU[P−1](s, X)
and ζKU[P−1](s, X) do not depend on the choice of CW-decomposition of X.

Proof. The skeletal filtration of tors KU0(X)[P−1], defined above in (18), is simply the
Atiyah-Hirzebruch filtration on the torsion in the abutment KU∗(X)[P−1] of the Atiyah-
Hirzebruch spectral sequence

E∗,∗2 � H∗(X; KU∗[P−1])⇒ KU∗(X)[P−1]

constructed by choosing a CW-decomposition of X, regarding that CW-decomposition as a
tower of cofiber sequences, and applying the generalized cohomology theory KU∗(−)[P−1]
to that tower of cofiber sequences to get an exact couple E .

However, the same spectral sequence—and consequently the same filtration—is
constructible by other means. Let E ′ be the exact couple obtained by applying the functor
[Σ∗X,−] to the Postnikov tower of KU. By a classical theorem of Maunder [21], the derived
exact couple of E ′ agrees with the derived exact couple of E , i.e., starting from its E2-page,
the Atiyah-Hirzebruch spectral sequence is constructible using the Postnikov filtration on
KU rather than the cellular filtration of X. Hence the spectral sequence does not depend on
the choice of cellular filtration on X, and hence the skeletal filtration on tors KU0(X)[P−1]
does not depend on the choice of cellular filtration of X. The claim follows. □

3.2. Functional equations for Ltors KU(s, X) and ζKU(s, X). One can use the functional
equation for Dirichlet L-functions to prove a functional equation for Ltors KU[P−1](s, X), as
follows. The classical completed Dirichlet L-function of an even18 primitive Dirichlet
character of modulus ℓ, Λ(s, χ) := (π/ℓ)−s/2Γ(s/2)L(s, χ), satisfies the functional equation
Λ(s, χ) = W(χ)Λ(1 − s, χ̄) (see for example 8.5 of [24]). Here W(χ) is the root number
of the Dirichlet character χ, defined as W(χ) := τ(χ)√

ℓ
, where τ(χ) is the Gauss sum τ(χ) =∑ℓ

m=1 χ(m)em/ℓ ∈ C.
Let L̂tors KU[P−1](s, X) denote the product

∏
w∈Z

∏
χ∈Dirprime(n2

w) Λ(s − w, χ̃) of the com-
pleted Dirichlet L-functions of the characters χ appearing in the factorization (21) of
Ltors KU[P−1](s, X). Since W(χ)W(χ) = 1, the product of the root numbers

∏
χ∈DirQ(ζ

ℓ2
)[ℓ]∗

W(χ)
must be ±1, yielding a functional equation

L̂tors KU[P−1](s, X) = ±L̂tors KU[P−1](1 − s,Σ−1DX)(24)

for L̂tors KU[P−1](s, X).
Aside from the ± in (24) arising from the root number, the other obvious difference be-

tween the functional equation (24) for L̂tors KU[P−1](s, X) and the functional equation (13) for
ˆ̇ζKU(s, X) is the presence of the desuspension Σ−1. The functional equation (24) relates the
completed KU-local torsion L-functions of X and of the desuspended Spanier-Whitehead
dual DX, while the functional equation (13) relates the completed KU-local provisional
zeta-functions of X and of the Spanier-Whitehead dual DX, without any desuspension.

18A Dirichlet character χ is even if χ(−1) = 1. All Dirichlet characters whose L-functions occur as factors in
Ltors KU[P−1](s, X) are even.
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The reason for this difference is the shape of the universal coefficient sequence in the
complex K-theory of a finite CW-complex X (originally [2], but see [37] for a published
source, or Theorem IV.4.5 of [16] for a useful wide generalization):

(25) 0→ Ext1Z(KUn−1(X),Z)→ KUn(X)→ homZ(KUn(X),Z)→ 0.

The left-hand term in (25) is torsion and depends only on the torsion in KUn−1(X) �
KU1−n(DX), while the right-hand term in (25) is torsion-free and depends only on the
torsion-free part of KUn(X) � KU−n(DX). Consequently the effect of Spanier-Whitehead
dualization in K-theory is that there is a natural degree shift of 1 in the K-theoretic tor-
sion, while the torsion-free part of K-theory does not get shifted in this way19. The shift
in the K-theoretic torsion is the reason the functional equation for the KU-local torsion
L-function must relate X and Σ−1DX, rather than X and DX.

3.3. Special values of the KU-local zeta-function. Finally, we had better see how these
constructions relate to orders of homotopy groups, or all these definitions are worth very lit-
tle. Recall that Theorem 2.8 expressed orders of KU-local stable homotopy groups of some
finite CW-complexes in terms of special values of provisional KU-local zeta-functions,
away from 2 and the primes dividing the order of the torsion subgroup of KU0(X). Theo-
rem 3.10 extends Theorem 2.8 to those primes p such that the order of the torsion subgroup
of KU0(X) is divisible by p, but not p2:

Theorem 3.10. Let P be a set of primes with 2 ∈ P, and let X be a finite CW-complex
satisfying Assumptions 3.5. Let a, b be the least and greatest integers n, respectively, such
that H2n(X;Z[P−1]) is nontrivial. Then the following conditions are equivalent:

• The skeletal filtration of tors KU0(X)[P−1] splits completely.
• For all odd integers 2k−1 satisfying 2k−1 > 1−2a, the KU-local stable homotopy

group π2k−1(LKU DX) is finite, and up to powers of primes in P, its order is equal
to the product20

(26)
∏
w∈Z

denom
(
ζ̇(w)

KU(1 − k, X)
)
·
∏
ℓ|nw

denom
(
L(w,ℓ)

tors KU[P−1](1 − k, X)
)

of denominators of the isoweight factors in ζKU(s, X).
• For all odd integers 2k − 1 satisfying 2k − 1 < −2b − 3, the KU-local stable

homotopy group π2k−1(LKU DX) is finite of order∏
w∈Z

denom
(
ζ̇(w)

KU(k + 1, X)
)
·
∏
ℓ|nw

denom
(
L(w,ℓ)

tors KU[P−1](k + 1, X)
)

up to powers of primes in P.

19Because of this difference, the author knows of no single functional equation for the product ζ̂KU[P−1](s, X)

of ˆ̇ζKU (s, X) and L̂tors KU[P−1](s, X). One would like to find some kind of dualization functor D′ on finite CW-
complexes, which has the same effect as the Spanier-Whitehead dualization D on the torsion-free part of K-theory,
but which, unlike D, does not introduce a degree shift in the torsion in K-theory. Then one would have a nice
functional equation ζ̂KU[P−1](s, X) = ±ζ̂KU[P−1](1 − s,D′X). The author would be pleased to learn of a way to do
this. Perhaps it is possible by modifying D in roughly the way that Anderson [2] modified the Brown-Comenetz
dualization functor I.

20To be clear, the product
∏
ℓ|nw in (26) is taken over all prime divisors ℓ of the order nw of

tors(w) KU0(X)[P−1].
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Proof. Throughout, we continue to use the notation χ̃ from section 3.1: if χ is a Dirichlet
character, then χ̃ is its associated primitive character.

Fix an integer w. Since nw =
∣∣∣tors(w) KU0(X)[P−1]

∣∣∣ is assumed square-free, it is a
product of distinct primes. Let ℓ be a prime factor of nw, and let Dℓ denote the set of
Dirichlet characters χ ∈ Dirprime(n2

w) of conductor ℓ2. Then {χ̃ : χ ∈ Dℓ} is precisely the
set DirQ(ζℓ)(ℓ

2)[ℓ]∗ of elements of order exactly ℓ in the group DirQ(ζℓ)(ℓ
2) of Q(ζℓ)-valued

Dirichlet characters of modulus ℓ2. Using Carlitz’s estimates [10],[11] on p-adic valuations
of generalized Bernoulli numbers, it was shown in [29] that, for any positive integer k, the
product

∏
χ̃∈DirQ(ζℓ )(ℓ

2)[ℓ]∗ L(1 − k, χ̃) is a rational number whose denominator is given by:

denom

 ∏
χ̃∈DirQ(ζℓ )(ℓ

2)[ℓ]∗
L(1 − k, χ̃)

 =
{

1 if ℓ − 1 ∤ k
ℓ if ℓ − 1 | k.(27)

Consequently, for positive integers k, the denominator of L(w)
tors KU0(X)[P−1](1 − k, X) is

equal to the product, over all prime factors ℓ of nw, of the numbers{
1 if ℓ − 1 ∤ k + w
ℓ if ℓ − 1 | k + w.

We must compare that denominator to the order of π2k−1(LKU DX). To do this, we will
work one prime at a time. Fix a prime factor ℓ of the order of tors KU0(X)[P−1]. Consider
the homotopy fixed-point/descent spectral sequence (this is the n = 1 case of the construc-
tions in [12]; see that paper and its discussion of the relationship to the earlier constructions
of [25]):

E s,t
2 � Hs

c

(
Ẑ×ℓ ; ˆKU

−t
ℓ (X)

)
⇒ πt−s

(
F(X, ˆKUℓ)hẐ×ℓ

)
(28)

� πt−sF
(
X, LK(1)S

)
dr : E s,t

r → E s+r,t+r−1
r ,

where K(1) is the ℓ-primary height 1 Morava K-theory spectrum. To be clear, the notation
F(X,Y) denotes the function spectrum of maps from X to Y , so that πnF(X,Y) � [ΣnX,Y] �
Y−n(X).

We need to make an analysis of what the E2-term of spectral sequence (28) looks like,
under the stated hypotheses on X. For each integer k, we have the short exact sequence of
graded Ẑℓ[Ẑ×ℓ ]-modules

(29) 0→
(
tors KU−2k(X)[P−1]

)∧
ℓ
→ ˆKU

−2k
ℓ (X)[P−1]→

(
torsfree KU−2k(X)[P−1]

)∧
ℓ
→ 0.

Consider the long exact sequence induced in Hs
c(Ẑ×ℓ ;−) by the short exact sequence

(29). The group Hs
c(Ẑ×ℓ ; tors ˆKU

−2k
ℓ (X)) is trivial if s > 1, since it is the continuous co-

homology of a profinite group Ẑ×ℓ � F
×
ℓ × Ẑℓ of ℓ-cohomological dimension 1 (see for

example Corollary 2 of section I.4 of [30] for this standard argument). We claim that

H0
c

(
Ẑ×ℓ ; torsfree ˆKU

−2k
ℓ (X)

)
is also trivial if k > −a or k < −b. The argument is simply that

the action of the Adams operations on torsfree ˆKU
−2k
ℓ (X) is detected on the rationalization

Q ⊗Z torsfree ˆKU
−2k
ℓ (X) � Q ⊗Z ˆKU

−2k
ℓ (X),

and the fact that the Adams operations act diagonally on rational K-theory (the same argu-
ment, essentially by the Chern character, as we used in the proof of Theorem 2.4) implies
vanishing unless −b ≤ k ≤ −a.
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Consequently (29) yields an isomorphism

H0
c (Ẑ×ℓ ; tors ˆKU

−2k
ℓ (X)) � H0

c (Ẑ×ℓ ; ˆKU
−2k
ℓ (X))(30)

and a short exact sequence
(31)

0→ H1
c (Ẑ×ℓ ; tors ˆKU

−2k
ℓ (X))→ H1

c (Ẑ×ℓ ; ˆKU
−2k
ℓ (X))→ H1

c (Ẑ×ℓ ; torsfree ˆKU
−2k
ℓ (X))→ 0

for each k > −a and each k < −b.
Another consequence of the vanishing of Hs

c(Ẑ×ℓ ;−) for s ≥ 2 is that the spectral se-
quence (28) can have no nonzero differentials. Hence we have equalities21∣∣∣π2kF

(
X, LK(1)S

)∣∣∣ = ∣∣∣∣∣H0
c

(
Ẑ×ℓ ; tors ˆKU

−2k
ℓ (X)

)∣∣∣∣∣ and(32) ∣∣∣π2k−1F
(
X, LK(1)S

)∣∣∣ = ∣∣∣∣∣H1
c

(
Ẑ×ℓ ; tors ˆKU

−2k
ℓ (X)

)∣∣∣∣∣ · ∣∣∣∣∣H1
c

(
Ẑ×ℓ ; torsfree ˆKU

−2k
ℓ (X)

)∣∣∣∣∣(33)

for each k > −a and each k < −b.
Assuming that k > −a+1, we claim that the ℓ-adic valuation of

∣∣∣∣∣H1
c

(
Ẑ×ℓ ; torsfree ˆKU

−2k
ℓ (X)

)∣∣∣∣∣
agrees with the ℓ-adic valuation of the product

(34)
∏
w∈Z

denom
(
ζ̇(w)

KU(1 − k, X)
)

since both have the same order as the stable homotopy group π2k−1F(X[Q−1], LK(1)S ),
where Q is the set of primes

{2} ∪
{
p : p divides

∣∣∣tors KU0(X)[P−1]
∣∣∣} .

To see this, observe that the map X → X[Q−1] induces an Adams-operation-preserving
isomorphism (

torsfree KU0(X)
)

[Q−1]
�
−→ KU0(X)[Q−1],

and the homotopy fixed-point spectral sequence

E s,t
2 � Hs

c

(
Ẑ×ℓ ; ˆKU

−t
ℓ (X[Q−1])

)
⇒ πt−sF

(
X[Q−1], LK(1)S

)
(35)

collapses at the E2-page with no nonzero differentials, yielding the isomorphism

H1
c

(
Ẑ×ℓ ; torsfree ˆKU

−2k
ℓ (X)

)
� π2k−1F

(
X[Q−1], LK(1)S

)
.(36)

Isomorphism (36) relates H1
c

(
Ẑ×ℓ ; torsfree ˆKU

−2k
ℓ (X)

)
to π2k−1F

(
X[Q−1], LK(1)S

)
, but

still must explain the relationship of the latter to π2k−1F
(
X[Q−1], LKUS

)
. The relevant kind

of argument is standard in stable homotopy theory, but we have chosen to present it in more
detail than that audience would find necessary, since the author hopes that some number

21Readers with familiarity with Iwasawa theory will likely notice that this proof, particularly (32) and (33),
bears a close resemblance to the kinds of manipulation of Iwasawa modules and their cohomology found in, for
example, [19]. We suggest that future work of the kind appearing in this paper—i.e., establishing relationships
between orders of Bousfield-localized stable homotopy groups, and special values of L-functions—would likely
benefit from using the techniques of Iwasawa theory as a natural intermediary between stable homotopy groups
(by expressing the input for descent spectral sequences along the lines of (28) in terms of cohomology of Iwasawa
modules) and special values of L-functions.
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theorists may read this paper too. Write E(n) for the ℓ-primary height n Johnson-Wilson
theory. The “fracture square”22

(37) LE(1)S //

��

LK(1)S

��
LE(0)S // LE(0)LK(1)S

yields a homotopy fiber sequence

(38) LE(1)S → LK(1)S ∨ LE(0)S → LE(0)LK(1)S .

Bousfield localization at E(0) is simply rationalization, so LE(0)S is simply the Eilenberg-
Mac Lane spectrum HQ representing rational cohomology. Running the homotopy fixed-
point spectral sequence (28) for the sphere to calculate π∗(LK(1)S ) yields that LE(0)LK(1)S
splits as a wedge HQp∨Σ

−1HQp, i.e., mapping into LE(0)LK(1)S yields two copies of p-adic
rational cohomology, with one copy shifted in degree by 1. Consequently the homotopy
fiber of the map LE(1)S → LK(1)S is weakly equivalent to Σ−1H(Qp/Q)∨ Σ−2HQp. Conse-
quently, the long exact sequence obtained by applying [X[Q−1],−] to (38) degenerates to
an isomorphism

π2k−1F
(
X[Q−1], LK(1)S

)
� π2k−1F

(
X[Q−1], LE(1)S

)
for k > −a and for k < −b, since the rational cohomology of X vanishes in the relevant de-
grees. Since the ℓ-localization of LKUS is LE(1)S , the ℓ-adic valuation of

∣∣∣π2k−1F(X[Q−1], LKUS )
∣∣∣

is equal to the ℓ-adic valuation of
∣∣∣π2k−1F(X[Q−1], LE(1)S )

∣∣∣ Finally, if k > −a+1, then The-
orem 2.8 gives the equality of the order of π2k−1F(X[Q−1], LKUS ) � π2k−1LKU DX[Q−1]

with (34). Hence the factor
∣∣∣∣∣H1

c

(
Ẑ×ℓ ; torsfree ˆKU

−2k
ℓ (X)

)∣∣∣∣∣ in (33) is accounted for by the

ℓ-adic valuation of the denominator of ζ̇KU(1 − k, X), when k > 1 − a.

We still need to relate the factors
∣∣∣∣∣Hs

c

(
Ẑ×ℓ ; tors ˆKU

−2k
ℓ (X)

)∣∣∣∣∣ in (32) and (33) to Ltors KU[P−1](1−

k, X). For this we use the finite filtration

(39)
(
tors KU−2k(X)[P−1]

)∧
ℓ
= Fa

k ⊇ Fa+1
k ⊇ Fa+2

k ⊇ · · · ⊇ Fb−1
k ⊇ Fb

k = 0

of tors KU−2k(X)[P−1], where F t
k is the ℓ-adic completion of

ker
(
tors KU−2k(X)[P−1]→ tors KU−2k(X2t)[P−1]

)
.

That is, (39) is the ℓ-adic completion of the skeletal filtration (18) on KU−2k. Applying
the continuous group cohomology functor H∗c (Ẑ×ℓ ;−) to (39) yields the strongly convergent
spectral sequence

E s,t
1 � Hs

c(Ẑ×ℓ ; F t
k/F

t+1
k )⇒ Hs

c(Ẑ×ℓ ; tors ˆKU
−2k
ℓ (X))(40)

dr : E s,t
r → E s+1,t+r

r .

The order of the abelian group F t
k/F

t+1
k is equal to the largest power of ℓ which divides

nt. Since we have assumed that nt is square-free for all t, the abelian group F t
k/F

t+1
k must

be either trivial or a one-dimensional Fℓ-vector space. In the latter case, the pro-ℓ-Sylow
subgroup of Ẑ×ℓ must act trivially, and consequently the action of Ẑ×ℓ on Fℓ is determined
by the action of the quotient F×ℓ of Ẑ×ℓ . There are ℓ − 1 possible actions of F×ℓ on Fℓ. Of
those ℓ − 1 actions, there are ℓ − 2 which fix only the zero element, and consequently have

22The homotopy pullback square (37) is classical. See Bauer’s chapter [4] in the book [13] for a nice write-up.
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trivial group cohomology in all degrees. The unique cohomologically nontrivial action
of F×ℓ on Fℓ is the trivial action. We will write Ftriv

ℓ
for Fℓ with the resulting trivial Ẑ×ℓ -

action. Then H∗c (Ẑ×ℓ ;Ftriv
ℓ

) � Λ(h), an exterior Fℓ-algebra on a single generator h in degree
1. Consequently the E1-page of (40) is described as follows:

• E s,t
1 is trivial if s , 0, 1,

• E0,t
1 � E1,t

1 for all t,
• E0,t

1 is a one-dimensional Fℓ-vector space if the action of the Adams operations on

tors(t) ˆKU
−2k
ℓ (X) is trivial,

• and E0,t
1 is trivial otherwise.

Consider the direct sum of the spectral sequences (40) over all integers k. Call this
the “torsion spectral sequence.” The cohomology H∗c (Ẑ×ℓ ; tors ˆKU

∗

ℓ(X)) is periodic under
the action of v−1

1 , i.e., the (ℓ − 1)th power of the Bott class in KU2. Consequently, for
each weight w such that Fw

k /F
w+1
k is nontrivial, we get a contribution to the E1-page of the

torsion spectral sequence which is isomorphic to the E2-page of the homotopy fixed-point
spectral sequence

E s,t
2 � Hs

c

(
Ẑ×ℓ ; ˆKU

−t
ℓ (S 2w−1/ℓ)

)
⇒ πt−sF

(
S 2w−1/ℓ, LK(1)S

)
of the (2w−1)-dimensional mod ℓMoore spectrum S 2w−1/ℓ. This is because ˆKU

−2t
ℓ (S 2w−1/ℓ)

is isomorphic to Fℓ withΨp acting as multiplication by pw+t, which is the same as the action
of Ψp on Fw

t /F
w+1
t .

Since the mod ℓMoore spectrum is rationally acyclic, the square (37) gives us the weak
equivalences

F
(
S 2w−1/ℓ, LK(1)S

)
≃ F

(
S 2w−1/ℓ, LKUS

)
≃ LKU D

(
S 2w−1/ℓ

)
≃ LKU

(
S −2w/ℓ

)
.

Now Proposition 3.6, together with the results of [29] summarized above in (27), yields
that the group π2k−1LKU

(
S −2w/ℓ

)
, a factor of the E1-page of the torsion spectral sequence,

has order equal to the denominator of L(w,ℓ)
tors KU[P−1](1 − k, X).

The conclusion here is that the orders of the groups in the E1-page of the torsion spec-
tral sequence, in the range of degrees described above, agree with the products of the
denominators of special values of isoweight factors of Ltors KU[P−1](s, X) described in (26).
Meanwhile, the abutment of the torsion spectral sequence is the summand coming from
K-theoretic torsion in the input for the descent spectral sequence (28) which converges to
π∗(LKU DX)[P−1] and has no nonzero differentials. Consequently (26) is equal to the order
of π2k−1(LKU DX) for all k > 1 − a, up to powers of primes in P, if and only if the torsion
spectral sequence collapses at the E1-page with no nonzero differentials involving a bide-
gree which contributes to Ep,q

2 in (28) in a degree which contributes to πn(LKU DX) in the
abutment, with 2n > −a.

If the skeletal filtration of tors KU0(X)[P−1] splits completely, then the Ẑℓ[Ẑ×ℓ ]-module
filtration (39) splits for all k, so the torsion spectral sequence collapses at the E1-page with
no nonzero differentials, yielding formula (26), as claimed. For the converse: suppose that
the skeletal filtration of tors KU0(X)[P−1] does not split completely. Then for at least one
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value of t, the extension of graded Ẑℓ[Ẑ×ℓ ]-modules

0→
∐
k∈Z

F t+1
k →

∐
k∈Z

F t
k →

∐
k∈Z

F t
k/F

t+1
k → 0

is not split. Since the skeletal filtration on tors KU0(X)[P−1] was not assumed to split ad-
ditively, it is not necessarily true that each F t

k is an Fℓ-vector space. However, by finiteness
of X, it is at least true that there is an integer N such that F t

k is an Z/ℓNZ-module for all
k and all t. Consequently the action of the Bott element on

∐
k∈Z F t

k is periodic23 of some
period (e.g. period ℓN−1(ℓ − 1)). Consequently, if the sequence of Ẑℓ[Ẑ×ℓ ]-modules

(41) 0→ F t+1
k → F t

k → F t
k/F

t+1
k → 0

is nonsplit for some value of k, then it is also nonsplit for arbitrarily much higher values of
k, as well as arbitrarily much lower values of k.

By analysis of the torsion spectral sequence, if (41) is nonsplit, then the identity element

id ∈ Ext0
cont.Ẑℓ[Ẑ×ℓ ]−mod

(
Ftriv
ℓ ,F

triv
ℓ

)
� E0,t

1

supports a nonzero differential of some length. Choose some value of k such that (41)
is nonsplit and such that the resulting nonzero differential hits a class which contributes
to bidegree Ep,q

2 in (28) in a degree which contributes to πn(LKU DX) in the abutment,
with n >> −a. That differential causes formula (26) to fail to agree with the order of
π2k−1(LKU DX) after localization at ℓ.

Consequently conditions 1 and 2 are equivalent. An entirely analogous argument proves
the equivalence of conditions 1 and 3. □

Remark 3.11. Suppose Assumptions 3.5 are satisfied. Theorem 3.10 then asserts that three
specific conditions are equivalent. The second and third conditions assert that the orders of
certain homotopy groups agree with certain special values of zeta-functions. Even when
the three conditions are not satisfied—i.e., even when the orders of those homotopy groups
fail to agree with those special values—we still have the inequality

∣∣∣π2k−1(LKU DX)[P−1]
∣∣∣ ≤∏

w∈Z

denom
(
ζ̇(w)

KU(1 − k, X)
)
·
∏
ℓ|nw

denom
(
L(w,ℓ)

tors KU[P−1](1 − k, X)
)

(42)

for all odd integers 2k − 1 satisfying 2k − 1 > 1 − 2a. We similarly have the inequality

∣∣∣π2k−1(LKU DX)[P−1]
∣∣∣ ≤∏

w∈Z

denom
(
ζ̇(w)

KU(k + 1, X)
)
·
∏
ℓ|nw

denom
(
L(w,ℓ)

tors KU[P−1](k + 1, X)
)

(43)

for all odd integers 2k − 1 satisfying 2k − 1 < −2b − 3. Both inequalities follow from the
argument given in the proof of Theorem 3.10:

• the torsion-free part of the K-theory of X contributes the same factors to the left-
hand side of (42) as it contributes to the right-hand side of (42),

23That is, the action of some power of the Bott element on
∐

k∈Z Ft
k is not just an isomorphism of abelian

groups—which, after all, is true of multiplication by the Bott element itself—but also an isomorphism of Ẑℓ[Ẑ×ℓ ]-
modules.
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• and the “torsion spectral sequence,” constructed in the proof of Theorem 3.10, has
as input the contribution of the torsion in K-theory to the right-hand side of (42),
and has as output the contribution of the torsion in K-theory to the left-hand side
of (42).

Hence, when the skeletal filtration of tors KU0(X)[P−1] fails to split completely, one or
more nonzero differentials in the torsion spectral sequence cut down the size of the left-
hand side of (42), so that it is smaller than the right-hand side. This is why we have the
inequality (42). The same argument applies with (42) replaced by (43) throughout.

One family of special cases of Theorem 3.10 was studied in the paper [29]. Using the
notation introduced in the present paper24, [29] showed that ζKU(s,Σ−1S/p) = ζF(s)/ζ(s)
for any odd prime p, where S/p is the mod p Moore spectrum, and where F is the largest
totally real subfield of the cyclotomic field Q(ζp2 ).

Recall that Theorem 2.8 made some mention of regular primes, i.e., those primes p
which do not divide the numerator of ζ(1 − k) for any positive integer k. Corollary 3.12,
below, requires the following generalization: given a number field F, we say that a prime
number p is F-irregular if p divides the numerator of ζF(1 − k) for some positive integer
k. Here ζF(s) is the Dedekind zeta-function of F. The Q-irregular primes are simply the
classical irregular primes.

Corollary 3.12. Let X, P, a, b be as in Theorem 3.10. Suppose that the the skeletal filtration
of tors KU0(X)[P−1] splits completely. Write N for the order of the group tors KU0(X)[P−1].
Then, for all odd integers 2k−1 ≥ 1−2a, the order of π2k−1(LKU DX) is equal to the denom-
inator of ζKU[P−1](1 − k, X), up to powers of primes in P and powers of F-irregular primes,
where F ranges across all the wildly ramified subfields of the cyclotomic field Q (ζN2 ).

Proof. The Dedekind zeta-function ζQ(ζN2 )(s) factors as the product of the Dirichlet L-
functions of the primitive Dirichlet characters χ̃, where χ ranges across the Dirichlet char-
acters of modulus N2. For a prime divisor ℓ of N, the Dirichlet characters χ on Z/ℓ2Z×

which vanish on the complementary summand of Syl(ℓ) are those such that the L-function
of χ̃ is a factor of the Dedekind zeta-function of a subfield of Q (ζN2 ) in which ℓ ramifies
wildly. This material is classical; e.g. see Corollary 3.6 and Theorem 4.3 from [35]. As a
consequence, the same argument (about cancellation of factors in numerators with factors
in denominators) used in the proof of Theorem 2.8 suffices here to establish the second
claim. □

Remark 3.13. When the skeletal filtration of tors KU0(X[P−1]) is not completely split,
the most that the author can say about the special values of ζKU[P−1](s, X) is that their de-
nominators recover the orders of the KU-local stable homotopy groups arising from the
torsion-free part of KU0(X) and from the associated graded of the skeletal filtration on
tors KU0(X)[P−1]. Put more clearly, when KU0(X)[P−1] is a torsion group: the denomi-
nators of the special values of ζKU[P−1](s, X) count the orders of the KU-local homotopy
groups of the wedge of Moore spectra whose cohomology, with Z[P−1] coefficients, agrees
with the cohomology H∗(X;Z[P−1]).

24The notation LKU (s, S/p) from [29] corresponds to the notation ζKU (s,Σ−1S/p) in the present paper. The
reason for the desuspension is that the approach in [29] was based around formulating KU-local L-functions
whose special values recover orders of KU-local stable homotopy groups, while in the more general and natural
framework of the present paper, the special values of KU-local zeta-functions instead recover the KU-local stable
cohomotopy groups of a finite CW-complex X, or what comes to the same thing, the KU-local stable homotopy
groups of the Spanier-Whitehead dual DX of X. We have D(Σ−1S/p) ≃ S/p.
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It would also be nice to say something more when the order of tors(w) KU0(X[P−1]) is
not square-free. If the p-local component of tors(w) KU0(X[P−1]) is elementary abelian,
then an argument similar to that of Theorem 3.10 still works, if the definition of the KU-
local zeta-function ζKU[P−1](s, X) is amended appropriately. But the author only knows
how to make this amendment in a clumsy way, by replacing the product over prime rep-
resentations in (20) with a much less intuitive product. Perhaps some better approach is
possible.

If the p-local component of tors(w) KU0(X[P−1]) is not elementary abelian, then at
present it seems totally unclear how to proceed. In even the simplest example, where
X is the mod 9 Moore spectrum Σ−1S/9, the author does not at present know how to write
down a natural-looking zeta-function whose special values recover the orders of the KU-
local stable homotopy groups of X. The author is skeptical that an elegant one exists. One
could settle for something contrived instead: let χ be the principal Dirichlet character of
modulus 19. Then the denominator of L(1 − n, χ), divided by the denominator of ζ(1 − n),
is equal to 2 times the order of π2n−1(LKU(S/9)). The point is that 32 (and also 2) divides
19 − 1, so the extra Euler factor at p = 19 in the L-function of the imprimitive character χ
makes some contributions to the factors of 3 in the special values.

Remark 3.14. In (26), it was important that we take the product, over w and ℓ, of the
denominators of the special values of the weight w conductor ℓ KU-local zeta-factor. We
do not get the same result if we simply take the denominator of ζKU[P−1](1−k, X). In Remark
2.10, we already saw that a prime factor of the denominator of the weight w1 factor of a
KU-local provisional zeta-function can cancel with a prime factor of the numerator of the
weight w2 factor, for w1 , w2. The same phenomenon occurs with the (non-provisional)
KU-local zeta-function.

Even within a single weight w, it is possible for a prime factor of the denomina-
tor of the weight w conductor ℓ1 factor of a KU-local zeta-function to cancel with a
prime factor of the numerator of the weight w conductor ℓ2 factor, for ℓ1 , ℓ2. An ex-
ample occurs already for the desuspended mod 21 Moore spectrum Σ−1S/21. We have
KU0(Σ−1S/21) = tors KU0(Σ−1S/21) � Z/21Z, all in weight zero. Let R3 (respectively,
R7) denote the set of prime representations of tors KU0(Σ−1S/21) with image of order 3
(respectively, order 7). Similarly, write D3 (respectively, D7) for the set of Dirichlet char-
acters of conductor 9 (respectively, conductor 49) and modulus 212 which vanish on the
complementary summand of Syl3(Z/9Z×) (respectively, Syl7(Z/49Z×)) in Z/212Z×. Un-
winding the equalities from Theorem 3.10, we have25

ζKU(−5,Σ−1S/21) =
∏

p

∏
ρ∈R3∪R7

1

det
(
id−pw−sΨρw,p,iw (p)

)
= L(0,3)

tors KU(−5,Σ−1S/21) · L(0,7)
tors KU(−5,Σ−1S/21)

=

∏
χ∈D3

L(−5, χ̃)

 ·
∏
χ∈D7

L(−5, χ̃)


=

22 · 7 · 43 · 1171
3

·
26 · 138054547 · 163933047708171216095114393777711

7
(44)

=
28 · 43 · 1171 · 138054547 · 163933047708171216095114393777711

3
,

25The calculation (44) appeared already in a slightly different context in [29]. Computer calculation of these
special values of Dirichlet L-functions, via generalized Bernoulli numbers (see for example section 1.2 of [18]),
is straightforward in SageMath [33] or in Magma [6].
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whose denominator is 3. Meanwhile, we have

denom
(
L(0,3)

tors KU(−5,Σ−1S/21)
)

· denom
(
L(0,7)

tors KU(−5,Σ−1S/21)
)
= denom

(
22 · 7 · 43 · 1171

3

)
· denom

(
26 · 138054547 · 163933047708171216095114393777711

7

)
= 21
= |π−13(LKUS/21))| .

The trouble is that, while 7 is a regular prime, it is also F-irregular, where F is the minimal
subfield of Q(ζ9) in which 3 ramifies wildly.

This example demonstrates that Corollary 3.12 is perhaps not of great practical use,
except in very special cases: the trouble is that there are simply many more F-irregular
primes than classical irregular primes. Indeed, the prime 2 is already F-irregular, for the
same number field F described in the previous paragraph.

The example X = Σ−1S/21 is minimal in the sense that it minimizes the prime factors (3
and 7) of the order of the torsion in KU0(X). Nevertheless, the relatively large prime fac-
tors 138054547 and 163933047708171216095114393777711 occured in the numerator of
(44). Similarly large (or, in fact, much larger) prime factors are often found in numerators
of special values of ζKU(s, X) for CW-complexes X that have nontrivial torsion in K-theory.
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