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Abstract. We construct spectral sequences for computing the cohomology of automor-
phism groups of formal groups equipped with additional endomorphisms given by a p-adic
number ring. We then compute the cohomology of the group of automorphisms of a height
four formal group law which commute with additional endomorphisms of the group law
by the ring of integers in the field Qp(

√
p), for primes p > 5. This automorphism group

is a large profinite subgroup of the height four strict Morava stabilizer group. The group
cohomology of this group of automorphisms turns out to have cohomological dimension
8 and total rank 80. We then run the K(4)-local E4-Adams spectral sequence to compute
the homotopy groups of the homotopy fixed-point spectrum of this group’s action on the
Lubin-Tate/Morava spectrum E4.
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1. Introduction.

This paper is intended as a companion and sequel to [20]. In J.P. May’s thesis [10], he
used the results of Milnor and Moore’s paper [13] to set up spectral sequences for com-
puting the cohomology of the Steenrod algebra, the input for the classical Adams spectral
sequence; in chapter 6 of [17], Ravenel adapts May’s spectral sequences for the purpose
of computing the cohomology of automorphism groups of formal group laws, i.e., Morava
stabilizer groups, which are the input for various spectral sequence methods for computing
stable homotopy groups of spheres and Bousfield localizations of various spectra. In this
paper we adapt Ravenel’s tools to the task of computing the cohomology of automorphism
groups of formal group laws with additional endomorphisms 1 by a p-adic number ring A,
i.e., formal A-modules. We show (Theorem 5.1) that these automorphism groups are closed

1Sometimes one says that formal A-modules are “formal group laws with complex multiplication by A,” but
this terminology is ambiguous, since the theory of complex multiplication on abelian varieties really demands
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2 A. SALCH

subgroups of the Morava stabilizer groups, so that the machinery of [4] can be used to con-
struct and compute the homotopy fixed-point spectra of the action of these automorphism
groups on Lubin-Tate/Morava E-theory spectra; and then, most importantly, we actually
use all this machinery to do some nontrivial computations: in Theorem 4.5, we compute

the cohomology of the group scheme strAut(1G
Ẑp[√p]
1/2 ) of strict automorphisms of a height

four formal group law which commute with “complex multiplication” by the ring of inte-
gers in the field Qp(

√
p), for primes p > 5. This is an eight-dimensional pro-p-subgroup

of the sixteen-dimensional height four strict Morava stabilizer group scheme. The group

cohomology H∗(strAut(1G
Ẑp[√p]
1/2 );Fp) turns out to have cohomological dimension 8, total

rank 80, and Poincaré series

(1 + s)4(1 + 3s2 + s4) = 1 + 4s + 9s2 + 16s3 + 20s4 + 16s5 + 9s6 + 4s7 + s8.

We then run the descent/K(4)-local E4-Adams spectral sequence to compute the ho-

motopy groups of the homotopy fixed-point spectrum E
h Aut(1G

Ẑp [
√

p]
1/2 ⊗FpFp)oGal(k/Fp)

4 smashed
with the Smith-Toda complex V(3) (which exists, since we are still assuming that p > 5).
The computation is Theorem 5.2; see the statement of Theorem 5.2 for a presentation of
the homotopy groups of that spectrum, or Corollary 5.3 for just its Poincaré series.

Part of the appeal of Theorem 5.2, the main result of this paper, is that it is one of
extremely few calculations of v4-periodic homotopy groups which have ever been made.
Beyond that, deeper v4-periodic calculations can be made by building upon Theorem 5.2:
in particular, see the preprint [19] for some applications of the computations in this paper
as input for further, more difficult computations which eventually arrive at the cohomology
of the height four Morava stabilizer group scheme at primes p > 7.

The computations in section 4 of this paper appeared already in the (unpublished, and
not submitted for publication) announcement [19]; any version of that announcement
which is ever submitted for journal publication will feature at most only an abbreviated
version of these computations, with the idea that the complete versions are those provided
in the present paper.

This paper benefitted from insightful suggestions of its anonymous referee, and I am
grateful to the referee for this. I am also grateful to J. Greenlees for his editorial help, and
also for his patience, as well as the referee’s.

Conventions 1.1.
• In this paper, all formal groups and formal modules are implicitly assumed to be

one-dimensional and commutative.
• In this paper, “formal group” is used to mean “formal group law,” i.e., a power se-

ries satisfying appropriate associativity, commutativity, unitality, and inverse ax-
ioms, as in [5] or [17]. We do not mean “formal group” in the coordinate-free
sense, i.e., a group structure on the formal affine line Â1, as in [21]. Similarly,
our formal modules all have chosen coordinates, i.e., they are given by formal
power series data. (The difference between the “coordinate-free” and “coordinate-
chosen” definitions is, of course, simply a choice of power series generator for the
ring of global sections of Â1. The statements of the computational results in this
paper apply equally well to formal modules in the coordinate-free sense, although
some of the proofs only make sense after a choice of coordinate.)

that the ring A have as large a rank as possible given the dimension of the abelian variety, a restriction whose
analogue for formal group laws we do not make in this paper.
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• Whenever G is a formal group or a formal module over a field k, we will write
Aut(G) for the automorphism group scheme of G, i.e., Aut(G) is the functor from
commutative k-algebras to groups which sends a k-algebra A to the automorphism
group of G ⊗k A. For emphasis: our notation Aut(G) designates a group scheme,
not a group. Similarly, strAut(G) is the group scheme of strict automorphisms
of G, i.e., strAut(G) : Comm Alg(k) → Groups sends A to the subgroup of
Aut(G)(A) consisting of those automorphisms which are given by formal power
series in A[[X]] which are congruent to X modulo X2. In particular, when G is
p-typical, strAut(G) is corepresented by the Hopf algebra k ⊗BP∗ BP∗BP ⊗BP∗ k,
where k is a BP∗-module via the classfying map BP∗ → k of G. In the special
case in which BP∗ → Fp sends vn to 1 and sends vi to zero if i 6= n, strAut(G) is
co-represented by the Morava stabilizer algebra Σ(n), as in section 6.2 of [17].

The notation k[strAut(G)]∗ then refers to the commutative Hopf algebra of
functions on the group scheme strAut(G); see [22] for a textbook treatment.

It is well-known (see e.g. Theorem 6.2.3 of [17]) that, if k is finite, then Aut(G)
and strAut(G) are pro-étale: that is, after a separable base change, they become
pro-constant. Hence Aut

(
G ⊗k k

)
and strAut

(
G ⊗k k

)
are k-linear duals of honest

profinite groups. This point is discussed more at the start of section 5. The co-
homological consequences of Aut (G) being a group scheme and not a group are
rather slight: see the proof of Theorem 5.2 for an easy Galois descent argument
which lets us pass between the cohomology of the group scheme Aut(G) and the
continuous group cohomology of the automorphism group of G ⊗k k.

• Throughout, we will use Hazewinkel’s generators for BP∗ (and, more generally,
for the classifying ring VA of A-typical formal A-modules, where A is a discrete
valuation ring).

• By a “p-adic number field” we mean a finite field extension of the p-adic rationals
Qp for some prime p.

• When a ground field k is understood from context, we will write Λ(x1, . . . , xn) for
the exterior/Grassmann k-algebra with generators x1, . . . , xn.

• Given a field k, we write k{x1, . . . , xn} for the abelian Lie algebra over k with basis
x1, . . . , xn.

• When L is a restricted Lie algebra over a field k and M is a module over the
restricted enveloping algebra VL, we write H∗res(L,M) for restricted Lie algebra
cohomology, i.e., H∗res(L,M) ∼= Ext∗VL(k,M), and we write H∗unr(L,M) for unre-
stricted Lie algebra cohomology, i.e., H∗unr(L,M) ∼= Ext∗UL(k,M), where UL is the
universal enveloping algebra of L.

• Whenever convenient, we make use, without comment, of the well-known theorem
of Milnor and Moore, from [13]: given a field k of characteristic p > 0, the func-
tors P (restricted Lie algebra of primitives) and V (restricted enveloping algebra)
establish an equivalence of categories between restricted Lie algebras over k and
primitively generated cocommutative Hopf algebras over k, and this equivalence
preserves cohomology, i.e., H∗res(L,M) ∼= Ext∗VL(k,M).

• Whenever convenient, we make use of the Chevalley-Eilenberg complex of a Lie
algebra L to compute (unrestricted) Lie algebra cohomology H∗unr(L,M), as in [2].

• Many of the differential graded algebras in this paper have a natural action by a
finite cyclic group; given an action by a finite cyclic group Cn on some DGA, we
will always fix a generator for Cn and write σ for that generator.
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2. Review of Ravenel’s filtration and associatedMay spectral sequences.

This paper continues from [20]; for a brief introduction to formal A-modules, their mod-
uli, A-typicality, A-height, and so on, the reader can consult that paper. A more complete
account is in [16], and an even more complete account is chapter 21 of [5]. Briefly, the
most important fact we will use is that, for A the ring of integers in a p-adic number field,
the classifying ring of A-typical formal A-modules is VA ∼= A[vA

1 , v
A
2 , . . . ], and the classi-

fying ring of strict isomorphisms of A-typical formal A-modules is VAT ∼= VA[tA
1 , t

A
2 , . . . ],

with vA
n and tA

n each in grading degree 2(qn − 1), where q is the cardinality of the residue
field of A.

Definition 2.1 and Theorem 2.2 appeared in [20]:

Definition 2.1. Let K be a p-adic number field with ring of integers A and residue field k,
and let n be a positive integer. Let k′ be a field extension of k, and let α ∈ (k′)×. We write
αG

A
1/n for the the formal A-module over k′ classified by the map VA → k′ sending vA

n to α
and sending vA

i to zero if i 6= n.

We remind the reader of our convention, from Conventions 1.1, that the symbol strAut(G)
refers to the strict automorphism group scheme of a formal group law G, and k[strAut(G)]∗

is the commutative Hopf k-algebra of functions on that group scheme.

Theorem 2.2. Let L/K be a finite field extension of degree d, with K, L p-adic number
fields with rings of integers A, B respectively. Let k, ` be the residue fields of A and B, let
e be the ramification degree and f the residue degree of L/K, let q be the cardinality of `,
and let πA, πB be uniformizers for A, B, respectively. Let n be a positive integer. If `′ is a
field extension of ` and β ∈ (`′)×, then the underlying formal A-module of βGB

1/n is αG
A
1/dn,

where
α =

πA

πe
B
β

qen−1
qn−1 .

Furthermore, the ring map

k(α)[strAut(αGA
1/dn)]∗ = k(α)[tA

1 , t
A
2 , . . . ]/(t

A
i α

qei−1 − (tA
i )qen

∀i)

→ `[tB
1 , t

B
2 , . . . ]/(t

B
i β

qi−1 − (tB
i )qn

∀i) = `[strAut(βGB
1/n)]∗(2.1)

classifying the strict formal A-module automorphism of αG
A
1/dn underlying the universal

strict formal B-automorphism of βGB
1/n sends tA

i to tA
i/ f if i is divisible by the residue degree

f of L/K, and sends tA
i to zero if i is not divisible by the residue degree f .

Ravenel writes S (n) for the Hopf algebra Fpn [strAut(1G
Ẑp

1/n)]∗; most of his constructions
and computations work equally well for the more general Hopf algebra Fp[strAut(αGA

1/dn)]∗.
Definition 2.3 and Theorems 2.4 and 2.5 were given in section 6.3 of [17].

Definition 2.3. (Ravenel’s numbers.) Fix a prime number p and a positive integer n. Let
dn,i be the integer defined by the formula

dn,i =

{
0 if i ≤ 0
max{i, pdn,i−n} if i > 0.

(Clearly dn,i depends on the prime number p, but the choice of prime p is suppressed from
the notation for dn,i.)

Now equip the continuous Fp-linear dual Hopf algebra

Fp[strAut(1G
Ẑp

1/n)]∗ ∼= Fp ⊗BP∗ BP∗BP ⊗BP∗ Fp
∼= Fp[t1, t2, . . . ]/(t

pn

i − ti ∀i)
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with the increasing filtration in which the element t j
i is in filtration degree sp( j)dn,i, where

sp( j) is the sum of the digits in the base p expansion of j. Here the BP∗-module structure
of Fp is given by the ring map BP∗ → Fp sending vn to 1 and sending vi to 0 for all i 6= 0.
We call this filtration the Ravenel filtration.

Theorem 2.4. (Theorems 6.3.1-6.3.3 of [17].) The Ravenel filtration is an increasing Hopf
algebra filtration, and its associated graded Hopf algebra E0S (n) is Fp-linearly dual to a
primitively generated Hopf algebra. The Hopf algebra E0S (n) is isomorphic, as an Fp-
algebra, to a truncated polynomial algebra:

E0Fp[strAut(1G
Ẑp

1/n)]∗ ∼= Fp[ti, j : 1 ≤ i, j ∈ Z/nZ]/tp
i, j,

where the coproduct is given by

∆(ti, j) =


∑

0≤k≤i tk, j ⊗ ti−k,k+ j if i < pn
p−1 ,∑

0≤k≤i tk, j ⊗ ti−k,k+ j + bi−n, j+n−1 if i =
pn

p−1 ,

ti, j ⊗ 1 + 1 ⊗ ti, j + bi−n, j+n−1 if i > pn
p−1 ,

,(2.2)

where ti, j is the element of E0Fp[strAut(1G
Ẑp

1/n)]∗ corresponding to tp j

i ∈ Fp[strAut(1G
Ẑp

1/n)]∗,

t0, j = 1, and x is the image in E0Fp[strAut(1G
Ẑp

1/n)]∗ of an element x ∈ Fp[strAut(1G
Ẑp

1/n)]∗.

The b elements have a fairly complicated combinatorial description; see 4.3.14 of [17].
The Hopf algebra E0Fp[strAut(1G

Ẑp

1/n)]∗ is the Fp-linear dual of the restricted envelop-
ing algebra of a restricted Lie algebra L(n). Let xi, j denote the Fp-linear functional on

E0Fp[strAut(1G
Ẑp

1/n)]∗ which is dual to ti, j; then the set{
xi, j : i > 0, j ∈ Z/nZ

}
is a Fpn -linear basis for L(n). We describe the bracket and the restriction ξ on L(n):

[xi, j, xk,l] =

 δl
i+ jxi+k, j − δ

j
k+lxi+k,l if i + k ≤ pn

p−1 ,

0 if i + k > pn
p−1 .

,

ξ(xi, j) =


xi+n, j+1 if i > n

p−1 or i = n
p−1 and p > 2,

x2n, j + x2n, j+1 if i = n and p = 2,
0 if i < n

p−1 .
,

where δa
b = 1 if a ≡ b modulo n, and δa

b = 0 if a . b modulo n.

The two spectral sequences of J.P. May’s thesis [10], in this context, take the form:

Theorem 2.5. We have spectral sequences

E s,t,u
2
∼= Hs,t

unr(L(n);Fp) ⊗Fp P(bi, j : i ≥ 1, j ∈ Z/nZ)⇒ Hs,t
res(L(n);Fp)(2.3)

dr : E s,t,u
r → E s+1,t,u+r−1

r

E s,t
1
∼= Hs,t

res(L(n);Fp)⇒ Hs,t(strAut(1G
Ẑp

1/n);Fp)(2.4)

dr : E s,t
r → E s+1,t−r

r ,

where H∗unr is (unrestricted) Lie algebra cohomology and H∗res is restricted Lie algebra
cohomology. Furthermore, the filtered DGA which gives rise to spectral sequence 2.3
splits as a tensor product of a term with trivial E∞-term with a term whose E2-term is

H∗
(
L(n, b

pn
p − 1

c);Fp

)
⊗Fp P

(
bi, j : 1 ≤ i ≤

n
p − 1

, j ∈ Z/nZ
)
,
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where L(n, b pn
p−1 c) is the quotient restricted Lie algebra of L(n) in which we quotient out by

the elements xi, j with i > b pn
p−1 c. Consequently there exists a spectral sequence

E s,t,u
2
∼= Hs,t

unr(L(n, b
pn

p − 1
c);Fp) ⊗Fp P(bi, j : 1 ≤ i ≤

n
p − 1

, 0 ≤ j < n)⇒ Hs,t
res(L(n);Fp)

(2.5)

dr : E s,t,u
r → E s+1,t,u+r−1

r

Computation of the Chevalley-Eilenberg complex of L(n) and of L(n, b pn
p−1 c) is routine,

and appears in Theorem 6.3.8 of [17]:

Theorem 2.6. Let K (n,m) be the differential graded Fp-algebra which is the exterior
algebra Λ(hi, j : 1 ≤ i ≤ m, j ∈ Z/nZ) with differential

d(hi, j) =

i−1∑
k=1

hk, jhi−k, j+k,

with the convention that hi,k+n = hi,k. Then H∗(K (n, b pn
p−1 c))

∼= H∗unr(L(n, b pn
p−1 c);Fp).

3. Generalizations for formal A-modules.

Recall that a graded Hopf algebra A over a field k is said to be finite-type if, for each
n ∈ Z, the grading degree n summand An of A is a finite-dimensional k-vector space.

Proposition 3.1. Let K/Qp be a field extension of degree d and ramification degree e and
residue degree f . Let q = p f , let A be the ring of integers of K, let π be a uniformizer for A,
and let k be the residue field of A. Let n be a positive integer, and let ω ∈ k be a qen−1

qn−1 th root

of πe

p . Then the underlying formal Ẑp-module of ωGA
1/n is 1G

Ẑp

1/dn, and the Ravenel filtration

on Fp[strAut(1G
Ẑp

1/dn)]∗ induces a compatible filtration on the Hopf algebra

(3.6) k(ω)[strAut(ωGA
1/n)]∗ ∼= k(ω)[t f , t2 f , . . . ]/(t

qn

i f − ω
qi−1ti f ∀i).

The associated graded Hopf algebra E0k(ω)[strAut(ωGA
1/n)]∗ is the graded k-linear dual of

a primitively generated finite-type Hopf algebra, which, as a quotient of
E0Fp[strAut(1G

Ẑp

1/dn)]∗ ⊗Fp k(ω), is given by

k(ω)[ti f , j : i ≥ 1, j ∈ Z/ f nZ]/(tp
i, j ∀i, j),

with coproduct

∆(ti, j) =


∑

0≤k≤i tk, j ⊗ ti−k,k+ j if i < pdn
p−1 ,∑

0≤k≤i tk, j ⊗ ti−k,k+ j + bi−dn, j+dn−1 if i =
pdn
p−1 ,

ti, j ⊗ 1 + 1 ⊗ ti, j + bi−dn, j+dn−1 if i > pdn
p−1 .

(3.7)

Here ti, j is the element of E0k(ω)[strAut(ωGA
1/n)]∗ corresponding to tp j

i ∈ k(ω)[strAut(ωGA
1/n)]∗,

and:

t0, j = 1,
ti, j = 0 if f - i > 0,

ti, j+ f n = ωp j(qi−1)ti, j, and

bi, j+ f n = ωp j+1(qi−1)bi, j.(3.8)
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Proof. The claim that the underlying formal Ẑp-module of ωG
A
1/n is 1G

Ẑp

1/dn is simply a
special case of Theorem 2.2, as is the isomorphism 3.6. The fact that the Ravenel filtra-
tion on Fp[strAut(1G

Ẑp

1/dn)]∗ induces a filtration on the Hopf algebra k(ω)[strAut(ωGA
1/n)]∗ is

straightforward: the Hopf algebra k(ω)[strAut(ωGA
1/n)]∗ is the quotient of(

Fp[strAut(1G
Ẑp

1/dn)]∗
)
⊗Fp k(ω) by the ideal I generated by tqn

i f − ω
qi f−1ti f for all i and by

t j for all j not divisible by f ; these generators for this ideal I are all homogeneous in the
Ravenel filtration.

Computation of the associated graded, including the formula for the coproduct, is rou-
tine: simply reduce the formulas of Theorem 2.4 modulo I. Deriving formula 3.8 requires
consulting the definition of bi, j in 4.3.14 of [17] in terms of Witt polynomials; the essential
observations here are that bi, j+1, modulo p, is obtained from bi, j by replacing each element
tm with tp

m, and that tap j+ f n

i ⊗ t(p−a)p j+ f n

i = (tp f n

i )ap j
⊗ (tp f n

i )(p−a)p j
= ωp j+1(p f i−1)tap j

i ⊗ t(p−a)p j

i .
The fact that E0k(ω)[strAut(ωGA

1/n)]∗ is finite-type is immediate from its given presen-
tation; and it is dual to a primitively generated Hopf algebra since its linear dual is a
sub-Hopf-algebra of the linear dual of E0Fp[strAut(1G

Ẑp

1/dn)]∗⊗Fp k(ω), which is primitively
generated. �

Theorem 3.2. (Structure of PE0k(ω)[strAut(ωGA
1/n)].) Let K/Qp be a field extension of

degree d and ramification degree e and residue degree f . Let A be the ring of integers of K,
let π be a uniformizer for A, and let k be the residue field of A. Let n be a positive integer,
and let ω ∈ k be a qen−1

qn−1 th root of πe

p . Let PE0k(ω)[strAut(ωGA
1/n)] be the restricted Lie al-

gebra of primitives in the k(ω)-linear dual Hopf algebra
(
E0k(ω)[strAut(ωGA

1/n)]∗
)∗

. Let xA
i, j

be the element of PE0k(ω)[strAut(ωGA
1/n)] dual to the indecomposable

ti, j ∈ E0k(ω)[strAut(ωGA
1/n)]∗. Then {xA

i, j : f | i, j ∈ Z/ f nZ} is a k(ω)-linear basis for
PE0k(ω)[strAut(ωGA

1/n)], and dual to the natural surjection

Fp[strAut(1G
Ẑp

1/dn)]∗ ⊗Fp k(ω)→ k(ω)[strAut(ωGA
1/n)]∗,

we have an inclusion of restricted Lie algebras over k(ω):

PE0k(ω)[strAut(ωGA
1/n)]

ι
−→ PE0k(ω)[strAut(1G

Ẑp

1/dn)]

ι(xA
i, j) =

e−1∑
`=0

ωp j(qi−1) q`n−1
qn−1 xi, j+` f n.(3.9)

When p = πe, the bracket on PE0k(ω)[strAut(ωGA
1/n)] is given by

(3.10) [xA
i, j, x

A
k,`] =

 δ̃`i+ jx
A
i+k, j − δ̃

j
k+`

xA
i+k,` if i + k ≤ pdn

p−1

0 if i + k > pdn
p−1

,

where δ̃b
a = 1 if a ≡ b modulo f n, and δ̃b

a = 0 if a . b modulo f n. The restriction on
PE0k(ω)[strAut(ωGA

1/n)] is given by

(3.11) ξ(xA
i, j) =



xA
i+n, j+1 if i > dn

p−1
xA

i+n, j+1 + xA
pi, j if i = dn

p−1 and f n | i
xA

i+n, j+1 if i = dn
p−1 and f n - i

xA
pi, j if i < dn

p−1 and f n | i
0 if i < dn

p−1 and f n - i

,
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where xA
i+n, f n = xA

i+n,0.

Proof. Formula 3.9 follows from checking where elements in E0Fp[strAut(1G
Ẑp

1/dn)]∗ are
sent to E0k(ω)[strAut(ωGA

1/n)]∗ by the canonical surjection

E0Fp[strAut(1G
Ẑp

1/dn)]∗ ⊗Fpn k(ω)→ E0k(ω)[strAut(ωGA
1/n)]∗,

using the description of the map 2.1 in Theorem 2.2 to accomplish this. The map Fp[strAut(1G
Ẑp

1/dn)]∗⊗Fpn

k(ω)→ k(ω)[strAut(ωGA
1/n)]∗ sends tp j

i to

tp j0+ j1 f n

i = ((. . . ((tp f n

i )p f n
)p f n

. . . )p f n
)p j0

= ωp j0 (qi−1) q j1n
−1

qn−1 tp j0

i ,

where j0, j1 are the unique nonnegative integers such that j = j0 + j1 f n and j0 < f n;
hence the map E0Fp[strAut(1G

Ẑp

1/dn)]∗ ⊗Fpn k(ω) → E0k(ω)[strAut(ωGA
1/n)]∗ sends ti, j to

ωp j0 (qi−1) q j1n
−1

qn−1 ti, j0 . Formula 3.9 follows at once.
Now suppose that p = πe. We compute the Lie bracket in PE0k(ω)[strAut(ωGA

1/n)]:

[xA
i, j, x

A
k,`] =

 e−1∑
a=0

xi, j+a f n,

e−1∑
b=0

xk,`+b f n


=

e−1∑
a=0

e−1∑
b=0

[xi, j+a f n, xk,`+b f n]

=


∑e−1

a=0
∑e−1

b=0

(
δ
`+b f n
i+ j+a f nxi+k, j+a f n − δ

j+a f n
k+`+b f nxi+k,`+b f n

)
if i + k ≤ pdn

p−1

0 if i + k > pdn
p−1

=

 δ̃`i+ j
∑e−1

a=0 xi+k, j+a f n − δ̃
j
k+`

∑e−1
b=0 xi+k,`+b f n if i + k ≤ pdn

p−1

0 if i + k > pdn
p−1

= δ̃`i+ jx
A
i+k, j − δ̃

j
k+`

xA
i+k,`,

where δb
a = 1 if a ≡ b modulo f n, and δb

a = 0 if a . b modulo f n.
For the restriction on PE0k(ω)[strAut(ωGA

1/n)], we could proceed as above, computing

ξ

 e−1∑
`=0

xi, j+` f n


in PE0Fp[strAut(1G

Ẑp

1/dn)]; but this immediately means contending with the non-linearity
of the restriction map, which complicates the computation. Instead it is easier to com-
pute ξ on PE0k(ω)[strAut(ωGA

1/n)] in basically the same way that Ravenel computes ξ on

PE0Fp[strAut(1G
Ẑp

1/dn)] in the proof of Proposition 6.3.3 of [17]; we sketch that method
here. To compute ξ(xA

i, j) we just need to find which elements ta,b ∈ E0k(ω)[strAut(ωGA
1/n)]∗

have the property that the (p− 1)st iterate ∆ ◦ . . . ◦∆(ta,b) of ∆, applied to ta,b, has a mono-
mial term which is a scalar multiple of the p-fold tensor power ti, j⊗ . . .⊗ ti, j. When i > dn

p−1 ,
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then i + dn > pdn
p−1 and hence, by formula 3.7, we have

∆(ti+dn, j+1) = ti+dn, j+1 ⊗ 1 + 1 ⊗ ti+dn, j+1 + bi, j

= ti+dn, j+1 ⊗ 1 + 1 ⊗ ti+dn, j+1 −
∑

0<`<p

1
p

(
p
`

)
t`i, j ⊗ tp−`

i, j ,

and hence after p − 1 iterations of ∆ applied to ti+dn, j+1, we get a copy of the monomial
ti, j ⊗ . . . ⊗ ti, j. When pi ≤ pdn

p−1 and i = k f n for some positive integer k, then formula 3.7
gives us that the (p − 1)st iterate of ∆, applied to ∆(tpi, j), contains the monomial

= tk f n, j ⊗ tk f n, j+k f n ⊗ tk f n, j+2k f n ⊗ . . . ⊗ tk f n, j+(p−1)k f n

= tk f n, j ⊗ tk f n, j ⊗ . . . ⊗ tk f n, j

It is simple to show that no further monomials ta,b have the property that their (p − 1)st
iterated coproducts contain the pth tensor power monomial ti, j ⊗ . . . ⊗ ti, j. Formula 3.11
follows.

The relation xA
i+n, f n = xA

i+n,0 follows from the fact that xA
i+n, f n is dual to ti+n, f n and xA

i+n,0
is dual to ti+n,0. �

Definition 3.3. Let K/Qp be a finite extension with degree d, ramification degree e, residue
degree f , and let A be its ring of integers, π a uniformizer for A, and k the residue field
of A. Let n be a positive integer, and let ω be a

(
qen−1
qn−1

)
th root, in k, of πe

p . We have the

restricted graded Lie algebras PE0k(ω)[strAut(ωGA
1/n)] and PE0k(ω)[strAut(1G

Ẑp

1/dn)] over
k(ω), and we write LA

ω(n) and L(dn), respectively, as shorthand notations for them. If `
is a positive integer, we will also write L(dn, `) for the quotient Lie algebra of L(dn) in
which we quotient out all generators xi, j for which i > ` (this notation agrees with that of
Theorem 2.5); and we will write LA

ω(n, `) for the quotient Lie algebra of LA
ω(n) in which we

quotient out all generators xA
i, j for which i > `. We have an obvious commutative diagram

of homomorphisms of Lie algebras:

LA
ω(n, `) // L(dn, `)

LA
ω(n) //

OO

L(dn)

OO

Now here is a very useful corollary of Theorem 3.2:

Corollary 3.4. The restricted Lie algebra LẐp[ e√p]
1 (n,m) is isomorphic to the restricted Lie

algebra LẐp

1 (n,m) = L(n,m) as long as m ≤ pn
p−1 .

J.P. May actually constructed two different types of spectral sequence in his thesis [10]:
the spectral sequence of a filtered Hopf algebra, as in 2.4, is the one most typically called
a “May spectral sequence.” The other spectral sequence, of Corollary 9 of [9] (as in 2.3),
is the one which computes restricted Lie algebra cohomology from unrestricted Lie al-
gebra cohomology; we will call that spectral sequence the Lie-May spectral sequence to
distinguish it from the May spectral sequence (unfortunately, there is probably no perfect
choice of terminology to be made here; e.g. chapter 6 of Ravenel’s book [17] refers to both
spectral sequences as May spectral sequences).
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Theorem 3.5. Let K/Qp be a field extension of degree d and ramification degree e and
residue degree f . Let A be the ring of integers of K, let π be a uniformizer for A, and let k
be the residue field of A. Let n be a positive integer, and let ω ∈ k be a qen−1

qn−1 th root of πe

p .
We have the morphism of Lie-May spectral sequences

H∗unr(L(dn); k(ω)) ⊗k(ω) k(ω)
[{

bi, j : i ≥ 1, 0 ≤ j ≤ dn − 1
}]

+3

��

H∗res(L(dn); k(ω))

��
H∗unr(L

A
ω(n); k(ω)) ⊗k(ω) k(ω)

[{
bi, j : f | i, 0 ≤ j ≤ f n − 1

}]
+3 H∗res(L

A
ω(n); k(ω)),

with bi, j in bidegree (2, 0) (these two gradings are, respectively, cohomological degree and
Lie-May degree) and with auxiliary bidegree (p‖ti, j‖, 2p j+1(pi−1)) (these two gradings are,
respectively, the grading coming from the Ravenel filtration, and the grading coming from
the topological grading on BP∗BP) in each spectral sequence, where ‖ti, j‖ is the Ravenel
degree of ti, j. The elements in Ht

unr(L
A
ω(n); k(ω)) are in bidegree (0, t). The differential is,

as is typical for the spectral sequence of a filtered cochain complex, ds,t
r : E s,t

r → E s+r,t−r+1
r .

If p = πe, then we have a tensor splitting of each of these Lie-May spectral sequences,
such that the splittings are respected by the morphism 3.5 of spectral sequences: the Lie-
May spectral sequence

H∗unr(L(dn);Fq) ⊗Fq Fq

[{
bi, j : i ≥ 1, 0 ≤ j ≤ dn − 1

}]
⇒ H∗res(L(dn);Fq)

splits into a tensor product of a spectral sequence

H∗unr(L(dn,
pdn

p − 1
);Fq) ⊗Fq Fq

[{
bi, j : 1 ≤ i ≤

dn
p − 1

, 0 ≤ j ≤ dn − 1
}]

⇒ H∗res(L(dn,
pdn

p − 1
);Fq)

with a spectral sequence with trivial E∞-term; and likewise, the Lie-May spectral sequence

H∗unr(L
A
1 (n);Fq) ⊗Fq Fq

[{
bi, j : f | i, 0 ≤ j ≤ f n − 1

}]
⇒ H∗unr(L

A
1 (n);Fq)

splits into a tensor product of a spectral sequence

H∗unr(L
A(n,

pdn
p − 1

);Fq) ⊗Fq Fq

[{
bi, j : f | i, 1 ≤ i ≤

dn
p − 1

, 0 ≤ j ≤ f n − 1
}]

⇒ H∗res(L
A(n,

pdn
p − 1

);Fq),

which we will call the reduced Lie-May spectral sequence, with a spectral sequence with
trivial E∞-term.

We have a morphism of spectral sequences:

H∗unr(L(dn, pdn
p−1 );Fq) ⊗Fq Fq

[{
bi, j : 1 ≤ i ≤ dn

p−1 , 0 ≤ j ≤ dn − 1
}]

+3

��

H∗res(L(dn, pdn
p−1 );Fq)

��
H∗unr(L

A
1 (n, pdn

p−1 );Fq) ⊗Fq Fq

[{
bi, j : f | i, i ≤ dn

p−1 , 0 ≤ j ≤ f n − 1
}]

+3 H∗res(L
A
1 (n, pdn

p−1 );Fq).

Proof. That the morphism 3.5 of spectral sequences exists follows from May’s construc-
tion of the Lie-May spectral sequence in [9]. The splittings occur because of formula 3.10,
which tells us that the unrestricted Lie algebra underlying L(dn) splits into a product of
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L(dn, pdn
p−1 ) with an abelian Lie algebra generated by

{
xi, j : i > pdn

p−1

}
, and the unrestricted

Lie algebra underlying LA
1 (n) splits into a product of LA(n, pdn

p−1 ) with an abelian Lie algebra

generated by
{
xA

i, j : i > pdn
p−1

}
; and formula 3.9 tells us that the morphism LA

1 (n) ↪→ L(dn) re-

spects these product splittings. By formula 3.11, the restriction on PE0Fp[strAut(1G
Ẑp

1/dn)]
sends xi, j to xi+n, j+1 when i > dn

p−1 ; so the filtered chain complex (see Theorem 5 in [11]
or Corollary 9 of [9]) whose associated spectral sequence is the Lie-May spectral se-
quence has the property that it splits into a tensor product of a cohomologically trivial
filtered chain complex and one whose associated graded chain complex has cohomology
H∗unr(L(dn, pdn

p−1 );Fq) ⊗Fq Fq

[{
bi, j : 1 ≤ i ≤ dn

p−1 , 0 ≤ j ≤ dn − 1
}]

. An analogous statement
holds for the bracket and restriction on PE0Fq[strAut(1G

A
1/n)] and the filtered chain com-

plex giving its Lie-May spectral sequence. �

Definition 3.6. Let K/Qp be a field extension of degree d and ramification degree e and
residue degree f . Let A be the ring of integers of K, let π be a uniformizer for A, and let k
be the residue field of A. Let n be a positive integer, and let ω ∈ k be a qen−1

qn−1 th root of πe

p . We
write K A

ω (n) for the Chevalley-Eilenberg DGA of the Lie algebra LA
ω(n). If m is a positive

integer, we write K A
ω (n,m) for the Chevalley-Eilenberg DGA of the Lie algebra LA

ω(n,m).
(Note that the Chevalley-Eilenberg DGA depends only on the underlying unrestricted Lie
algebra.)

The cyclic group Cdn acts on K A
ω (n) by sending hi, j to hi, j+1, and when ω = 1, this action

reduces to an action of Cn on K A
ω (n).

The DGAs K A
ω (n) and K A

ω (n,m) are equipped with several gradings which we will need
to keep track of: the cohomological grading; the topological grading (sometimes also
called the “internal grading”) inherited from BP∗BP, which is only defined modulo 2(p f n−

1); and the Ravenel grading, inherited from the Ravenel filtration. Note that the Cdn-
action preserves the cohomological gradings and the Ravenel grading, but not the internal
grading; this behavior will be typical in all of the multigraded DGAs we consider, and
we adopt the convention that, whenever we speak of a “multigraded equivariant DGA,”
we assume that the group action preserves all of the gradings except possibly the internal
grading.

The presentation in Theorem 2.6 generalizes as follows:

Observation 3.7. It is easy and routine to extract a presentation for the Chevalley-Eilenberg
DGA from Proposition 3.1, without using the formulas in Theorem 3.2: K A

ω (n) is the exte-
rior algebra (over k(ω)) with generators given by the set of symbols hi, j with i divisible by
the residue degree f and satisfying 1 ≤ i, and j ∈ Z/ f nZ; the differential is given by

d(hi, j) =

i−1∑
k=1

hk, jhi−k, j+k,

with the convention that hi,k+ f n = ωpk(qi−1)hi,k. Similarly, K A
ω (n,m) is the sub-DGA of

K A
ω (n) generated by all hi, j with i ≤ m.

When ω = 1 and A = Ẑp[ e
√

p] and m ≤
pn

p−1 , we write K (n,m) as shorthand for

K Ẑp[ e√p]
1 (n,m) and K Ẑp

1 (n,m); this notation is unambiguous because of Corollary 3.4.
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4. Cohomology computations.

4.1. The cohomology of the height 2 Morava stabilizer group scheme. The material in
this subsection is easy and well-known, appearing already in section 6.3 of [17]. Still, we
give a relatively full account of the computation in Proposition 4.1, largely to fix notations
for the elements in that computation which will play a role in our later spectral sequence
calculations.

Proposition 4.1. Suppose p > 2. Then we have an isomorphism of trigraded C2-equivariant
Fp-algebras

H∗,∗,∗(L(2, 2)) ∼= Fp{1, h10, h11, h10η2, h11η2, h10h11η2} ⊗Fp Λ(ζ2),

with tridegrees and the C2-action as follows (remember that the internal degree is always
reduced modulo 2(p2−1), and recall from Conventions 1.1 that we write σ for a generator
of C2):

(4.12)

Coh. class Coh. degree Int. degree Rav. degree Image under σ
1 0 0 0 1
h10 1 2(p − 1) 1 h11
h11 1 2p(p − 1) 1 h10
ζ2 1 0 2 ζ2
h10η2 2 2(p − 1) 3 −h11η2
h11η2 2 2p(p − 1) 3 −h10η2
h10ζ2 2 2(p − 1) 3 h11ζ2
h11ζ2 2 2p(p − 1) 3 h10ζ2
h10h11η2 3 0 4 h10h11η2
h10η2ζ2 3 2(p − 1) 5 −h11η2ζ2
h11η2ζ2 3 2p(p − 1) 5 −h10η2ζ2
h10h11η2ζ2 4 0 6 h10h11η2ζ2.

where the cup products in Fp{1, h10, h11, h10η2, h11η2, h10h11η2} are all zero aside from the
Poincaré duality cup products, i.e., each class has the obvious dual class such that the cup
product of the two is h10h11η2, and the remaining cup products are all zero.

Proof. We have the extension of Lie algebras

1→ Fp{x20, x21} → L(2, 2)→ L(2, 1)→ 1,

and to compute the resulting spectral sequence in cohomology, we take the Chevalley-
Eilenberg DGAs and then compute the Cartan-Eilenberg spectral sequence for the exten-
sion of C2-equivariant trigraded DGAs

1→ K (2, 1)→ K (2, 2)→ Λ(h20, h21)→ 1.

Since the differential on K (2, 1) is zero (see Observation 3.7), H∗,∗,∗(K (2, 1)) ∼= K (2, 1) ∼=
Λ(h10, h11). A change of Fp-linear basis is convenient here: we will write ζ2 for the element
h20 + h21 ∈ Λ(h20, h21). (This notation for this particular element is standard. As far as I
know, it began with [12].) We will write η2 for the element h20 − h21.

We have the differentials

dζ2 = 0,
dη2 = −2h10h11

�
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The table 4.12 has one row for each element in an Fp-linear basis for the cohomology
ring H∗,∗,∗(K (2, 2)), but from now on in this document, for the sake of brevity, when writing
out similar tables for grading degrees of elements in the cohomology of a multigraded
equivariant DGA, I will just give one row for each element in a set of generators for the
cohomology ring of the DGA.

Proposition 4.2. Suppose p > 3. Then the cohomology H∗(strAut(1G1/2);Fp) of the height
2 strict Morava stabilizer group scheme is isomorphic, as a graded Fp-vector space, to

H∗,∗,∗(K (2, 2)) ∼= Fp{1, h10, h11, h10η2, h11η2, h10h11η2} ⊗Fp Λ(ζ2)

from Proposition 4.1. The cohomological grading on H∗(strAut(G1/2);Fp) corresponds to
the cohomological grading on H∗,∗,∗(K (2, 2)), so that h10, h11, ζ2 ∈ H1(strAut(G1/2);Fp),
h10η2, h11η2 ∈ H2(strAut(G1/2);Fp), and so on.

The multiplication on H∗(strAut(G1/2);Fp) furthermore agrees with the multiplication
on H∗,∗,∗(K (2, 2)), modulo the question of exotic multiplicative extensions, i.e., jumps in
Ravenel filtration in the products of elements in H∗(strAut(G1/2);Fp).

Proof. Spectral sequence 2.3 collapses immediately, since p > 3 implies that 1 > b 2
p−1 c.

Hence Cotor∗,∗,∗E0Fp[strAut(G1/2)]∗ (Fp,Fp) ∼= H∗,∗,∗(K (4, 2)).
We now run spectral sequence 2.4. This is, like all May spectral sequences, the spectral

sequence of the filtration (in this case, Ravenel’s filtration) on the cobar complex C•(A) of
a coalgebra A induced by a filtration on the coalgebra itself. To compute differentials, we
take an element x ∈ H∗(C•(E0A)), lift it to a cochain x ∈ H∗(C•(A)) whose image in the
cohomology of the associated graded H∗(E0(C•(A))) ∼= H∗(C•(E0A)) is x, and then evalu-
ate the differential d(x) in the cobar complex C•(A). If d(x) = 0, then x is a cocycle in the
cobar complex C•(A) and not merely in its associated graded E0C•(A), hence x represents a
cohomology class in H∗(C•(A)); if d(x) 6= 0, then we add correcting coboundaries of lower
or higher (depending on whether the filtration is increasing or decreasing) filtration until
we arrive at a cocycle which we recognize as a cohomology class in the spectral sequence’s
E1-page.

It will be convenient to use the presentation

Fp[ti, j : i ≥ 1, 0 ≤ j ≤ 1]/
(
tp
i, j for all i, j

)
for E0

(
Fp[strAut(1G1/2)]∗

)
∼= E0

(
Fp[t1, t2, . . . ]/

(
tp2

i − ti for all i
))

, where ti, j is the image

in the associated graded of tp j

i . The coproduct on Fp[ti, j : i ≥ 1, 0 ≤ j ≤ 1]/
(
tp
i, j for all i, j

)
,

inherited from that of Fp[strAut(G1/2)]∗, is given by

∆(ti, j) =

i∑
k=0

tk, j ⊗ ti−k,k+ j

for all i < b 2p
p−1 c; see Theorem 6.3.2 of [17] for this formula.

h10, h11: The class h10 is represented by t1,0 in the cobar complex
C•

(
E0

(
Fp[strAut(1G1/2)]∗

))
, which lifts to t1 in the cobar complex

C•
(
Fp[strAut(1G1/2)]∗

)
. Since t1 is a coalgebra primitive, i.e., a cobar complex

1-cocycle, all May differentials are zero on h1,0. The C2-equivariance of the spec-
tral sequence then tells us that all May differentials also vanish on h1,0.

ζ2: There is no nonzero class in cohomological degree 2 and internal degree 0 for ζ2
to hit by a May differential of any length.
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h10η2, h11η2: The cohomology class h10η2 in the Chevalley-Eilenberg complex of
the Lie algebra of primitives in E0

(
Fp[strAut(1G1/2)]∗

)
(of which K (4, 2) is a sub-

complex) is represented by the 2-cocycle t1,0 ⊗ t2,0 − t1,0 ⊗ t2,1 − t1,0 ⊗ t1,0t1,1 in the
cobar complex of E0

(
Fp[strAut(1G1/2)]∗

)
. This 2-cocycle lifts to the 2-cocycle

t1 ⊗ t2 − t1 ⊗ tp
2 − t1 ⊗ tp+1

1 in the cobar complex of Fp[strAut(1G1/2)]∗. Hence all
May differentials vanish on h10η2, and by C2-equivariance, also h11η2.

So the May differentials of all lengths vanish on the generators of the ring
Cotor∗,∗,∗E0Fp[strAut(1G1/2)]∗ (Fp,Fp). So H∗(strAut(1G1/2);Fp) ∼= Cotor∗,∗,∗E0Fp[strAut(1G1/2)]∗ (Fp,Fp) ∼=
H∗,∗,∗(K (2, 2)) as a graded Fp-vector space. �

Here is a chart of (4.12), displayed using the Adams convention (i.e., the vertical axis
is cohomological degree, and the horizontal axis is internal degree minus cohomological
degree), at the prime p = 7:

(4.13)

4 •

3 • • •

2 •• ••

1 • • •

0 •

−1 0 93

Not pictured in (4.13) is v2 in bidegree (0, 96), which generates another copy of the rest
of the diagram; the rest of the diagram is repeated every 96 degrees (in homotopy, i.e.,
along the horizontal axis).

4.2. The cohomology of the automorphism group scheme of a Ẑp[
√

p]-height 2 formal
Ẑp[
√

p]-module.

Proposition 4.3. Suppose p > 3. Then we have an isomorphism of trigraded C2-equivariant
Fp-algebras

H∗,∗,∗(K (2, 3)) ∼= A2,3 ⊗Fp Λ(ζ2),

where

A2,3
∼= Fp{1, h10, h11, h10h30, h11h31, e40, η2e40, h10η2h30, h11η2h31,

h10η2h30h31, h11η2h30h31, h10h11η2h30h31},
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with tridegrees and the C2-action as follows (remember that the internal degrees are still
reduced modulo 2(p2 − 1)):

(4.14)

Coh. class Coh. degree Int. degree Rav. degree Image under σ

1 0 0 0 1
h10 1 2(p − 1) 1 h11
h11 1 2p(p − 1) 1 h10
h10h30 2 4(p − 1) 1 + p h11h31
h11h31 2 4p(p − 1) 1 + p h10h30
e40 2 0 1 + p −e40
η2e40 3 0 3 + p η2e40
h10η2h30 3 4(p − 1) 3 + p −h11η2h31
h11η2h31 3 4p(p − 1) 3 + p −h10η2h30
h10η2h30h31 4 2(p − 1) 3 + 2p h11η2h30h31
h11η2h30h31 4 2p(p − 1) 3 + 2p h10η2h30h31
h10h11η2h30h31 5 0 4 + 2p −h10h11η2h30h31

ζ2 1 0 2 ζ2,

where the cup products in A2,3 are all zero aside from the Poincaré duality cup products,
i.e., each class has the dual class such that the cup product of the two is h10h11η2h30h31,
and the remaining cup products are all zero. The classes in table 4.14 listed above ζ2 are
listed in order so that the class which is n lines below 1 is, up to multiplication by a unit in
Fp, the Poincaré dual in A2,3 of the class which is n lines above h10h11η2h30h31.

Proof. We have the extension of Lie algebras

1→ Fp{x30, x31} → L(2, 3)→ L(2, 2)→ 1

and we take their Chevalley-Eilenberg DGAs, then compute the Cartan-Eilenberg spectral
sequence for the extension of C2-equivariant trigraded DGAs:

1→ K (2, 2)→ K (2, 3)→ Λ(h30, h31)→ 1.

We have the differentials

dh30 = −h10η2,

dh31 = h11η2,

d(h30h31) = −h10η2h31 − h11η2h30.

and their products with classes in H∗,∗,∗(K (2, 2)). The nonzero products are

d(h11h30) = −h10h11η2

d(h10h31) = −h10h11η2

d(h10h30h31) = h10h11η2h30

d(h11h30h31) = −h10h11η2h31.

We write e40 for the cocycle h10h31 −h11h30. Extracting the output of the spectral sequence
from knowledge of the differentials is routine. �

Proposition 4.4. Suppose p > 3. Then we have an isomorphism of trigraded C2-equivariant
Fp-algebras

H∗,∗,∗(K (2, 4)) ∼= A2,4 ⊗Fp Λ(ζ2, ζ4),
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where
A2,4
∼= Fp{1, h10, h11, h10h30, h11h31, h10η4 − η2h30, h11η4 − η2h31, η2e40,

h10η2h30, h11η2h31, h10h30η4, h11h31η4, η4e40 + 4η2h30h31, h10η2h30h31, h11η2h30h31,

h10η2h30η4, h11η2h31η4, h10η2h30h31η4, h11η2h30h31η4, h10h11η2h30h31η4},

with tridegrees and the C2-action as follows:
(4.15)

Coh. class Coh. degree Int. degree Rav. degree Image under σ

1 0 0 0 1
h10 1 2(p − 1) 1 h11
h11 1 2p(p − 1) 1 h10
h10h30 2 4(p − 1) 1 + p h11h31
h11h31 2 4p(p − 1) 1 + p h10h30
h10η4 − η2h30 2 2(p − 1) 1 + 2p −h11η4 + η2h30
h11η4 − η2h31 2 2p(p − 1) 1 + 2p −h10η4 + η2h31
η2e40 3 0 3 + p η2e40
h10η2h30 3 4(p − 1) 3 + p −h11η2h31
h11η2h31 3 4p(p − 1) 3 + p −h10η2h30
h10h30η4 3 4(p − 1) 1 + 3p −h11h31η4
h11h31η4 3 4p(p − 1) 1 + 3p −h10h30η4
η4e40 + 4η2h30h31 3 0 1 + 3p η4e40 + 4η2h30h31
h10η2h30h31 4 2(p − 1) 3 + 2p h11η2h30h31
h11η2h30h31 4 2p(p − 1) 3 + 2p h10η2h30h31
h10η2h30η4 4 4(p − 1) 3 + 3p h11η2h31η4
h11η2h31η4 4 4p(p − 1) 3 + 3p h10η2h30η4
h10η2h30h31η4 5 2(p − 1) 3 + 4p −h11η2h30h31η4
h11η2h30h31η4 5 2p(p − 1) 3 + 4p −h10η2h30h31η4
h10h11η2h30h31η4 6 0 4 + 4p h10h11η2h30h31η4

ζ2 1 0 2 ζ2
ζ4 1 0 2p ζ4.

The classes in table 4.15 listed above ζ2 are listed in order so that the class which is n lines
below 1 is, up to multiplication by a unit in Fp, the Poincaré dual in A2,4 of the class which
is n lines above h10h11η2h30h31η4.

Proof. We compute the Cartan-Eilenberg spectral sequence for the extension of C2-equivariant
trigraded DGAs

1→ K (2, 3)→ K (2, 4)→ Λ(h40, h41)→ 1
arising from the extension of Lie algebras

1→ Fp{x40, x41} → L(2, 4)→ L(2, 3)→ 1.

A change of Fp-linear basis is convenient here: we will write ζ4 for the element h40 + h41 ∈

Λ(h40, h41), and we will write η4 for h40 − h41. We have the differentials

dζ4 = 0,
dη4 = h10h31 + h30h11 = e40,

and a nonzero product with a class in H∗,∗,∗(K (2, 3)),

d(η2e40η4) = h10h11η2h30h31.
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Extracting the output of the spectral sequence from knowledge of the differentials is rou-
tine. The three classes h10η4, h11η4, η4e40 in the E∞-term are not cocycles in H∗,∗,∗(K (2, 4));
adding terms of lower Cartan-Eilenberg filtration to get cocycles yields the cohomology
classes h10η4 − η2h30, h11η4 − η2h31, η4e40 + 4η2h30h31. Note that this implies that there are
nonzero multiplications in A2,4 other than those between each class and its Poincaré dual;
for example, h10(h10η4 − η2h30) = −h10η2h30. �

Theorem 4.5. Suppose p > 5. Then the cohomology H∗(strAut(1G
Ẑp[√p]
1/2 );Fp) of the strict

automorphism of the Ẑp
[√

p
]
-height 2 formal Ẑp

[√
p
]
-module 1G

Ẑp[√p]
1/2 is isomorphic, as

a graded Fp-vector space, to

H∗,∗,∗(K (2, 4)) ∼= A2,4 ⊗Fp Λ(ζ2, ζ4),

from Proposition 4.4. The cohomological grading on H∗(strAut(1G
Ẑp[√p]
1/2 );Fp) corre-

sponds to the cohomological grading on H∗,∗,∗(K (2, 4)).

The multiplication on H∗(strAut(1G
Ẑp[√p]
1/2 );Fp) furthermore agrees with the multiplica-

tion on H∗,∗,∗(K (2, 4)), modulo the question of exotic multiplicative extensions, i.e., jumps

in Ravenel filtration in the products of elements in H∗(strAut(1G
Ẑp[√p]
1/2 );Fp).

In particular, the Poincaré series expressing the Fp-vector space dimensions of the grad-

ing degrees in H∗(strAut(1G
Ẑp[√p]
1/2 );Fp) is

(1 + s)2
(
1 + 2s + 4s2 + 6s3 + 4s4 + 2s5 + s6

)
.

Proof. The reduced Lie-May spectral sequence of Theorem 3.5 collapses immediately,
since p > 5 implies that 1 > b 4

p−1 c. Hence Cotor∗,∗,∗
E0Fp[strAut(1G

Ẑp[√p]
1/2 )]∗

(Fp,Fp) ∼= H∗,∗,∗(K (2, 4)).

We now run the May spectral sequence

(4.16) E∗,∗,∗1
∼= Cotor∗,∗,∗

E0Fp[strAut(1G
Ẑp[√p]
1/2 )]∗

(Fp,Fp)⇒ H∗(strAut(1G
Ẑp[√p]
1/2 );Fp).

See appendix A and the proof of Proposition 4.2 for the general method we use. It will be
convenient to use the presentation

Fp[ti, j : i ≥ 1, 0 ≤ j ≤ 1]/
(
tp
i, j for all i, j

)
for E0

(
Fp[strAut(1G

Ẑp[√p]
1/2 )]∗

)
∼= E0

(
Fp[t1, t2, . . . ]/

(
tp2

i − ti for all i
))

, where ti, j is the im-

age of tp j

i in the associated graded. The coproduct on Fp[ti, j : i ≥ 1, 0 ≤ j ≤ 1]/
(
tp
i, j for all i, j

)
,

inherited from that of Fp[strAut(1G
Ẑp[√p]
1/2 )]∗, is given by

∆(ti, j) =

i∑
k=0

tk, j ⊗ ti−k,k+ j

for all i < b 4p
p−1 c; reduce the n = 4 case of Theorem 6.3.2 of [17] modulo the ideal generated

by tp2

i − ti, for all i, to arrive at this formula.
h10, h11, ζ2: There are no nonzero May differentials of any length on these classes, by

the same computation as in the proof of Proposition 4.2.
h10h30, h11h31: The class h10h30 is represented by the 2-cocycle

(4.17) t1,0 ⊗ t3,0 − t1,0 ⊗ t1,0t2,0 −
1
2

t2
1,0 ⊗ t2,0 +

1
2

t2
1,0 ⊗ t2,1 −

1
2

t2
1,0 ⊗ t1,0t1,1 −

1
3

t3
1,0 ⊗ t1,1
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in the cobar complex C•
(
E0

(
Fp[strAut(1G

Ẑp[√p]
1/2 )]∗

))
, which lifts to the 2-cochain

t1 ⊗ t3 − t1 ⊗ t1t2 −
1
2

t2
1 ⊗ t2 +

1
2

t2
1 ⊗ tp

2 −
1
2

t2
1 ⊗ tp+1

1 −
1
3

t3
1 ⊗ tp

1

in the cobar complex C•
(
Fp[strAut(1G1/2)]∗

)
. Since this 2-cochain is also a 2-

cocycle, all May differentials vanish on h1,0h3,0. The C2-equivariance of the spec-
tral sequence then tells us that all May differentials also vanish on h11h31. (Also,
the anonymous referee made the useful observation that the vanishing of the the
May differentials on h10h30 and on h11h31 can also be deduced by expressing those
two classes as Massey products.)

h10η4, h11η4: The only elements of internal degree 2(p − 1) and cohomological de-
gree 3 are scalar multiples of h10ζ2ζ4, but h10ζ2ζ4 is of higher Ravenel degree
than h10η4. Hence h10η4 cannot support a May differential of any length. By
C2-equivariance, the same is true of h11η4.

η2e40: The only elements of internal degree 0 and cohomological degree 4 are Fp-
linear combinations of ζ2η2e40, ζ4η2e40, ζ2η4e40, and ζ4η4e40, but all four of these
elements have higher Ravenel degree than η2e40, so again η2e40 cannot support a
May differential of any length.

h10η2h30, h11η2h31, η4e40: Similar degree considerations eliminate the possibility of
nonzero May differentials on these classes.

ζ4: The class ζ4 is represented by the 1-cocycle

(4.18) t4,0 + t4,1 − t1,0t3,1 − t1,1t3,0 −
1
2

t2
2,0 −

1
2

t2
2,1 + t1,0t1,1t2,0 + t1,0t1,1t2,1 −

1
2

t2
1,0t2

1,1,

in the cobar complex C•
(
E0

(
Fp[strAut(1G

Ẑp[√p]
1/2 )]∗

))
, which lifts to the 1-cochain

t4 + tp
4 − t1tp

3 − tp
1 t3 −

1
2

t2
2 −

1
2

t2p
2 + tp+1

1 t2 + tp+1
1 tp

2 −
1
2

t2p+2
1 ,

in the cobar complex C•
(
Fp[strAut(1G1/2)]∗

)
. Since this 1-cochain is also a 1-

cocycle, all May differentials vanish on ζ4. (The anonymous referee observed
that it is perhaps also possible to deduce the vanishing of the May differential
on ζ4 by finding an expression of ζ4 in terms of a norm map, along the lines of
Theorem 6.2.7 and Proposition 6.3.13 of [17], obviating the need to use a cocycle
representative for ζ4; we do not pursue that alternate proof here.)

Now suppose that q ≥ 1 is some integer and that we have already shown that dr vanishes
on all classes, for all r < q. Then dr(η2e40 · η4e40) = 0, i.e., dr vanishes on the duality class
in the algebra A2,4. For each element in that algebra, we have shown that dr vanishes on
either that element, or on its Poincaré dual. Since dr also vanishes on the duality class, dr

vanishes on all elements in that algebra. Since dr also vanishes on ζ2 and ζ4, dr vanishes on
all classes. By induction, the spectral sequence collapses with no nonzero differentials. So

H∗(strAut(1G
Ẑp[√p]
1/2 );Fp) ∼= Cotor∗,∗,∗

E0Fp[strAut(1G
Ẑp[√p]
1/2 )]∗

(Fp,Fp) ∼= H∗,∗,∗(K (2, 4)) as a graded

Fp-vector space. �

5. Topological consequences.

It is well-known, e.g. from the Barsotti-Tate module generalization of the Dieudonné-
Manin classification of p-divisible groups over k (see [8]; also see [15] for a nice treatment
of the theory of Barsotti-Tate modules), that the automorphism group scheme of a formal



HEIGHT FOUR FORMAL GROUPS WITH QUADRATIC COMPLEX MULTIPLICATION. 19

A-module of positive, finite height over a finite field is pro-étale; in more down-to-earth
terms, the Hopf algebra corepresenting the group scheme Aut(ωGA

1/n⊗k k) is the continuous
k-linear dual of the k-linear group ring of some profinite group, namely, the automorphism
group (honestly a group, not just a group scheme!) of ωG

A
1/n ⊗k k. In this section we

will cease to work with group schemes and we will simply write Aut(ωGA
1/n ⊗k k) for that

profinite group.
The following is a generalization of a result in [20], and the argument is almost word-

for-word the same:

Theorem 5.1. Let K/Qp be a field extension of degree d. Let A denote the ring of integers
of K, and let π denote a uniformizer for A and k the residue field of A. Let q be the
cardinality of k, and let ω denote a qen−1

qn−1 th root of πe

p in k. Then Aut(ωGA
1/n ⊗k k) is a closed

subgroup of the height dn Morava stabilizer group Aut(1G
Ẑp

1/dn ⊗Fp k).

Proof. By Theorem 2.2, the underlying formal Ẑp-module of ωG
A
1/n is 1G

Ẑp

1/dn. Hence the

automorphisms of ωGA
1/n⊗kk are the automorphisms of 1G

Ẑp

1/dn⊗Fp k which commute with the

complex multiplication by A, and hence Aut(ωGA
1/n⊗k k) is a subgroup of Aut(1G

Ẑp

1/dn⊗Fp k).
Now let Ga denote the automorphism group of the underlying formal Ẑp-module a-bud

of 1G
Ẑp

1/dn ⊗Fp k, so that Aut(1G
Ẑp

1/dn ⊗Fp k) is, as a profinite group, the limit of the sequence

of finite groups . . . → G3 → G2 → G1. Let Ha denote the subgroup of Aut(1G
Ẑp

1/dn ⊗Fp k)
consisting of those automorphisms whose underlying formal Ẑp-module a-bud automor-
phism commutes with the complex multiplication by A, i.e., those whose underlying formal
Ẑp-module a-bud automorphism is an automorphism of the underlying formal A-module

a-bud of ωG
A
1/n. The index of Ha in Aut(1G

Ẑp

1/dn ⊗Fp k) is at most the cardinality of Ga,
hence is finite. Now we use the theorem of Nikolov-Segal, from [14]: every finite-index
subgroup of a topologically finitely generated profinite group is an open subgroup. The
group Aut(1G

Ẑp

1/dn ⊗Fp k) is topologically finitely generated since

• its pro-p-subgroup strAut(1G
Ẑp

1/n ⊗Fp Fpn ) is a p-adic analytic Lie group, hence
topologically finitely generated (see [7], or Theorem 5.11 of [6] for an English-
language summary of the relevant result, and

• Aut(1G
Ẑp

1/n ⊗Fp Fpn ) is a split extension of the finite group F×pn by the topologically

finitely generated group strAut(1G
Ẑp

1/n ⊗Fp Fpn ), hence Aut(1G
Ẑp

1/n ⊗Fp Fpn ) is topo-
logically finitely generated.

So Ha is an open subgroup of Aut(1G
Ẑp

1/dn ⊗Fp k). Every open subgroup of a profinite

group is also closed; consequently each Ha is a closed subgroup of Aut(1G
Ẑp

1/dn ⊗Fp k), and

consequently the intersection ∩aHa is a closed subgroup of Aut(1G
Ẑp

1/dn ⊗Fp k). But ∩aHa is

the group of all formal power series which are automorphisms of 1G
Ẑp

1/dn ⊗Fp k and whose
polynomial truncations, of any length, commute with the complex multiplication by A.
Consequently ∩aHa = Aut(ωGA

1/n ⊗k k) is a closed subgroup of Aut(1G
Ẑp

1/dn ⊗Fp k). �

Since Aut(ωGA
1/n ⊗k k) is a closed subgroup of the height dn Morava stabilizer group

Aut(1G
Ẑp

1/dn ⊗Fp k), we can use the methods of [4] to construct and compute the homotopy
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fixed-point spectra

E
h Aut(ωGA

1/n⊗kk)
4 and E

h Aut(ωGA
1/n⊗kk)oGal(k/k)

4 .

The homotopy fixed-point spectrum E
h Aut(1G

Ẑp
1/dn⊗Fp k)oGal(k/Fp)

4 ' LK(4)S has a natural map

to E
h Aut(ωGA

1/n⊗kk)oGal(k/Fp)
4 , but this map is far from being an equivalence; still, very few

computations of homotopy groups of K(4)-local spectra exist in the literature, so Theorem
5.2 is perhaps of some interest.

Theorem 5.2. Let p be a prime number such that the Smith-Toda complex V(3) exists, i.e.,

p > 5. Then the V(3)-homotopy groups of E
h Aut(1G

Ẑp[
√

p]
1/2 ⊗FpFp)oGal(k/Fp)

4 are isomorphic to

A2,4 ⊗Fp Λ(ζ2, ζ4) ⊗Fp Fp[v±1],

where vp2+1 = v4, where A2,4 is as in Proposition 4.4, and the topological degrees and
E4-Adams filtrations are as follows:

Htpy. class Top. degree E4 − Adams filt.

1 0 0
h10 2p − 3 1
h11 2p2 − 2p − 1 1
h10h30 4p − 6 2
h11h31 4p2 − 4p − 2 2
h10η4 − η2h30 2p − 4 2
h11η4 − η2h31 2p2 − 2p − 2 2
η2e40 −3 3
h10η2h30 4p − 7 3
h11η2h31 4p2 − 4p − 3 3
h10h30η4 4p − 7 3
h11h31η4 4p2 − 4p − 3 3
η4e40 + 4η2h30h31 −3 3
h10η2h30h31 2p − 6 4
h11η2h30h31 2p2 − 2p − 4 4
h10η2h30η4 4p − 8 4
h11η2h31η4 4p2 − 4p − 4 4
h10η2h30h31η4 2p − 7 5
h11η2h30h31η4 2p2 − 2p − 5 5
h10h11η2h30h31η4 −6 6

ζ2 −1 1
ζ4 −1 1

v 2p2 − 2 0

Proof. See [3] and [4] for the equivalence

LK(n)S ' E
h Aut(1G

Ẑp
1/n⊗FpFp)oGal(Fp/Fp)

n .

Since V(3) is E(3)-acyclic, LK(4)V(3) is weakly equivalent to LE(4)V(3), so LK(4)V(3) '
LE(4)V(3) ' V(3) ∧ LE(4)S since E(4)-localization is smashing; see [18] for the proof of
Ravenel’s smashing conjecture. Since V(3) is finite, (E4 ∧ V(3))hG ' EhG

4 ∧ V(3), and now
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we use the X = V(3) case of the conditionally convergent descent spectral sequence (see
e.g. 4.6 of [1], or [4])

E s,t
2
∼= Hs

c(G; (En)t(X))⇒ πt−s((En ∧ X)hG)

dr : E s,t
r → E s+r,t+r−1

r .

The agreement of this spectral sequence with the K(4)-local E4-Adams spectral sequence
is given by Proposition 6.6 of [4].

In the case n = 4 and X = V(3), we have (E4)∗ ∼= W(Fp)[[u1, u2, u3]][u±1] with vi

acting by uiu1−pi
for i = 1, 2, 3, and consequently (E4)∗(V(3)) ∼= Fp[u±1]. One needs

to know the action of Aut(1G
Ẑp[
√

p]
1/2 ⊗Fp Fp) o Gal(Fp/Fp) on Fp[u±1] to compute the E2-

term of the spectral sequence; but Aut(1G
Ẑp[
√

p
1/2 ⊗Fp Fp) has the finite-index pro-p-subgroup

strAut(1G
Ẑp[
√

p
1/2 ⊗Fp Fp). We will use the fact that a pro-p-group admits no nontrivial con-

tinuous action on a one-dimensional Fp-vector space; this is not a new observation, but a
proof goes as follows. We have F

×

p = ∪ j

(
F×p j

)
, so GL1(Fp) contains no elements of order

p, but if G is a pro-p-group acting continuously on Fp, then since Fp is discrete, the kernel
of the action map G → GL1(Fp) must be open, i.e., closed and finite-index. So the action
of G on Fp must factor through a finite quotient of G, i.e., a finite p-group which embeds
in a group Fp with no elements of order p; so the action must be trivial.

So strAut(1G
Ẑp[
√

p]
1/2 ⊗Fp Fp) acts trivially on Fp[u±1], and we only need to know the action

of Aut(1G
Ẑp[
√

p]
1/2 ⊗Fp Fp)/strAut(1G

Ẑp[
√

p]
1/2 ⊗Fp Fp) ∼= F×p2 on Fp[u±1]; from section 1 of [3]

we get that an element x ∈ F×p2 acts on Fp{u j} by multiplication by x j. Consequently the
(collapsing at E2) Lyndon-Hochschild-Serre spectral sequence of the extension

1→ strAut(1G
Ẑp[
√

p]
1/2 ⊗Fp Fp)→ Aut(1G

Ẑp[
√

p]
1/2 ⊗Fp Fp)→ F×p2 → 1

gives us that H∗c (Aut(1G
Ẑp[
√

p]
1/2 ⊗Fp Fp); V(3)t(E

h Aut(1G
Ẑp [
√

p]
1/2 ⊗FpFp)

4 )) vanishes if t is not divis-
ible by 2(p2 − 1), and is given by Proposition 4.5 if t is divisible by 2(p2 − 1). So there is
a horizontal vanishing line of finite height already at the E2-page of the spectral sequence,
hence the spectral sequence converges strongly.

More specifically, the cohomology computed in Proposition 4.5 is a Gal(Fp/Fp)-form
of

H∗c (Aut(1G
Ẑp[
√

p]
1/2 ⊗Fp Fp); V(3)2(p2−1) j(E

h Aut(1G
Ẑp [
√

p]
1/2 ⊗FpFp)

4 )),
and

H∗c (Aut(1G
Ẑp[
√

p]
1/2 ⊗Fp Fp); V(3)2(p2−1) j(E

h Aut(1G
Ẑp [
√

p]
1/2 ⊗FpFp)

4 ))Gal(Fp/Fp)

is also a Gal(Fp/Fp)-form of

H∗c (Aut(1G
Ẑp[
√

p]
1/2 ⊗Fp Fp); V(3)2(p2−1) j(E

h Aut(1G
Ẑp [
√

p]
1/2 ⊗FpFp)

4 )).

Since the nonabelian Galois cohomology group H1(Gal(Fp/Fp); GLn(Fp)) classifying Gal(Fp/Fp)-
forms of n-dimensional Fp-vector spaces vanishes (this is a well-known generalization of
Hilbert’s Theorem 90), the invariants of the Gal(Fp/Fp)-action on

H∗c (Aut(1G
Ẑp[
√

p]
1/2 ⊗Fp Fp); V(3)2(p2−1) j(E

h Aut(1G
Ẑp [
√

p]
1/2 ⊗FpFp)

4 ))
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agree, up to isomorphism of graded Fp-vector spaces, with the results of Proposition 4.5
(this Galois descent argument was suggested to me by T. Lawson). There is no room for
differentials in the descent spectral sequence, so E2

∼= E∞ in the spectral sequence. �

Corollary 5.3. The Poincaré series for the homotopy groups of V(3) smashed with the

fixed-point spectrum E
h Aut(1G

Ẑp [
√

p]
1/2 ⊗FpFp)oGal(k/Fp)

4 is:(
s−6 + 2s−3 + 1 + s2p−7 + s2p−6 + s2p−4 + s2p−3 + s4p−8 + 2s4p−7 + s4p−6 + s2p2−2p−5

+ s2p2−2p−4 + s2p2−2p−1 + s4p2−4p−4 + 2s4p2−4p−3 + s4p2−4p−2
)

(1 + s−1)2
∞∑

n =−∞

s2(p2−2)n.

Appendix A. ExplicitMilnor-Moore theory.

Throughout this appendix, we assume g is a Lie algebra over a field k of characteristic
not equal to 2, and that either g is finite-dimensional or that it is equipped with anN-grading
such that the Lie bracket is of degree 0 (i.e., if x ∈ gm and y ∈ gn, then [x, y] ∈ gm+n) and
such that gn is a finite-dimensional k-vector-space for each n ∈ N.

Several times in this paper (e.g. (4.17) and (4.18)), we have given cocycle representa-
tives, in the cobar complex for the linear dual of the universal enveloping algebra Ug of
g, for elements in the cohomology of g. In this appendix we explain how these cocycle
representatives are obtained. The author of this paper is doubtful that the mathematics in
this appendix is actually new, but a search for this material in the literature did not turn up
anything, so even if these ideas are folklore, we think it is of some value to write the ideas
out in this appendix.

One has an equivalence between the category of Ug-modules and the category of (un-
restricted) representations of g, and as a consequence one gets an isomorphism

(A.19) Ext∗Ug(k, k) ∼= H∗unr(g, k).

However, if one wants to run a May spectral sequence, like (4.16), whose input is Ext∗Ug(k, k),
then to compute May dr-differentials for r > 1, one typically needs to know how to repre-
sent elements in the cohomology of g as cocycles in the cobar complex of (Ug)∗. (Let us be
careful about the relationship between unrestricted Lie algebra cohomology and the input
of a May spectral sequence like (4.16): the input for (4.16) is, a priori, the cohomology

of the restricted Lie algebra of primitives in the Hopf algebra E0Fp[strAut(1G
Ẑp[√p]
1/2 )]∗.

However, when p > 5, the immediate collapse of the reduced Lie-May spectral sequence
of Theorem 3.5 implies that the restricted Lie algebra cohomology of the primitives in

E0Fp[strAut(1G
Ẑp[√p]
1/2 )]∗ agrees with the unrestricted Lie algebra cohomology of the Lie

subalgebra LẐp[√p](2, 4) of the primitives in E0Fp[strAut(1G
Ẑp[√p]
1/2 )]∗. Of course this

Ẑp[
√

p]-height 2 statement generalizes to other heights and endomorphism rings other
than Ẑp[

√
p], at appropriately large primes, as given by Theorem 3.5.)

So, after one has used (convenient, algebraically tractable) Lie algebra cohomology
methods to calculate H∗unr(g, k), one needs to translate the names of elements in H∗unr(g, k)
that one has from Lie-algebra-theoretic methods—e.g., from the Chevalley-Eilenberg com-
plex of g—into cocycle representatives in the cobar complex of (Ug)∗. Here is how one
can do this: let C•(Ug∗) denote the cobar complex (as in Definition A1.2.11 of [17]) of the
k-linear dual Hopf algebra of Ug, and let CE•(g) denote the Chevalley-Eilenberg complex
of g, in the sense of [2]: that is, CEn(g) = Λn(g∗) with differential given on 1-cochains by
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the dual of the map

Λ2(g∗)∗ ↪→ g ⊗k g
[−,−]
−→ g,

and with the differential given on higher cochains by the Leibniz rule and the fact that every
higher cochain in CE•(g) is a linear combination of products of 1-cochains.

We have a natural inclusion of g as a vector subspace of Ug; let j : g → Ug be 2
times this natural inclusion map. (The factor of 2 will be necessary to get diagram (A.20)
to commute, below; remember that at the start of this appendix, we stipulated that the
characteristic of the ground field k is not 2.) Dualizing, we get a map (Ug)∗ → g∗, and
since the underlying k-algebra of the cobar complex C•((Ug)∗) is the free associative k-
algebra on C1((Ug)∗) = (Ug)∗, the universal property of the free associative k-algebra
gives us a canonical map of graded k-algebras ρ : C•((Ug)∗)→ CE•(g).

We claim that ρ is not only a map of graded k-algebras, but is also a chain map, i.e., ρ
is a morphism of DGAs over k. One checks easily that the diagram

(A.20)

Ug Ug ⊗k Ug

g g ⊗k g Λ2(g∗)∗

∇

j

bracket

( j⊗ j)◦i

commutes, where ∇ is the multiplication on Ug, and i is the inclusion of Λ2(g∗)∗ into g⊗k g

as the vector space of antisymmetric tensors. (But it is worth noticing that, if one tries to
include j ⊗ j as a vertical arrow in (A.20), the resulting diagram wouldn’t commute: in
particular the left-hand square would fail to commute.) Taking the linear dual of diagram
(A.20) yields the commutative square

(Ug)∗ //

��

(Ug)∗ ⊗k (Ug)∗

��
g∗ // Λ2(g∗),

in which the vertical maps are given by ρ, the top horizontal map is the differential
C1((Ug)∗) → C2((Ug)∗) in the cobar complex, and the bottom horizontal map CE1(g) =

g∗ → Λ2(g∗) = CE2(g) is the differential in the Chevalley-Eilenberg complex of g. So
ρ commutes with the differentials on the 1-cochains. An analogous argument for higher
cochains gives us that ρ is a chain map.

Clearly ρ is surjective (since j is surjective, and so j⊗kn is surjective for all n), so if
we write I for the kernel of ρ, then I is a differential graded ideal of C•((Ug)∗) with the
property that the DGA C•((Ug)∗)/I is isomorphic to CE•(g). With all that said, the process
for representing elements in H∗unr(g, k) by cocycles in C•((Ug)∗) is very simple: given an
element x in Hn

unr(g, k), one represents x by an n-cocycle in CE•(g) ∼= C•((Ug)∗)/I, lifts
that n-cocycle to an n-cochain in C•((Ug)∗), and then adds “correcting terms” in I to get
an n-cocycle in C•((Ug)∗).

We demonstrate this process “in action” to show how the cocycle representative (4.17)
for h10h30 ∈ H2

unr(L
Ẑp[
√

p](2, 4)) was obtained: the notation h10h30 denotes the element
of H2

unr(L
Ẑp[
√

p](2, 4)) which arose as the product of h10 ∈ H1
unr(L

Ẑp[
√

p](2, 1)) and h30 ∈

H1
unr(L

Ẑp[
√

p](2, 3)/LẐp[
√

p](2, 2)), and which survived the Cartan-Eilenberg spectral sequences
of Propositions 4.3 and 4.4. Since h10 is represented in the Chevalley-Eilenberg DGA (and
the cobar complex) of LẐp[

√
p](2, 1) by the 1-cocycle t1,0, and since h30 is represented in the

Chevalley-Eilenberg DGA (and the cobar complex) of LẐp[
√

p](2, 3)/LẐp[
√

p](2, 2) by the
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1-cocycle t3,0, h10h30 is represented in CE2(LẐp[
√

p](2, 4)) ∼= Λ2(LẐp[
√

p](2, 4)∗) by t1,0t3,0,
which we see is a 2-cocycle in CE•(LẐp[

√
p](2, 4)):

dCE(t1,0t3,0) = −t1,0
(
t1,0t2,1 + t2,0t1,0

)
= 0.

The element t1,0t3,0 lifts to the 2-cochain t1,0 ⊗ t3,0 in C•
(
(ULẐp[

√
p](2, 4))∗

)
, but there it is

not a 2-cocycle:

dcobar(t1,0 ⊗ t3,0) = −t1,0 ⊗
(
t1,0 ⊗ t2,1 + t2,0 ⊗ t1,0

)
= dcobar

(
t1,0 ⊗ t1,0t2,0 +

1
2

t2
1,0 ⊗ t2,0 −

1
2

t2
1,0 ⊗ t2,1 +

1
2

t2
1,0 ⊗ t1,0t1,1 +

1
3

t3
1,0 ⊗ t1,1

)
.

Since t1,0 ⊗ t1,0t2,0 + 1
2 t2

1,0 ⊗ t2,0 − 1
2 t2

1,0 ⊗ t2,1 + 1
2 t2

1,0 ⊗ t1,0t1,1 + 1
3 t3

1,0 ⊗ t1,1 ∈ I, we have our
cocycle representative (4.17) for h10h30 in the cobar complex.
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