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Abstract
We study the question of the existence of a Waldhausen cate-

gory on any (relative) abelian category in which the contractible
objects are the (relatively) projective objects. The associated
K-theory groups are “stable algebraic G-theory,” which in
degree zero form a certain stable representation group. We prove
both some existence and nonexistence results about such Wald-
hausen category structures, including the fact that, while it was
known that the category of R-modules admits a model category
structure if R is quasi-Frobenius, that assumption is required
even to get a Waldhausen category structure with cylinder
functor—i.e., Waldhausen categories do not offer a more gen-
eral framework than model categories for studying stable rep-
resentation theory of rings. We study multiplicative structures
on these Waldhausen categories, and we relate stable algebraic
G-theory to algebraic K-theory and we compute stable alge-
braic G-theory for finite-dimensional quasi-Frobenius nilpotent
extensions of finite fields. Finally, we show that the connective
stable G-theory spectrum of Fpn [x]/xp

n

is a complex-orientable
ring spectrum, partially answering a question of J. Morava
about complex orientations on algebraic K-theory spectra.

1. Introduction.

Waldhausen’s paper [14] defines several kinds of categorical structure which are
meaningful for algebraic K-theory. A category with cofibrations and weak equiva-
lences, also called a Waldhausen category, has just enough structure for Waldhausen’s
machinery to produce an associated K-theory infinite loop space. A Waldhausen cat-
egory which satisfies additional axioms and/or has additional structure will have
better properties which e.g. make the problem of actually computing the associated
K-theory more tractable. For example, a Waldhausen category satisfying the “exten-
sion axiom” and the “saturation axiom” and equipped with an additional structure
called a “cylinder functor” admits Waldhausen’s Localization Theorem (see [14]), a
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computationally powerful result that describes the sense in which localizations of the
Waldhausen category induce long exact sequences in the K-theory groups.

Meanwhile, in stable representation theory, one regards the projective modules
over a ring as “contractible,” and maps of modules that factor through projective
modules are regarded as “nulhomotopic.” This suggests that the category of modules
over a ring perhaps has a Waldhausen category structure in which the objects weakly
equivalent to zero—the contractible objects—are precisely the projective modules.
More generally, one has the tools of relative homological algebra: if one chooses a
sufficiently well-behaved class of objects in an abelian category, one can do a form of
homological algebra in which the chosen class of objects plays the role of projective
objects. Given an abelian category and a class of relative projective objects, one
wants to know if there is a natural Waldhausen category structure on that abelian
category, such that the contractible objects are precisely the relative projectives. One
also wants to know how many extra axioms are satisfied by, and how much additional
structure is admitted by, such a Waldhausen category.

In this paper we prove the following theorems that answer the above questions, and
explain fundamental properties of the relationships between Waldhausen K-theory,
relative homological algebra, and stable representation theory:

1. Definition-Proposition 2.19: Given an abelian category C and a sufficiently nice
pair of allowable classes E,F in C, there exists a Waldhausen category struc-
ture on C whose weak equivalences are the E-stable equivalences and whose
cofibrations are the F -monomorphisms. In particular, the E-projective objects
are precisely the contractible objects in this Waldhausen category. This Wald-
hausen category satisfies the saturation axiom and the extension axiom.

2. Theorem 3.4: C has a cylinder functor satisfying the cylinder axiom if and only
if C obeys a certain generalized quasi-Frobenius condition: every object must
functorially embed in an E-projective object by an F -monomorphism.

3. As a consequence, we have Corollary 3.7: any quasi-Frobenius abelian category
with enough projectives and functorially enough injectives admits the structure
of a Waldhausen category whose weak equivalences are the stable equivalences
and whose cofibrations are the monomorphisms. This Waldhausen category has
a cylinder functor, and it satisfies the saturation, extension, and cylinder axioms.

4. As a consequence, we have Corollary 3.8: if R is a finite-dimensional quasi-
Frobenius algebra over a finite field, then the category of finitely generated
(left) R-modules admits the structure of a Waldhausen category in which the
cofibrations are the monomorphisms and the weak equivalences are the stable
equivalences. (A similar result follows from well-known results in model category
theory, if one instead considers the category of all R-modules, not only finitely-
generated R-modules; but the usual tools for building the model structure,
especially Quillen’s small object argument, are not applicable to the category
of finitely generated modules. See [6].) This Waldhausen category admits a
cylinder functor and satisfies the saturation, extension, and cylinder axioms.

5. In Proposition 3.12 we show that, for a finite-dimensional co-commutative Hopf
algebra over a finite field, this Waldhausen category is even better: it has a
multiplicative structure coming from the tensor product of modules, and this
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multiplicative structure gives rise to the structure of a homotopy-commutative
ring spectrum on the K-theory spectrum of this Waldhausen category.

6. In the appendix, section 5, we prove a theorem to the effect that, under appro-
priate set-theoretic conditions on C, if every object embeds in an E-projective
object by an F -monomorphism, then such embeddings can be chosen functori-
ally. This is Theorem 5.5. So the word “functorially” can, under some reasonable
hypotheses on C, be omitted from the above statements.

7. We use the theorems described above to prove our Proposition 4.4, in which we
show that, for finite-dimensional quasi-Frobenius nilpotent extensions of finite
fields, stable G-theory is a delooping of relative algebraic K-theory.

8. As a consequence, we get our Theorem 4.6, in which we prove that, under the
same assumptions on the ring, stable G-theory in positive degrees vanishes `-
adically for ` 6= p, and is isomorphic to topological cyclic homology with a degree
shift p-adically, where p is the characteristic of the base field.

9. Finally, in Theorem 4.8, we compute the the stable G-theory groups
(Gst)∗(Fp[x]/xp

n

) of truncated polynomial algebras over Fp, in terms of the
Hesselholt-Madsen description of the topological cyclic homology of truncated
polynomial algebras. We provide a partial answer to a question (unpublished) of
J. Morava: under what circumstances does an algebraic K-theory ring spectrum
admit a complex orientation1? Our answer is that the stable G-theory spectrum
Gst(Fp[x]/xp

n

) is, for all p and n, a complex-orientable ring spectrum.

“Quasi-Frobenius conditions” appear prominently throughout this paper. Recall
that a ring R is said to be quasi-Frobenius if every projective R-module is injective
and vice versa. The appearance of these conditions in connection with Waldhausen
K-theory stems from the theorem of Faith and Walker (see [4]):

Theorem 1.1. (Faith-Walker.) A ring R is quasi-Frobenius if and only if every
R-module embeds in a projective R-module.

Here is one point of view on the significance of Theorem 3.4 in the present paper.
It has been known for a long time, e.g. as described in [6], that when R is a quasi-
Frobenius ring, there exists a model category structure on the category of R-modules
in which the cofibrations are the injections and the weak equivalences are the stable
equivalences of modules. Constructing this model category structure uses the quasi-
Frobenius condition in an essential way. But a Waldhausen category structure on
R-modules is weaker, less highly-structured, than a model category structure; so one
might hope that, even in the absence of the quasi-Frobenius condition on R, one
could put the structure of a Waldhausen category on the category of R-modules,
such that the cofibrations are the injections and the weak equivalences are the stable
equivalences of modules. As a consequence of Theorem 3.4, one only gets a Wald-
hausen category structure with cylinder functor on the category of R-modules if R is

1While Waldhausen’s wS•-construction produces an infinite loop space, it is much more standard
to speak of complex orientations on a (ring) spectrum, rather than on an infinite loop space. We
will use, whenever convenient and without comment, the classical equivalence between connective
spectra and infinite loop spaces; see [10]. Under this equivalence, the (unstable) homotopy groups
of the infinite loop space agree with the (stable) homotopy groups of its associated spectrum.
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quasi-Frobenius. So the category of R-modules admits a model category structure as
desired if and only if it admits a Waldhausen category structure with cylinder func-
tor as desired. (But our results, such as Corollary 3.7 on existence of the cylindrical
Waldhausen category structure, also have the virtue of applying to quasi-Frobenius
abelian categories that are not categories of modules over a ring.)

So one knows that, when R is a quasi-Frobenius ring, then one has the model
category of R-modules with cofibrations inclusions and weak equivalences the stable
equivalences, and from the theorems in this paper which we have described above,
one knows that relaxing the condition that R be quasi-Frobenius does not enable
one to get cylindrical Waldhausen category structures in any greater generality. Then
one asks the natural question: restricting to the finitely-generated R-modules, what
are the K-groups of this Waldhausen category? That leads us to the computations of
Theorem 4.6 and Theorem 4.8.

Our stable G-theory Waldhausen category poses an alternative to a construction by
G. Garkusha in [5], who constructs a Waldhausen category which models the cofiber
(on the spectrum level) of the Cartan map from K-theory to G-theory. Garkusha’s
construction is a Waldhausen category structure on chain complexes of R-modules,
and when R is finite and quasi-Frobenius, our Proposition 4.3 also describes the
cofiber of the Cartan map but with a much smaller model than Garkusha’s (the
stable G-theory Waldhausen category structure on R-modules, rather than on chain
complexes of R-modules). Our stable G-theory, as a model for the cofiber of the
Cartan map, also has the advantage of multiplicative structure, as in Proposition 3.12.
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2. Waldhausen category structures from allowable classes on
abelian categories.

2.1. Definitions.
This subsection is entirely review and there are no new results or definitions in it,

with the exception of Definition 2.8 and Definition-Proposition 2.10.
Throughout this subsection, let C be an abelian category.
We begin with the definition of an allowable class, which is the structure one needs

to specify on C in order to have a notion of relative homological algebra in C.
Definition 2.1. An allowable class in C consists of a collection E of short exact
sequences in C which is closed under isomorphism of short exact sequences and which
contains every short exact sequence in which at least one object is the zero object of
C. (See section IX.4 of [7] for this definition and basic properties.)

The usual “absolute” homological algebra in an abelian category C is recovered by
letting the allowable class E consist of all short exact sequences in C.
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Once one chooses an allowable class E, one has the notion of monomorphisms
relative to E, or “E-monomorphisms,” and epimorphisms relative to E, or “E-
epimorphisms.”

Definition 2.2. Let E be an allowable class in C. A monomorphism f : M → N in C
is called an E-monomorphism or an E-monic if the short exact sequence 0→M

f−→
N → coker f → 0 is in E.

Dually, an epimorphism g : M → N is called an E-epimorphism or an E-epic if

the short exact sequence 0→ ker f →M
f−→ N → 0 is in E.

When E consists of all short exact sequences in C, the E-monomorphisms are
simply the monomorphisms, and the E-epimorphisms are simply the epimorphisms.

In relative homological algebra, one has the notion of relative projectives, or E-
projectives: these are simply the objects which lift over every E-epimorphism. The
E-injectives are defined dually.

Definition 2.3. Let E be an allowable class in C. An object X of C is said to be an
E-projective if, for every diagram with f E-epic,

X

��
M

f // N,

there exists a morphism X →M making the above diagram commute.
Dually, X is said to be an E-injective if, for every diagram with f E-monic,

M
f //

��

N

X,

there exists a morphism N → X making the above diagram commute.
When the allowable class E is clear from context we sometimes refer to

E-projectives and E-injectives as relative projectives and relative injectives, respec-
tively.

In the absolute case, the case that E is all short exact sequences in C, the E-
projectives are simply the projectives, and the E-injectives are simply the injectives.

Once one has a notion of relative projectives, one has a notion of a stable equiva-
lence, i.e., a “homotopy” between maps, as studied in stable representation theory:

Definition 2.4. Let E be an allowable class in C. Let f, g : M → N be morphisms
in C. We say that f and g are E-stably equivalent and we write f ' g if f − g factors
through an E-projective object of C.

One can then define stable equivalence of objects, i.e., “homotopy equivalence”:

Definition 2.5. We say that a map f : M → N is a E-stable equivalence if there
exists a map h : N →M such that f ◦ h ' idN and h ◦ f ' idM .
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In the absolute case where E consists of all short exact sequences in C, this is the
usual notion of stable equivalence of modules over a ring. Over a quasi-Frobenius
ring, stably equivalent modules have isomorphic cohomology in positive degrees, so
if one is serious about computing the cohomology of all finitely-generated modules
over a particular Hopf algebra, it is natural to first compute the representation ring
modulo stable equivalence. See [9] for this useful perspective (which motivates much
of the work in this paper).

We now define the relative-homological-algebraic generalizations of an abelian cat-
egory having enough projectives or enough injectives. We provide an extra twist on
these definitions as well, which we will need for certain theorems: sometimes we will
need to know that, for example, not only does every object embed in an injective,
but that we can choose such embeddings in a functorial way.

Definition 2.6. Let E be an allowable class in C. We say that C has enough E-
projectives if, for any object M of C, there exists an E-epic N →M with N an
E-projective. We say that C has functorially enough E-projectives if C has enough E-
projectives and the choice of E-epimorphisms from E-projectives to each object of C
can be made functorially, i.e., there exists a functor P : C → C together with a natural
transformation ε : P → idC such that P (X) is E-projective and ε(X) : P (X)→ X is
an E-epimorphism for all objects X of C, and such that, if f : X → Y is an E-
epimorphism, then so is P (f) : P (X)→ P (Y ).

Dually, we say that C has enough E-injectives if, for any object M of C, there exists
an E-monic M → N with N an E-injective. We say that C has functorially enough
E-injectives if C has enough E-injectives and the choice of E-monomorphisms into
E-injectives from each object of C can be made functorially, i.e., there exists a functor
I : C → C together with a natural transformation η : idC → I such that I(X) is E-
injective and η(X) : X → I(X) is an E-monomorphism for all objects X of C, and
such that, if f : X → Y is an E-monomorphism, then so is I(f) : I(X)→ I(Y ).

Our need to have abelian categories with functorially enough injectives or pro-
jectives is only due to Waldhausen’s definitions of cylinder functors and resulting
theorems, in [14], demanding that cylinder functors actually be functors. In section
5 we show that, under appropriate set-theoretic hypotheses on C, having enough
injectives implies having functorially enough injectives.

Finally, we have our first definition of a quasi-Frobenius condition:

Definition 2.7. Let E be an allowable class in C. We will call E a quasi-Frobenius
allowable class if the following conditions are both satisfied:

• C has enough E-projectives and enough E-injectives, and

• the E-projectives are exactly the E-injectives.

If the allowable class consisting of all short exact sequences in C is a quasi-Frobenius
class, then we will simply say that C is quasi-Frobenius.

Here are some important examples of allowable classes in abelian categories:

• As described above, the usual “absolute” homological algebra in an abelian
category C is recovered by letting the allowable class E consist of all short
exact sequences in C; then the E-projectives are the usual projectives, etc. Note
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that, if E is an arbitrary allowable class in C, then any projective object is an
E-projective object, but the converse is not necessarily true.

• Suppose C,D are abelian categories and F : C → D is an additive functor. Then
we can let E be the allowable class in C consisting of the short exact sequences
which are sent by F to split short exact sequences in D. If F has a left (resp.
right) adjoint G then objects of C of the form GFX (resp. FGX) are E-
projectives (resp. E-injectives) and the counit map GFX → X of the comonad
GF (resp. the unit map X → GFX of the monad GF ) is an E-epic (resp. E-
monic), hence C has enough E-projectives (resp. enough E-injectives). These
ideas are in [7].
For example, if R is a ring and C the category of R-modules and D the category
of abelian groups, and F the forgetful functor, then E is the class of short
exact sequences of R-modules whose underlying short exact sequences of abelian
groups are split. The R-modules of the form R⊗Z M , for M an R-module, are
E-projectives.

Here is a definition which the author introduced in [13], and which makes many
arguments involving allowable classes substantially smoother:

Definition 2.8. An allowable class E is said to have retractile monics if, whenever
g ◦ f is an E-monic, f is also an E-monic.

Dually, an allowable class E is said to have sectile epics if, whenever g ◦ f is an
E-epic, g is also an E-epic.

The utility of the notion of “having sectile epics” comes from the following funda-
mental theorem of relative homological algebra, due to Heller (see [7]), whose state-
ment is slightly cleaner if one is willing to use the phrase “having sectile epics.” The
consequence of Heller’s theorem is that, in order to specify a “reasonable” allow-
able class in an abelian category, it suffices to specify the relative projective objects
associated to it.

Theorem 2.9. If C is an abelian category and E is an allowable class in C with
sectile epics and enough E-projectives, then an epimorphism M → N in C is an E-
epic if and only if the induced map homC(P,M)→ homC(P,N) of abelian groups is
an epimorphism for all E-projectives P .

Heller’s theorem suggests the following construction: if E is an allowable class, we
can construct a “sectile closure of E” which has the same relative projectives and the
same stable equivalences but which has sectile epics. Here are the specific properties
of this construction (we have neglected to write out proofs of these properties because
the proofs are so elementary):

Definition-Proposition 2.10. Let C be an abelian category, E an allowable class in
C. Let Esc be the allowable class in C consisting of the exact sequences X → Y → Y/X
such that the induced map homC(P, Y )→ homC(P, Y/X) is a surjection of abelian
groups for every E-projective P . We call Esc the sectile closure of E. The allowable
class Esc has the following properties:

• Esc has sectile epics.

• An object of C is an E-projective if and only if it is an Esc-projective.
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• If f, g are two morphisms in C then f and g are E-stably equivalent if and only
if they are Esc-stably equivalent.

• If X,Y are two objects in C then X and Y are E-stably equivalent if and only
if they are Esc-stably equivalent.

• (Esc)sc = Esc.

• If E,F are two allowable classes in C and F ⊆ E then Fsc ⊆ Esc.

Of course there is a construction dual to the sectile closure, a retractile closure, with
dual properties, but with a less straightforward relationship to stable equivalence,
since stable equivalence is defined in terms of projectives, not injectives.

We now recall Waldhausen’s definitions:

Definition 2.11. A pointed category C, with pushouts, equipped with a specified
class of cofibrations and a specified class of weak equivalences, both closed under
composition, is called a Waldhausen category if the following axioms are satisfied:

• (Cof 1.) The isomorphisms in C are cofibrations.

• (Cof 2.) For every object X of C, the map pt→ C is a cofibration. (We write
pt for the zero object of C.)

• (Cof 3.) If X → Y is a morphism in C and X → Z is a cofibration, then the
canonical map Y → Y

∐
X Z is a cofibration.

• (Weq 1.) The isomorphisms in C are weak equivalences.

• (Weq 2.) If

Y

��

Xoo //

��

Z

��
Y ′ X ′oo // Z ′

(1)

is a commutative diagram in C in which the maps X → Y and X ′ → Y ′ are
cofibrations and all three vertical maps are weak equivalences, then the induced
map Y

∐
X Z → Y ′

∐
X′ Z ′ is a weak equivalence.

Ultimately, if C is a Waldhausen category, then what one typically wants to under-
stand is |wS·C|, the geometric realization of the simplicial category wS·C constructed
by Waldhausen in [14]. The K-groups of C are defined as the homotopy groups of the
loop space Ω |wS·C|, that is, πn+1(|wS·C|) ∼= πn(Ω |wS·C|) ∼= Kn(C).

If C is a Waldhausen category then the following axioms may or may not be
satisfied:

Definition 2.12. • (Saturation axiom.) If f, g are composable maps in C and
two of f, g, g ◦ f are weak equivalences then so is the third.

• (Extension axiom.) If

X //

��

Y //

��

Y/X

��
X ′ // Y ′ // Y ′/X ′

is a map of cofiber sequences and the maps X → X ′ and Y/X → Y ′/X ′ are
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weak equivalences then so is the map Y → Y ′.

The following definition of a cylinder functor, Definition 2.13, is Definition IV.8.8
of [15]. It is somewhat weaker than Waldhausen’s original definition, from [14], but
is still strong enough to prove Waldhausen’s Fibration Theorem (reproduced below
as Theorem 2.14).

Definition 2.13. If C is a Waldhausen category, a cylinder functor on C is a functor
from the category of arrows f : X → Y in C to the category of diagrams of the form

X
j1 //

f !!

T (f)

p

��

Y
j2oo

id}}
Y

in C satisfying the three conditions:

• (Cyl 1.) If

X ′
f ′
//

��

Y ′

��
X

f // Y

(2)

is a commutative diagram in C in which the vertical maps are weak equivalences
(resp. cofibrations), then the map T (f ′)→ T (f) is a weak equivalence (resp.
cofibration and

X
∐
X′

T (f ′)
∐
Y ′

Y → T (f) (3)

is a cofibration).

• (Cyl 2.) T (pt→ Y ) = Y and the maps p and j2 are the identity map on Y .

• (Cyl 3.) The map j1
∐
j2 : X

∐
Y → T (f) is a cofibration.

A Waldhausen category with cylinder functor may or may not satisfy the additional
condition:

• (Cylinder axiom.) For any map f in C, the map p is a weak equivalence.

The idea here is that a cylinder functor satisfying the cylinder axiom acts very
much like the mapping cylinder construction from classical homotopy theory—or,
more generally, like the cofibration-acyclic-fibration factorization system in a model
category. Some of Waldhausen’s most powerful results in [14] have proofs of a suffi-
ciently homotopy-theoretic flavor that they require that every Waldhausen category
in sight has a cylinder functor obeying the cylinder axioms. A good example of this is
Waldhausen’s Fibration Theorem, which we now recall (see V.2.1 of [15] for a proof
using the version of cylinder functors defined in Definition 2.13):

Theorem 2.14. Fibration Theorem (Waldhausen). Suppose C, C0 are Wald-
hausen categories with the same underlying category and the same underlying class
of cofibrations. Suppose all of the following conditions are satisfied:
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• Every weak equivalence in C is also a weak equivalence in C0.

• C0 admits a cylinder functor satisfying the cylinder axiom.

• The weak equivalences in C0 satisfy the saturation and extension axioms.

Then |wS·X| → |wS·C| → |wS·C0| is a homotopy fibre sequence, where X is the full
sub-Waldhausen-category of C generated by the objects that are weakly equivalent to
pt in C0. As a consequence, after looping and taking homotopy groups, we get the long
exact sequence of K-groups:

· · · → Kn+1(C0)→ Kn(X )→ Kn(C)→ Kn(C0)→ Kn−1(X )→ . . . .

The question of when our Waldhausen categories given by allowable classes on
abelian categories satisfy the required conditions for the Fibration Theorem to hold
is the subject of most of this paper.

2.2. The Waldhausen category structure on an abelian category associ-
ated to a pair of allowable classes.

In this subsection, we will prove that, under appropriate hypotheses, an abelian
category equipped with a pair of allowable classes E,F admits a Waldhausen cat-
egory structure in which the cofibrations are the F -monomorphisms and the weak
equivalences are the E-stable equivalences. In this subsection we will also find con-
ditions under which this Waldhausen category satisfies the extension and saturation
axioms (see Definition 2.12 for definitions of these axioms). To get anywhere, we will
need some lemmas:

Lemma 2.15. A pullback of a surjective map of abelian groups is surjective.

Proof. Elementary.

Lemma 2.16. Let C be an abelian category and let E be an allowable class with
retractile monics. Suppose C has enough E-injectives. Then E-monics are closed
under pushout in C. That is, if X → Z is an E-monic and X → Y is any morphism
in C, then the canonical map Y → Y

∐
X Z is an E-monic.

Proof. Suppose f : X → Z is an E-monic and X → Y any morphism. For every E-
injective I, we have the induced commutative diagram of abelian groups

0 //

��

homC(coker f, I) // homC(Z, I) // homC(X, I) // 0

0 // homC(coker f, I) //

∼=

OO

homC(Y
∐
X Z, I) //

OO

homC(Y, I).

OO
(4)

Exactness of the top row follows from f being an E-monic together with E having
retractile monics, hence E is its own retractile closure, hence (by the dual of Theo-
rem 2.9) E-monics are precisely the maps which induce a surjection after applying
homC(−, I) for every E-injective I. The right-hand square in diagram (4) is a pull-
back square of abelian groups, by the universal property of the pushout. The top
map in the square is a surjection, hence so is the bottom map, by Lemma 2.15. So
homC(Y

∐
X Z, I)→ homC(Y, I) is a surjection for every E-injective I. Again since

E is its own retractile closure, this implies that Y → Y
∐
X Z is an E-monic.
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Lemma 2.17. Suppose C is an abelian category, E an allowable class in C with retrac-
tile monics. Suppose C has enough E-injectives. Then a composite of
E-monomorphisms is an E-monomorphism.

Proof. Let f : X → Y and g : Y → Z be E-monomorphisms. Let I be an E-injective
object equipped with a map X → I. Then, since f is an E-monomorphism, X → I
extends through f to a map Y → I, which in turn extends through g since g is an
E-monomorphism. So every map to an E-injective from Z extends through g ◦ f .
Now, by the dual of Heller’s theorem 2.9, g ◦ f is an E-monomorphism.

Lemma 2.18. Let C be an abelian category and let E be an allowable class in C.
Then a composite of two E-stable equivalences in C is an E-stable equivalence.

Proof. Let X
f−→ Y

g−→ Z be a pair of E-stable equivalences. Then there exist E-
projective objects PX , PY of C and morphisms

Y
f ′

−→ X, Z
g′−→ Y,

X
iX−→ PX , Y

iY−→ PY ,

PX
sX−→ X, and PY

sY−→ Y

such that f ′ ◦ f − idX = sX ◦ iX and g′ ◦ g − idY = sY ◦ iY . Then we have f ′ ◦ g′ ◦
g ◦ f − idX = sX ◦ iX + f ′ ◦ sY ◦ iY ◦ f , so f ′ ◦ g′ ◦ g ◦ f − idX factors through the
E-projective PX ⊕ PY . A similar argument applies to showing that g ◦ f ◦ f ′ ◦ g′ −
idZ factors through an E-projective. So g ◦ f is an E-stable equivalence.

Definition-Proposition 2.19. Let C be an abelian category, let E,F be allowable
classes in C with F ⊆ E. Suppose each of the following conditions are satisfied:

• F has retractile monics.

• E has retractile monics and sectile epics.

• C has enough F -injectives.

• C has enough E-projectives and enough E-injectives.

• Every E-projective object is E-injective.

Then there exists a Waldhausen category structure on C in which the cofibrations are
the F -monomorphisms and the weak equivalences are the E-stable equivalences. We
write CF−cofE−we for this Waldhausen category. This Waldhausen category satisfies the
saturation axiom and the extension axiom.

Proof. We check the axioms from Definition 2.11. In the case of an abelian cate-
gory C and allowable classes E,F with the stated classes of cofibrations and weak
equivalences, axioms (Cof 1) and (Cof 2) and (Weq 1) are immediate. That the class
of cofibrations is closed under composition is Lemma 2.17. That the class of weak
equivalences is closed under composition is Lemma 2.18. We show that the remaining
axioms are satisfied:

• Axiom (Cof 3) is a consequence of Lemma 2.16.

• Axiom (Weq 2) is actually fairly substantial and takes some work to prove—
enough so that we moved this work into a paper of its own, [13]. In Corollary 4.4
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of that paper, we prove that, if E = F , C has enough E-projectives and enough
E-injectives, E has sectile epics and retractile monics, and every E-projective
object is E-injective, then C satisfies axiom (Weq 2). We refer the reader to
that paper for the proof, which requires some work and a number of preliminary
results, and would make the present paper much longer if we included it here.
Once we have the result for F = E, it follows for F ⊆ E, since if diagram (1)
has its horizontal maps F -monomorphisms, the horizontal maps are also then
E-monomorphisms.

• The saturation axiom follows easily from Lemma 2.18 together with the observa-

tion that, if X
f−→ Y is a E-stable equivalence and Y

f ′

−→ X is a morphism such
that f ◦ f ′ − idY and f ′ ◦ f − idX both factor through E-projective objects,
then f ′ is also a E-stable equivalence. That is, E-stable equivalences have “up-
to-equivalence inverses.”

• Finally, we handle the extension axiom. We begin by assuming that E = F , and
that

X //

f

��

Y //

g

��

Y/X

h

��
X ′ // Y ′ // Y ′/X ′

(5)

is a map of cofiber sequences (i.e., short exact sequences in E) and the maps
X → X ′ and Y/X → Y ′/X ′ are E-stable equivalences. Then, for any object M
of C, writing Hn(−) for ExtnC/E(−,M), we have the commutative diagram with
exact rows

H1(X ′)

∼=
��

// H2(Y ′/X ′)

∼=
��

// H2(Y ′)

��

// H2(X ′)

∼=
��

// H3(Y ′/X ′)

∼=
��

H1(X) // H2(Y/X) // H2(Y ) // H2(X) // H3(Y/X).

The vertical maps marked as isomorphisms are isomorphisms because an E-
stable equivalence A→ B induces a natural equivalence of functors
ExtiC/E(B,−) ∼= ExtiC/E(A,−) for all i > 1; this is Lemma 3.6 of [13]. By the

Five Lemma, we then have a natural isomorphism of functors Ext2C/E(Y ′,−)
∼=−→

Ext2C/E(Y,−). But since every E-projective is E-injective, this natural trans-
formation being a natural isomorphism implies that Y → Y ′ is an E-stable
equivalence; this is Lemma 4.2 of [13]. Hence the extension axiom is satisfied if
E = F . Now if we do not have E = F but instead F ⊆ E, then the extension
axiom remains satisfied, as we have fewer diagrams to check the extension axiom
for.
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3. Absolute and relative quasi-Frobenius conditions.

3.1. Definitions.
To our knowledge these definitions are all new. They are variants of the condition

that every object embeds in a projective object, which Faith and Walker showed (see
Theorem 1.1) to be equivalent, for categories of modules over a ring, to the ring being
quasi-Frobenius.

Definition 3.1. • Let C be an abelian category, E,F a pair of allowable classes
in C. We say that C is cone-Frobenius relative to E,F if, for any object X of C,
there exists an F -monomorphism from X to an E-projective object of C.
We say that C is functorially cone-Frobenius relative to E,F if there exists a
functor J : C → C and a natural transformation η : idC → J such that:

1. J(X) is E-projective for every object X of C,
2. η(X) : X → J(X) is an F -monomorphism for every object X of C,
3. if f : X → Y is an F -monomorphism then so is the map J(f) : J(X)→

J(Y ), and so is the universal map

Y
∐
X

J(X)→ J(Y ), (6)

4. and J(0) ∼= 0.

We sometimes call the pair J, η a cone functor on C relative to E,F . When E,F
are understood from context we simply call J, η a relative cone functor.

• (The absolute case.) If E = F is the class of all short exact sequences in C
and C is cone-Frobenius relative to E,F , then we say that C is cone-Frobenius.
If E = F is the class of all short exact sequences in C and C is functorially cone-
Frobenius relative to E,F , then we say that C is functorially cone-Frobenius.

The idea behind this definition is that the F -monomorphism and E-projective
object together are a kind of “mapping cone,” in the sense of homotopy theory, on
X: an embedding into a contractible object.

Under appropriate set-theoretic conditions on C, the cone-Frobenius condition
actually implies the functorial cone-Frobenius condition; this is the content of the
appendix to this paper, section 5, especially Theorem 5.5 and Corollary 5.6. In par-
ticular, we prove that, for a quasi-Frobenius ring R, the category of left R-modules
is functorially cone-Frobenius (Corollary 5.7), and for a quasi-Frobenius ring R with
only finitely many left ideals, the category of finitely generated left R-modules is
functorially cone-Frobenius (Corollary 5.8). (The appendix does not logically depend
on the rest of the paper.)

Now the Faith-Walker Theorem, stated above as Theorem 1.1, can be restated
using our definitions: a ring R is quasi-Frobenius if and only if the category of R-
modules is cone-Frobenius.

3.2. Existence of cylinder functors.
Now we show the equivalence of the functorial cone-Frobenius condition with the

existence of cylinder functors satisfying the cylinder axiom. First, some lemmas:

Lemma 3.2. If C is an abelian category, E an allowable class in C with sectile epics,
and C has enough E-projectives, then a finite coproduct of members of E is in E.
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Proof. Let I be a finite set and 0→ Xi → Yi → Zi → 0 be a member of E for every
i ∈ I. Then, for any E-projective object P of C, we have the commutative diagram

homC(P,⊕iYi) //

∼=
��

homC(P,⊕iZi)

∼=
��

⊕i homC(P, Yi) // ⊕i homC(P,Zi).

The bottom horizontal map is a surjection of abelian groups, so the top horizontal map
is as well. Now by Heller’s theorem 2.9, the map ⊕iYi → ⊕iZi is an E-epimorphism.
So the short exact sequence 0→ ⊕iXi → ⊕iYi → ⊕iZi → 0 is in E.

Lemma 3.3. (Shearing E-monics.) Let C be an abelian category and let E be
an allowable class in C. Suppose X,Y, Z are objects in C and suppose we have E-
monomorphisms e : X → Y and f : Z → Y . Let s be the morphism s : X ⊕ Z → Y ⊕
Z given by the matrix of maps

s =

[
e f
0 idZ

]
.

Then coker s is naturally isomorphic to coker e. Furthermore, if C has enough E-
injectives and E has retractile monics, then s is an E-monomorphism.

Proof. That coker e ∼= coker s follows immediately from the commutative diagram
with exact rows and exact columns:

0 //

��

X
e //

i

��

Y //

i

��

coker e //

��

0

��
0 //

��

X ⊕ Z s //

π

��

Y ⊕ Z

π

��

// coker s

��

// 0

��
0 // Z

id // Z // 0 // 0

in which the maps marked π are projections to the second summand, and the maps
marked i are inclusions as the first summand.

Now assume that E has retractile monics, and let t : Y ⊕ Z → Y ⊕ Y be the map
given by the matrix of maps

t =

[
idY −f
0 f

]
.

Then a matrix multiplication reveals that the composite map t ◦ s : X ⊕ Z → Y ⊕ Y
is the direct sum map e⊕ f , a direct sum of E-monomorphisms, hence by Lemma 3.2,
itself an E-monomorphism. (Note that, by taking the opposite category and noticing
that the definition of an allowable class in an abelian category is self-dual, we get the
conclusion of Lemma 3.2 if E has retractile monics and C has enough E-injectives.)
Now since t ◦ s is an E-monomorphism and E is assumed to have retractile monics,
s is also an E-monomorphism.

Theorem 3.4. Let C, E, F be as in Proposition-Definition 2.19. Then the Wald-
hausen category CF−cofE−we admits a cylinder functor satisfying the cylinder axiom if
and only if C is functorially cone-Frobenius relative to E,F .
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Proof. If CF−cofE−we has a cylinder functor satisfying the cylinder axiom, then the cylin-
der functor I sends, for any object X of C, the map X → pt to the diagram

X
F−cof//

!!

I(X)

E−we
��

ptoo

}}
pt

where the map marked F − cof is an F -monic and the map marked E − we is an
E-stable equivalence. But for an object’s map to the zero object to be an E-stable
equivalence, this is equivalent to that object being E-projective. That I(0) = 0 follows
from condition (Cyl 2) in Definition 2.13, and if f : X → Y is an F -monomorphism,
then so is I(f) by (Cyl 1), and the universal map Y

∐
X I(X)→ I(Y ) is also an

F -monomorphism by applying (Cyl 1) to the commutative square

X

f

��

// 0

��
Y // 0.

This completes one direction of the proof: X 7→ I(X) is a relative cone functor.

Now suppose we have a functor J and natural transformation e as in the definition
of a relative cone functor in Definition 3.1. We claim that the functor sending any

map X
f−→ Y to the diagram

X
(e(X),f)//

f
$$

J(X)⊕ Y

πY

��

Y
(0,id)oo

id
zz

Y ,

where πY is projection to Y , is a cylinder functor on C satisfying the cylinder axiom.
We check the conditions from Definition 2.13, with T (f) defined to be J(X)⊕ Y :

• We handle condition (Cyl 1) as follows: if X ′ → X and Y ′ → Y are
F -monomorphisms fitting into a diagram as in (2), then the direct sum T (f ′) =
J(X ′)⊕ Y ′ → J(X)⊕ Y = T (f) is an F -monomorphism by the assumption
that J sends F -monomorphisms to F -monomorphisms. The map

X
∐
X′

(J(X ′)⊕ Y ′)
∐
Y ′

Y = X
∐
X′

T (f ′)
∐
Y ′

Y → T (f) = J(X)⊕ Y

of condition (Cyl 1) is, up to isomorphism, the direct sum of map (6) with the
identity map on Y . Consequently map (3) is a cofibration if and only if map (6) is
an F -monomorphism. The assumption that this latter condition holds, however,
is part of the definition of the functorial cone-Frobenius condition. So the parts
of condition (Cyl 1) which refer to cofibrations are satisfied.
Now suppose that X ′ → X and Y ′ → Y are E-stable equivalences. We also
note that, since J(X ′), J(X) are E-projective, the projections J(X ′)→ pt and
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J(X)→ pt are E-stable equivalences, and Lemma 2.18 gives us that the com-
posite of either one with an E-stable inverse of the other is an E-stable equiva-
lence between J(X) and J(X ′). So T (f ′) = J(X ′)⊕ Y ′ → J(X)⊕ Y = T (f) is
an E-stable equivalence.
So condition (Cyl 1) holds.

• Condition (Cyl 2) holds by the axiom J(0) ∼= 0 in Definition 3.1.

• Lemma 3.3 implies that the direct sum map[
e(X) 0
f idY

]
: X ⊕ Y → J(X)⊕ Y

is an E-monomorphism, i.e., a cofibration, so condition (Cyl 3) holds.

• The cylinder axiom follows from the projection J(X)⊕ Y → pt⊕Y ∼= Y being
a direct sum of E-stable equivalences, hence itself an E-stable equivalence.

Corollaries 3.5, 3.6, and 3.8 rely on a definition and a theorem from section 5, the
appendix to this paper. The appendix does not logically depend on anything else in
the paper, so there is no danger of a circular argument.

Corollary 3.5. Let C be an abelian category, E,F allowable classes in C satisfying
the conditions:

• F has retractile monics,

• E has retractile monics and sectile epics,

• C has enough F -injectives,

• C has enough E-projectives and enough E-injectives,

• every E-projective object is E-injective,

• there exists some cardinal number κ such that C is F -monically κ-small and
has all coproducts of cardinality 6 κ (see Definition 5.1 for the definition of
“F -monically κ-small”),

• if X,Y are objects of C, then C has all products of cardinality less than or equal
to that of the set homC(X,Y ),

• every object of C embeds in an F -injective object by an F -monomorphism, i.e.,
for every object X there exists an F -monomorphism from X to an F -injective
object,

• and every F -injective object of C is E-projective.

Then the category C admits a Waldhausen category structure in which the cofibrations
are the F -monomorphisms, the weak equivalences are the E-stable equivalences, and
this Waldhausen category satisfies the saturation and extension axioms and admits a
cylinder functor satisfying the cylinder axiom.

Proof. Immediate from Definition-Proposition 2.19 and Theorems 3.4 and 5.5.

In the E = F case:

Corollary 3.6. Let C be an abelian category, E an allowable class in C satisfying the
conditions:
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• E has retractile monics and sectile epics,

• C has enough E-projectives and enough E-injectives,

• an object is E-projective if and only if it is E-injective,

• there exists some cardinal number κ such that C is E-monically κ-small and has
all coproducts of cardinality 6 κ,

• and, if X,Y are objects of C, then C has all products of cardinality less than or
equal to that of the set homC(X,Y ).

Then the category C admits a Waldhausen category structure in which the cofibrations
are the E-monomorphisms, the weak equivalences are the E-stable equivalences, and
this Waldhausen category satisfies the saturation and extension axioms and admits a
cylinder functor satisfying the cylinder axiom.

Corollary 3.7. Suppose C is a quasi-Frobenius abelian category with enough projec-
tives and functorially enough injectives. Then C admits the structure of a Waldhausen
category in which the cofibrations are the monomorphisms and the weak equivalences
are the stable equivalences. Furthermore, this Waldhausen category satisfies the satu-
ration and extension axioms, and it admits a cylinder functor satisfying the cylinder
axiom. We call this Waldhausen category the stable G-theory of C, and we call its
associated K-groups the stable G-theory groups of C.

Corollary 3.8. Suppose k is a finite field and R a quasi-Frobenius k-algebra which
is finite-dimensional as a k-vector space. Then the category of finitely generated (left)
R-modules admits the structure of a Waldhausen category in which the cofibrations
are the monomorphisms and the weak equivalences are the stable equivalences. Fur-
thermore, this Waldhausen category satisfies the saturation and extension axioms,
and it admits a cylinder functor satisfying the cylinder axiom.

3.3. Multiplicative structure.
We recall Waldhausen’s construction of a multiplicative structure on the K-theory

of a Waldhausen category:

Theorem 3.9. (Waldhausen.) Suppose A,B, C are Waldhausen categories and F :
A× B → C is a functor satisfying each of the following conditions:

• If M → N is a cofibration in A and L is an object of B, then F (M,L)→
F (N,L) is a cofibration in C.

• If M → N is a cofibration in B and L is an object of C, then F (L,M)→ F (L,N)
is a cofibration in C.

• If M ′ →M and N ′ → N are cofibrations in A and B, respectively, then the map
F (M ′, N)

∐
F (M ′,N ′) F (M,N ′)→ F (M,N) is a cofibration in C.

Then F induces a natural pairing Ω |wS·A| × Ω |wS·B| → ΩΩ |wS·S·C|
∼=−→ Ω |wS·C| .

Waldhausen’s pairing is sufficiently natural to imply the following (see [11] for a
good expository account of infinite loop spaces with ring structure, but note that
the statement we can make, below, is about homotopy-commutative ring spaces and
spectra, but not E∞-ring spaces or spectra):
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Corollary 3.10. Suppose C is a Waldhausen category which is equipped with a sym-
metric monoidal product X,Y 7→ X ⊗ Y satisfying the conditions for the functor F
in Theorem 3.9. Then Ω |wS·C| is a homotopy-commutative ring space, that is, the
infinite loop space Ω |wS·C| is equipped with a homotopy-commutative product that is
compatible with its loop space structure.

Equivalently, when regarded as a spectrum using its infinite loop space structure,
Ω |wS·C| is a homotopy-commutative ring spectrum.

Lemma 3.11. Let k be a field and let M ′,M,N ′, N be finite-dimensional k-vector
spaces. Suppose we have monomorphisms M ′ →M and N ′ → N of k-vector spaces.
Then the canonical map M ′ ⊗k N

∐
M ′⊗kN ′ M ⊗k N ′ →M ⊗k N is a monomorphism.

Proof. We will regard M ′ and N ′ as subspaces of M and N , respectively. Choose a
k-linear basis {m1, . . . ,mi} for M and a k-linear basis {n1, . . . , nj} for N such that
their restrictions to initial subsequences {m1, . . . ,mi′} and {n1, . . . , nj′} form k-linear
bases for M ′ and N ′, respectively. Then we have the short exact sequence of k-vector
spaces

0→M ′ ⊗k N ′
f−→M ′ ⊗k N ⊕M ⊗k N ′ →M ′ ⊗k N

∐
M ′⊗kN ′

M ⊗k N ′ → 0.

We write p for the composite map

M ′ ⊗k N ⊕M ⊗k N ′ →M ′ ⊗k N
∐

M ′⊗kN ′

M ⊗k N ′ →M ⊗k N. (7)

Suppose we have an element

x =

 i′∑
a=1

j∑
b=1

αa,bma ⊗ nb,
i∑

a=1

j′∑
b=1

βa,bma ⊗ nb

 ∈ (M ′ ⊗k N)⊕ (M ⊗k N ′)

such that p(x) = 0. Then we have:

0 =

i′∑
a=1

j∑
b=1

αa,bma ⊗ nb −
i∑

a=1

j′∑
b=1

βa,bma ⊗ nb

=

i′∑
a=1

j′∑
b=1

(αa,b − βa,b)ma ⊗ nb +

i′∑
a=1

j∑
b=j′+1

αa,bma ⊗ nb +

i∑
a=i′+1

j′∑
b=1

−βa,bma ⊗ nb,

hence βa,b = 0 for all a > i′, and αa,b = 0 for all b > j′, and αa,b = βa,b if a 6 i′

and b 6 j′. These conditions together imply that x is in the subspace M ′ ⊗k N ′ of
(M ′ ⊗k N)⊕ (M ⊗k N ′), hence the kernel of the composite map (7) is contained in
M ′ ⊗k N ′, hence that the map from the quotient

((M ′ ⊗k N)⊕ (M ⊗k N ′)) / (M ′ ⊗k N ′) ∼= (M ′ ⊗k N)
∐

M ′⊗kN ′

(M ⊗k N ′)

to M ⊗k N is injective.

Proposition 3.12. Let k be a field and let A be a co-commutative Hopf algebra over
k which is finite-dimensional as a k-vector space. Let Gst(A) be the stable G-theory
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Waldhausen category of A from Corollary 3.7, that is, Gst(A) is the category of finitely
generated (left) A-modules, with cofibrations the monomorphisms and weak equiva-
lences the stable equivalences. Then the tensor product ⊗k over k gives Gst(A) a
symmetric monoidal product satisfying the assumptions of Corollary 3.10. Hence the
stable G-theory space Ω |wS·Gst| has a homotopy-commutative multiplication which
distributes over the multiplication given by its infinite loop space structure; i.e., the
stable G-theory spectrum of Gst(A) is a homotopy-commutative ring spectrum.

Proof. Finite-dimensional Hopf algebras over fields are known to be quasi-Frobenius;
see e.g. [9] for this fact. That the tensor product over k is symmetric monoidal follows
from the Hopf algebra being co-commutative. That the tensor product over k satisfies
the first two conditions of Definition 3.9 is because every A-module is flat as a k-
module, since k is a field, so the tensor product over k preserves monomorphisms. That
the tensor product over k satisfies the third condition is because of Lemma 3.11.

4. Applications.

4.1. The relationship between stable G-theory and other G-theories and
K-theories.

We recall that stable G-theory was defined in Corollary 3.7. It sits naturally in
a diagram relating it to algebraic K-theory, algebraic G-theory, and the “derived
representation groups.”

Now we define some notations we use to describe certain Waldhausen categories
associated to an abelian category C:
Definition 4.1. Suppose C is an abelian category. We will write:

• K(C) for the K-theory category of C, i.e., the Waldhausen category structure on
the full subcategory generated by the projective objects of C, where cofibrations
are split inclusions and weak equivalences are isomorphisms.

• G⊕(C) for the split G-theory category of C, i.e., the Waldhausen category struc-
ture on C where cofibrations are split inclusions and weak equivalences are
isomorphisms.

• G(C) for the G-theory category of C, i.e., the Waldhausen category structure on
C where cofibrations are inclusions and weak equivalences are isomorphisms.

• When it exists: G⊕st(C) for the stable split G-theory category of C, i.e., the Wald-
hausen category structure on C where cofibrations are split inclusions and weak
equivalences are stable equivalences. (In the absolute sense, i.e., E-stable equiv-
alences where E is the allowable class of all short exact sequences in C.)

• When it exists: Gst(C) for the stable G-theory category of C, i.e., the Waldhausen
category structure on C where cofibrations are inclusions and weak equivalences
are stable equivalences. (In the absolute sense, i.e., E-stable equivalences where
E is the allowable class of all short exact sequences in C.)

Remark 4.2. We note that, if R is a Noetherian ring and C is the category of finitely
generated R-modules, then

πnΩ |wS·K(C)| ∼= Kn(R), (8)

i.e., the Waldhausen K-theory of the K-theory Waldhausen category recovers the
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classical algebraic K-theory of R. Meanwhile,

πnΩ |wS·G(C)| ∼= Gn(R), (9)

i.e., the Waldhausen G-theory of the (nonsplit) G-theory Waldhausen category recov-
ers the classical algebraic G-theory of R. (See section 1.9 of [14] for isomorphisms (8)
and (9).)

The other theories are more obscure but still meaningful. In degree zero,
π0Ω |wS·G⊕(C)| ∼= Rep(R), the representation ring of R—that is, the Grothendieck
group completion of the semiring of isomorphism classes of finitely-generated R-
modules. So we sometimes regard the split G-theory as the “derived representation
theory” and the groups π∗Ω |wS·G⊕(C)| as the “derived representation groups” of R.

In degree zero, π0Ω
∣∣wS·G⊕st(C)∣∣ ∼= StableRep(R), the stable representation group

of R—that is, the Grothendieck group completion of the monoid of stable equivalence
classes of finitely-generated R-modules. So we sometimes regard the split stable G-
theory as the “derived stable representation theory” and the groups π∗Ω

∣∣wS·G⊕st(C)∣∣
as the “derived stable representation groups” of R.

Finally, the results of this paper are really about the stable G-theory groups
π∗Ω |wS·Gst(C)| ∼= (Gst)∗(C), as defined in Corollary 3.7. In degree zero, (nonsplit)
stable G-theory is the stable representation group modulo the subgroup A generated
by all elements of the form L−M +N where 0→ L→M → N → 0 is a short exact
sequence in C.
Proposition 4.3. For any abelian category C, we have a commutative diagram of
topological spaces with nulhomotopic horizontal composites

|wS·K(C)| //

��

|wS·G⊕(C)|

��

//
∣∣wS·G⊕st(C)∣∣

��
|wS·K(C)| // |wS·G(C)| // |wS·Gst(C)| .

(10)

Suppose furthermore that C is functorially cone-Frobenius, has enough projectives,
has enough injectives, and every projective object is injective. Then the bottom row
in diagram (10) is a homotopy fiber sequence.

Proof. That the bottom row, under the stated assumptions, is a homotopy fiber
sequence is an immediate consequence of Waldhausen’s Fibration Theorem 2.14 and
our Theorem 3.4. Everything else here is a consequence of elementary facts from
[14].

4.2. Applications to algebras.
In this section we will finally apply our results to actual rings and algebras! We will

frequently assume that the rings in question are quasi-Frobenius. For an explanation
of when and why this implies the functorial cone-Frobenius condition, see Propo-
sition 5.2, Theorem 5.5, and Corollaries 5.6, 5.7, and 5.8. Throughout this section,
whenever we assume that an algebra is over a finite field, the only reason we assume
finiteness of the field is so that the above construction gives a cone functor on the
finitely-generated module category; if one can extend this construction to finitely-
generated modules over algebras over more general fields, then one can do away with
the finiteness assumption on the field.
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Proposition 4.4. (Stable G-theory is a delooping of relative algebraic K-
theory.) Suppose k is a finite field and A is a quasi-Frobenius k-algebra which is
finite-dimensional as a k-vector space. Suppose f : A→ k is a surjective morphism of
k-algebras with nilpotent kernel. Write K(A→ k) for the relative K-theory space of
f , that is, the fiber of the map Ω |wS·K(A)| → Ω |wS·K(k)| . Then we have a homo-
topy equivalence K(A→ k) ' Ω2 |wS·Gst(A)|, hence (Gst)n(A) ∼= Kn−1(A→ k) for
all n > 0.

Proof. We have the commutative diagram of (pointed) spaces

K(A→ k) //

��

Ω |wS·K(A)| //

��

Ω |wS·K(k)|

��
G(A→ k) //

��

Ω |wS·G(A)| //

��

Ω |wS·G(k)|

��
Ω |wS·Gst(A)| // Ω |wS·Gst(A)| // pt

(11)

in which the spaces K(A→ k) and G(A→ k) are defined to be the homotopy fibers of
the horizontal maps, so that the rows in diagram (11) are homotopy fiber sequences.

We note that the middle and right-hand columns in diagram (11) are also homotopy
fiber sequences, by Proposition 4.3. Since all rows and the rightmost two columns in
diagram (11) are homotopy fiber sequences, so is the left-hand column. By Quillen’s
filtration argument in [12], one also knows that any nilpotent extension of alge-
bras over a field induces a homotopy equivalence in G-theory spaces, so the map
Ω |wS·G(A)| → Ω |wS·G(k)| is a homotopy equivalence. So its fiber G(A→ k) is con-
tractible. Hence the left-hand column of diagram (11) reads, up to homotopy equiv-
alence, K(A→ k)→ pt→ Ω |wS·Gst(A)| . Hence K(A→ k) ' Ω2 |wS·Gst(A)|.

Now we recall Gabber’s rigidity theorem, from e.g. Chapter 4 of [15]:

Theorem 4.5. (Gabber.) Suppose A is a commutative ring and (A, I) is a Hensel
pair. Suppose 1/i ∈ A. Then, for all n > 0, the map Kn(A;Z/iZ)→ Kn(A/I;Z/iZ)
is an isomorphism.

Theorem 4.6. Suppose k is a finite field of characteristic p and A is a quasi-Frobenius
local commutative k-algebra which is finite-dimensional as a k-vector space. Then we
have the following computation of the stable G-theory groups of A:

• (Gst)0(A) is the abelian group whose objects are the stable equivalence classes of
finitely-generated A-modules, modulo the relation [L] + [N ] = [M ] if there exists
a short exact sequence 0→ L→M → N → 0.

• For n > 0, (Gst)n(A) is uniquely `-divisible for all primes ` 6= p. (So (Gst)n(A)

has no summands of the form Z/`iZ or Ẑ` or (Q/Z)`, but it may have summands
of the form Q, for example.)

• For n > 0, the modulo pi stable G-theory (Gst)n(A;Z/piZ) is isomorphic to the
topological cyclic homology TCn−1(A;Z/piZ).

Proof. • The statement about (Gst)0(A) is the usual identification of K0 of a
Waldhausen category; see Remark 4.2.
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• Suppose ` is a prime distinct from p. From Gabber rigidity, Theorem 4.5, we
know that Kn(A→ k;Z/`iZ) ∼= 0 for n > 1. Since A is assumed local, we also
know that the map K0(A)→ K0(k) is an isomorphism (the identity map from
Z to Z), so K0(A→ k;Z/`iZ) vanishes as well. From the short exact sequence

0→ Kn(A→ k)/`i → Kn(A→ k;Z/`iZ)→ `i torsion in Kn−1(A→ k)→ 0

and vanishing of the middle term for n > 0, we then know that Kn(A→ k)/`i ∼=
0 for n > 0, and Kn(A→ k) is `i-torsion-free for n > 0. So, in particular,
Kn(A→ k) is uniquely `-divisible for all n > 0. By Proposition 4.4, we know
that (Gst)n(A) ∼= Kn−1(A→ k) for n > 1, so for n > 1 we conclude that
(Gst)n(A) is uniquely `-divisible.

• Since A is finite, it is also Artinian, and so it is classical (see e.g. Proposition
8.6 in [2]) that the maximal ideal of A is nilpotent. So McCarthy’s theorem (see
e.g. Madsen’s article [8] for a good expository account) implies that Kn(A→
k;Z/piZ) ∼= TCn(A→ k;Z/piZ). Now use Proposition 4.4.

One of our results (in Theorem 4.8, below) involves proving that certain stable
G-theory spectra are complex-orientable. To prepare for that result, we provide the
definition of a complex orientation.

Definition 4.7. Let E be a homotopy-commutative ring spectrum. By a complex
orientation on E we mean a choice of element χ ∈ Ẽ2(BU(1)) with the property that
χ maps to the multiplicative unit element 1 ∈ E0(pt) under the composite

Ẽ2(BU(1))→ Ẽ2(S2)
∼=−→ Ẽ0(S0)

∼=−→ E0(pt),

where the left-hand map is the map induced in E-cohomology by inclusion of the
2-skeleton S2 of BU(1), the classifying space of complex line bundles.

If E admits a complex orientation, we sometimes say that E is complex-orientable.

Complex orientations are important for geometric purposes, since the element χ
behaves essentially like a first Chern class, allowing one to carry out geometric argu-
ments using E-cohomology that require characteristic classes for line bundles. Com-
plex orientations also connect powerfully to number theory, via formal group laws:
a complex orientation on a homotopy-commutative ring spectrum E gives rise to a
one-dimensional commutative formal group law on π∗(E), and much of the homotopy
theory of complex-orientable ring spectra can be described completely in terms of the
moduli theory of one-dimensional formal groups. Adams’s book [1] is an excellent
reference for this material.

Now one wants to use Proposition 3.12 to get a multiplicative version of Theo-
rem 4.6. So we have the following, which also uses Hesselholt-Madsen’s computation
of the topological cyclic homology of truncated polynomial rings (see e.g. the survey
article [8]; these computations of Hesselholt and Madsen are very substantial, far
moreso than anything proven in the present paper!):

Theorem 4.8. Suppose k is a finite field of characteristic p. Let A ∼= k[x]/xp
n

for
some positive integer n. Then we have the following results:

• (Gst)0(A) ∼= Z/pnZ.
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• For all positive integers m,

(Gst)2m(A) ∼= TC2m−1(A; Ẑp) ∼= Wmpn−1(k)/VpnWm−1(k),

where Wi(k) is the standard filtration quotient i of the ring of big Witt vectors,
that is, Wi(k) = (1 +Xk[[X]])×/(1 +Xi+1k[[X]])×, and Vj is the Verschiebung
morphism sending a power series f(X) to the power series f(Xj).

• For all positive integers m, (Gst)2m−1(A) ∼= 0.

• Gst(A) is a complex-orientable ring spectrum.

Proof. • To get the isomorphism (Gst)0(A) ∼= Z/pnZ we use the identification
of degree zero stable G-theory, in Remark 4.2, as the group of stable equiva-
lence classes of finitely generated A-modules, modulo the relation splitting all
short exact sequences. Now A is a local Artinian principal ideal ring, hence
its finitely-generated module category is Krull-Schmidt and every indecom-
posable finitely-generated module is cyclic, and for every i 6 pn, we have the
short exact sequence 0→ k → k[x]/xi → k[x]/xi−1 → 0 of A-modules, so we
have the relation [k] + [k[x]/xi−1] = [k[x]/xi] in (Gst)0(A), so [k] generates
(Gst)0(A). Finally, we observe that [k[x]/xp

n

] = pn[k] is zero in stable G-theory.
So (Gst)0(A) ∼= Z/pnZ, generated by the stable equivalence class of the A-
module k.

• In the proof of Proposition 4.4 we constructed a map of spectra ΩGst(A)→
K(A→ k) which induces an isomorphism in πi for all i > 0, and using
McCarthy’s theorem we saw that the cyclotomic trace map K(A→ k) ∧ S/pj →
TC(A→ k;Z/pjZ) induces an isomorphism in πi for all i > 0. The computation

of TC∗(A; Ẑp) is due to Hesselholt and Madsen, as in [8]: for m > 0, we have

TC2m−1(A; Ẑp) ∼= TC2m−1(A→ k; Ẑp) ∼= Wmpn−1(k)/VpnWm−1(k),

and TC(A; Ẑp) vanishes in positive even degrees.
Consequently, if m > 1, then we have a commutative diagram with exact rows

(Gst)2m−1(A)
pj //

��

(Gst)2m−1(A) //

f

��

π2m−1(Gst(A) ∧ S/pj)

∼=
��

0 // 0 // TC2m−2(A;Z/pjZ).

(12)

An easy diagram chase shows that, if x ∈ (Gst)2m−1(A) is in the kernel of f , then
x must be pj-divisible. Since (Gst)2m−1(A) is a module over (Gst)0(A) ∼= Z/pnZ,
if j > n there can be no nonzero pj-divisible elements in (Gst)2m−1(A). So f
is injective, so (Gst)2m−1(A) ∼= 0 for all m > 1. When m = 1 we get the same
conclusion, that is, vanishing of (Gst)1(A), from a diagram like (12) obtained
from Theorem 4.6 and the vanishing of K0(A→ k).
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If m > 1, we also have a commutative diagram with exact rows

(Gst)2m(A)
pj //

��

(Gst)2m(A) //

f

��

π2m(Gst(A) ∧ S/pj)

∼=
��

// 0

��
TC2m−1(A; Ẑp)

pj // TC2m−1(A; Ẑp) // TC2m−1(A;Z/pjZ) // 0,

and a similar diagram chase and divisibility argument shows that f is an iso-
morphism.

• We have the inclusion of the 2-skeleton S2 ↪→ BU(1) into the classifying space of
complex line bundles, and the map it induces of Gst(A)-cohomological Atiyah-
Hirzebruch spectral sequences:

Hp(BU(1); (Gst(A))q) +3

��

Gst(A)p+q(BU(1))

��
Hp(S2; (Gst(A))q) +3 Gst(A)p+q(S2).

Since the homotopy groups of Gst(A) and the cohomology groups of BU(1)
are both concentrated in even degrees, there is no room for differentials in the
spectral sequence for BU(1). We conclude that the map of spectral sequences
is simply projection on to the p = 0 and p = 2 columns, and that in particu-
lar, every element in H2(S2; (Gst(A))0) ∼= Gst(A)2(S2) is in the image of the
projection from Gst(A)2(BU(1)). So Gst(A) is complex-orientable.

5. Appendix on functorial embeddings of modules into injec-
tives.

This appendix tells us that, under appropriate conditions on an abelian category C
with enough relative injectives, every object of C can be embedded functorially into a
relative injective by a relative monomorphism. As a special case, we get a construction
of a functorial embedding of any module into an injective module, and we show that
this functorial embedding has certain nice properties which we use in the rest of the
paper. This appendix does not logically depend on anything (except definitions) that
appears elsewhere in the paper.

The functorial embeddings we construct (in the beginning of the proof of Theo-
rem 5.5) are a generalization of a construction which appears in H. Bass’s paper [3],
and Bass writes there that he was told of it by C. Watts. I do not know if there is
any earlier reference.

Definition 5.1. Let C be an abelian category, and let E be an allowable class in C.
We will say that a set of objects {Xs}s∈S of C is an E-monic generating set for C if
the following condition is satisfied:

• If f : M → N is a morphism in C such that f ◦ g is E-monic for every E-
monomorphism g : Xs →M , then f is E-monic.
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If an E-monic generating set for C exists, then we say that C is E-monically small.
If κ is a cardinal number and an E-monic generating set for C exists with 6 κ objects
in it, then we say that C is E-monically κ-small.

For example:

Proposition 5.2. Let R be a ring and let Mod(R) be the category of left R-modules.
Let E be the absolute allowable class on C, i.e., E is the class of all short exact
sequences in C. Let κ be the (cardinal) number of left ideals of R. Then Mod(R) is
E-monically κ-small. Furthermore, the category of finitely generated left R-modules
is also E-monically κ-small.

Proof. Since E-monomorphisms for the absolute allowable class E are simply
monomorphisms, we drop the E from the following proof. We claim that the set
{R/J}, where J ranges across all left ideals of J , is a monic generating set for Mod(R).
Suppose f : M → N is a morphism in Mod(R), and choose a nonzero element m ∈M .
Then m generates a cyclic submodule of M , i.e., we have a monomorphism of left
R-modules

R/J →M, (13)

sending 1 to m, for some left ideal J of R. If every monomorphism g : R/J →M has
the property that f ◦ g is monic, then monomorphism (13) has the property that its
composite with f is nonzero, and hence f(m) 6= 0. Hence f(m) 6= 0 for all m, hence
f is injective. So {R/J} is a monic generating set for Mod(R).

The theorem we need for section 5 is Theorem 5.5, but its proof requires a lemma:

Lemma 5.3. Let C be an abelian category, let E be an allowable class in C with
retractile monics, let I : C → C be a functor which sends the zero object to the zero
object, and let η : idC → I be a natural transformation with the property that η(X) :
X → IX is an E-monomorphism for all objects X of C. Suppose that f : X → Y is
an E-monomorphism in C, and suppose that If is also an E-monomorphism.

Then the canonical map

Y
∐
X

IX → IY, (14)

given by the universal property of the pushout, is also an E-monomorphism.

Proof. Let p : Y → coker f be the projection-to-the-cokernel map. Since I sends the
zero object to the zero object, it also sends the zero map to the zero map, hence
I(p) ◦ I(f) = I(p ◦ f) = 0. Hence, by the universal property of the cokernel, the map
η(coker f) : coker f → I(coker f) factors uniquely through the canonical map
e : coker f → coker If . Since η(coker f) is E-monic by assumption, and since E has
retractile monics, e is also E-monic.

Now e along with the canonical comparison map c : Y
∐
X IX → IY of (14) both



26 ANDREW SALCH

fit into the commutative diagram with exact rows

0 //

��

X
f //

ηX

��

Y
p //

��

coker f //

id

��

0

��
0 //

��

IX //

id

��

Y
∐
X IX

//

c

��

coker f //

e

��

0

��
0 // IX

If // IY // coker If // 0.

We already showed that e is monic; it is then an extremely elementary exercise in
homological algebra to show that c is also monic. We still need to know that c is
E-monic; the proof is as follows. If we write pr : coker If → coker e for the projection
map to the cokernel, then the Snake Lemma implies that coker e is also a cokernel for

the map c, and the composite map IY → coker If
pr−→ coker e is also a projection-

to-the-cokernel map for c. Since we showed that e is E-monic, we then know that
the map pr is E-epic, and since we assumed that If is E-monic, the projection map
IY → coker If is also E-epic. Consequently the composite map IY → coker e is E-
epic, and since that map is projection to a cokernel of c, the map c is E-monic, as
claimed.

Lemma 5.3 does not require the functor I to be additive, and indeed, in the proof
of Theorem 5.5, we apply Lemma 5.3 to a non-additive functor (which nevertheless
sends the zero object to the zero object).

Lemma 5.4. Let C be an abelian category, let I be a set, and let {fi : Xi → Yi}i∈I be
a collection of split monomorphisms in C. If the products

∏
i∈I Xi and

∏
i∈I Yi exist in

C, then the product map
∏
i∈I fi :

∏
i∈I Xi →

∏
i∈I Yi is also a split monomorphism.

Proof. Choose a splitting map si for each fi. Then
∏
i∈I si is a splitting map for∏

i∈I fi.

When we know that C is monically small relative to some allowable class, and that
every object of C embeds into a relative injective, then in fact we can functorially
embed every object of C into a relative injective:

Theorem 5.5. Suppose C is an abelian category, E,F allowable classes in C. Suppose
the following conditions are satisfied:

• F has retractile monics,

• C is F -monically κ-small,

• C has all coproducts of cardinality 6 κ,

• C has2

– all products, or
– all finite products and all hom-sets in C are finite, or

2The following conditions are simply those which guarantee that, if X,Y are objects of C, then C
has all products of cardinality less than or equal to that of the set homC(X,Y ).
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– there exists an uncountable strongly inaccessible cardinal λ which is a strict
upper bound for the size of the hom-sets in C, and C has all products of
cardinality < λ (this condition was suggested by the anonymous referee),

• every object of C embeds in an F -injective object by an F -monomorphism, i.e.,
for every object X there exists an F -monomorphism from X to an F -injective
object,

• and every F -injective object of C is E-projective.

Then C is functorially cone-Frobenius relative to E,F . (See Definition 3.1 for the
definition of “functorially cone-Frobenius.”)

Proof. First, choose an F -monic generating set {Xs}s∈S in C, and choose an F -
injective object K of C and an F -monomorphism ι :

∐
s∈S Xs → K.

Now let I : C → C be the functor given on objects by

I(M) = ker

 ∏
f∈homC(M,K)

K{ef}

→ K{e0}

 , (15)

that is, I(M) is the kernel of the projection-to-a-factor map
∏
f∈homC(M,K)K{ef} →

K{e0}. (We need to define I as the above kernel, and not merely as the product∏
f∈homC(M,K)K{ef}, in order for I to send the zero object to the zero object, so

that we can use Lemma 5.3 later in this same proof.) Here the symbols ef are formal
symbols used to index the factors of K in the product in (15). The functor I is given
on a morphism φ : M ′ →M in C by the map induced on kernels by

• the map given by the universal property of the product,∏
g∈homC(M ′,K)

K{eg} →
∏

f∈homC(M,K)

K{ef},

• making use, for each f : M → K in C, of the map ∏
g∈homC(M ′,K)

K{eg}

→ K{ef}

given by the projection-to-a-factor map
(∏

g∈homC(M ′,K)K{eg}
)
→ K{ef◦φ}

followed by the identity map K{ef◦φ}
idK−→ K{ef}.

Now we define a natural transformation η : idC → I as follows: for any object X of
C, we can specify the map ηM : M → IM by specifying its component mapping to
K{eg} for each choice of g, by the universal property of the categorical product. We
let the component mapping to K{eg} be simply g, that is, g ∈ homC(M,K) is a map
M → K, and we let that map g be the component map M → K{eg}. One checks
easily that this construction is compatible with morphisms, hence defines a natural
transformation.

For each object X of C, the object IX is a product of F -injective objects, hence
is F -injective, hence is E-projective, by assumption. The functor I with the natural
transformation η : idC → I will be our relative cone functor; we will now check the
axioms of Definition 3.1, in order.
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We first must check that ηM is actually an F -monomorphism. Here we use the
assumption that {Xs}s∈S is an F -monic generating set. Choose some s ∈ S and an F -
monomorphism ψ : Xs →M . (If no such F -monomorphism exists, then the conditions
of Definition 5.1 are vacuously satisfied, and ηM is then automatically F -monic.) Let
i be the composite of the inclusion into the coproduct with the inclusion of the
coproduct into the F -injective object K: Xs ↪→

∐
s∈S Xs ↪→ K, and observe that i

is a composite of a split monomorphism with an F -monomorphism, so i is itself an
F -monomorphism. So, in the commutative diagram

Xs
i //

ψ !!

K

M,

h

OO

the dotted map marked h exists by the universal property of an F -injective object. If

Xs is the zero object, then the composite map Xs
ψ−→M

ηM−→ IM is automatically F -
monic, as desired; so assume instead that Xs is not the zero object. Then i is not the
zero map, so h cannot be the zero map, so we have the projection pr : IM → K{eh},
and the composite map

Xs
ψ−→M

ηM−→ IM
pr−→ K{eh}

is h ◦ ψ = i, which is F -monic; since F has retractile monics, ηM ◦ ψ is also F -monic.
So, for every F -monomorphism ψ : Xs →M , the composite ηM ◦ ψ is F -monic.

Now Definition 5.1 implies that ηM is F -monic, as desired.
Now we need to check that, if φ : M ′ →M is an F -monomorphism in C, then so

is the map Iφ : IM ′ → IM , and so is the universal map

M ′
∐
M

IM → IM ′. (16)

Since φ is injective, the map Iφ is a product of copies of the map idK : K → K and
the zero map 0→ K, each of which are split monic. Now Lemma 5.4 implies that Iφ
is split monic, hence F -monic, as desired.

Now, since I sends the zero object to the zero object, Lemma 5.3 also implies that
the map (16) is F -monic.

As a special case:

Corollary 5.6. Suppose C is an abelian category with enough injectives, with all small
products and coproducts, and which is monically small. Suppose that every injective
object in C is projective. Then C is functorially cone-Frobenius.

As an even more special case:

Corollary 5.7. Let R be a quasi-Frobenius ring. Then the category of left R-modules
is functorially cone-Frobenius.

Finally, there is the question of when we have the functorial cone-Frobenius con-
dition on the finitely generated modules over a ring:
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Corollary 5.8. Let R be an quasi-Frobenius ring which is finite, i.e., R has only
finitely many elements. Then the category of finitely generated left R-modules is func-
torially cone-Frobenius.

Proof. We need to check that the assumptions in the statement of Theorem 5.5 are
satisfied. Since R is finite, R has only finitely many ideals, so by Proposition 5.2, the
category of finitely generated left R-modules is κ-small for some finite cardinal κ. Of
course then coproducts of cardinality 6 κ exist in the category of finitely generated
left R-modules. Since R is finite, there are only finitely many homomorphisms from
any finitely generated left R-module to any other finitely generated left R-module,
so the category of finitely generated left R-modules has all products indexed by its
hom-sets.

The last condition to check is that every finitely generated left R-module embeds in
a projective finitely generated left R-module. Since R is quasi-Frobenius, every finitely
generated left R-module M embeds in a free left R-module, that is,

∐
i∈I R{ei} for

some set I, where the symbols ei are formal symbols used to keep track of the copies of
R. Let {g1, . . . , gn} be a set of generators for M . The image of each gj in

∐
i∈I R{ei}

is of the form
∑
i∈I ri,jei, with each ri,j and, for each j, all but finitely many ri,j are

zero. Since there are only finitely many gj , the image of each g1, . . . , gn is contained
in the sub-R-module of

∐
i∈I R{ei} generated by a finite subset of the generators ei.

Hence M embeds in a finitely generated free left R-module.

So the functorial cone-Frobenius condition seems to be a reasonable and often-
satisfied one.
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