
RAVENEL’S MAY SPECTRAL SEQUENCE COLLAPSES

IMMEDIATELY AT LARGE PRIMES.

A. SALCH

Abstract. At large primes, the height n Ravenel-May spectral sequence takes

as input the cohomology of a certain solvable Lie Fp-algebra, and produces as
output the mod p cohomology of the height n strict Morava stabilizer group

scheme. We construct simultaneous integral deformations of the height n

Morava stabilizer algebras and related objects, and we use them to prove that,
for fixed n, the height n Ravenel-May spectral sequence collapses for all suffi-

ciently large primes p. Consequently, for large p, the mod p cohomology of the

strict Morava stabilizer group scheme is the cohomology of a finite-dimensional
solvable Lie algebra, and is computable algorithmically.

1. Introduction.

Let n be a positive integer. Let p be a prime number satisfying p > n + 1. In
the 1977 paper [12], Ravenel used the methods of May’s thesis [6] to construct a
spectral sequence

Es,t,u
1 ≅Hs,t,u(L(n,n);Fp)⇒Hs,t

c (str Aut(G1/n);Fp),(1)

which we call the p-primary height n Ravenel-May spectral sequence, or RMSS for
short. Here L(n,n) is a particular n2-dimensional solvable Lie Fp-algebra, and
str Aut(G1/n) is the height n strict Morava stabilizer group scheme1, i.e., the strict
automorphism group scheme of a height n one-dimensional formal group law over
Fp. The E1-page of the RMSS is the cohomology of the Lie algebra L(n,n), while
the abutment of the RMSS is the continuous cohomology of the profinite group
scheme str Aut(G1/n). The latter is the input for many spectral sequences which
are used to calculate stable homotopy groups. For example:

● From H∗

c (str Aut(G1/n);Fp), one runs a sequence of n Bockstein spectral
sequences to get the height n line in the chromatic spectral sequence E1-
page. The chromatic spectral sequence converges to the Adams-Novikov

Date: November 2023.
1Some readers may be much less familiar with the Morava stabilizer group scheme than with

the Morava stabilizer group. We give some background about the Morava stabilizer group scheme

in section 2, but the upshot is the following three points: 1. The Morava stabilizer group scheme
is the prime spectrum of the Hopf algebra S(n), the Morava stabilizer algebra. In this paper, we

usually write S(n, p) rather than the more common notation S(n), to emphasize the role of the
prime p. The cohomology of the Morava stabilizer group scheme is simply Cotor over S(n, p).

2. In every situation in stable homotopy in which one considers the cohomology of the Morava
stabilizer group, it is at least as good to consider the cohomology of the Morava stabilizer group
scheme—and sometimes it is even a bit better, in the sense that it sometimes allows us to skip a

descent spectral sequence for a Gal(Fpn/Fp)-action. 3. The main results of this paper remain true

after replacing the Morava stabilizer group scheme with the Morava stabilizer group, throughout.
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E2-page, and the Adams-Novikov spectral sequence converges to the stable
homotopy groups of spheres. See chapters 4-6 of [13] for this material.

● From H∗

c (str Aut(G1/n);Fp), one runs a sequence of n Bockstein spectral
sequences (which are dual, in a certain sense, of the n Bockstein spectral
sequences mentioned just above) to get to H∗

c (str Aut(G1/n);E(G1/n)∗),
where E(G1/n)∗ is the Morava E-theory spectrum of G1/n. The contin-
uous cohomology H∗

c (str Aut(G1/n);E(G1/n)∗) is the input for spectral

sequences converging to π∗(LK(n)S
0), the K(n)-local stable homotopy

groups of spheres. See [2] for this material.
● If the p-local Smith-Toda complex V (n−1) exists, thenH∗

c (str Aut(G1/n);Fp)⊗Fp

Fp[v±1
n ] is the input for a spectral sequence converging to the K(n)-local

stable homotopy groups of V (n − 1). If p > n2
+n+2
2

, then this spectral se-
quence collapses immediately with no differentials, yielding an isomorphism
H∗

c (str Aut(G1/n);Fp)⊗Fp Fp[v±1
n ] ≅ π∗(LK(n)V (n − 1)). See Corollary 5.4

for further explanation.

Because of the applications of H∗

c (str Aut(G1/n);Fp) in computational stable ho-
motopy theory, it is of great interest to know an answer to the following question:

Question 1.1. For which values of p and n does the RMSS collapse immediately?

When the RMSS collapses immediately, H∗

c (str Aut(G1/n);Fp) is simply the co-
homology of a certain solvable finite-dimensional Lie algebra, computable (algorith-
mically!) via a Chevalley-Eilenberg complex [1].

Since the Ravenel-May spectral sequence only has the stated2 form (1) when
p > n + 1, the most optimistic possible answer for Question 1.1 would be: the
Ravenel-May spectral sequence collapses immediately as long as p > n + 1. Let us
call this the optimistic answer to Question 1.1.

Indeed, in Theorem 1.7 of [12], Ravenel claims that this optimistic answer is true.
However, Ravenel later pointed out [13, section 6.3] that the argument given for the
optimistic answer in [12] is incorrect. In section 2, below, we review Ravenel’s orig-
inal argument for the optimistic answer. In [13], Ravenel also describes a possibly
nonzero differential in the p = 11, n = 9 case of the Ravenel-May spectral sequence
which he suggests may yield a counterexample to the optimistic answer.

Question 1.1 remains wide open. In particular, it is today not even known
whether the optimistic answer is true for n > 3. From explicit calculation, it is
known that the optimistic answer is indeed correct for n = 1,2 [13, section 6.3] and
n = 3 [17, section 5] (see also [3] for a simplification of the argument from [17], at
p ≥ 7). In each of those cases, one verifies the correctness of the optimistic answer
by explicitly calculating H∗(L(n,n);Fp), then checking that H∗(L(n,n);Fp) is
generated as a ring by elements which, by routine inspection of tridegrees, cannot
support a nonzero Ravenel-May differential. This strategy for answering Question
1.1 does not generalize well to arbitrary values of n, since the computational cost
of calculating H∗(L(n,n);Fp) increases rapidly3 as n grows.

2When p ≤ n + 1, a Ravenel-May spectral sequence still exists, and still converges to
H∗c (str Aut(G1/n);Fp), but its E1-page is more complicated than described above in (1). Its E1-

page is the restricted cohomology of a certain restricted Lie algebra which is larger than L(n,n).

See Theorem 1.5 of [12] or Theorem 6.3.4 of [13].
3We offer a little bit of data about the difficulty of calculating H∗(L(n,n);Fp). The brute-force

approach is to simply calculate the cohomology of the Chevalley-Eilenberg complex Λ●(L(n,n)∗)
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In this paper, we give an asymptotic answer to Question 1.1. The main results
are:

Theorem 5.2. Fix a positive integer n. Then there exists some integer Nn such
that, for all p > Nn, the p-primary height n Ravenel-May spectral sequence has no
nonzero differentials.

Theorem 5.3. Fix a positive integer n. Then there exists some integer N such
that, for all p > N , the mod p continuous cohomology H∗

c (str Aut(G1/n);Fp) of the
p-primary height n strict Morava stabilizer group scheme is isomorphic, as a graded
ring, to the cohomology of the solvable Lie Fp-algebra L(n,n).

The most obvious corollary is that the mod p cohomology of the height n strict
Morava stabilizer group scheme is algorithmically computable for p >> n. We offer
a few other corollaries as well. If the Smith-Toda complex V (n − 1) exists for all
sufficiently large p, then Corollary 5.4 gives us that the K(n)-local stable homotopy
groups of V (n−1) are isomorphic to the Lie algebra cohomologyH∗(L(n,n);Fp)⊗Fp

Fp[v±1
n ], for p >> n.

Another corollary of our main theorems is Corollary 5.5: suppose that n is a
positive integer, and suppose that p is a prime larger than the integer Nn described
in the statement of Theorem 5.2, as described above. Suppose that X is an E(n−1)-
acyclic finite CW-complex. Then there exist strongly convergent spectral sequences

E∗,∗,∗
1 ≅H∗(L(n,n);Fp)⊗Fp E0E(n)∗(X)⇒ Cotor∗,∗

E(n)∗E(n)
(E(n)∗,E(n)∗(X)),

(2)

E∗,∗
2 ≅ Cotor∗,∗

E(n)∗E(n)
(E(n)∗,E(n)∗(X))⇒ π∗(LE(n)X),

(3)

where E0E(n)∗(X) is the associated graded abelian group of the p-adic filtration

E(n)∗(X) ⊇ pE(n)∗(X) ⊇ p2E(n)∗(X) ⊇ p3E(n)∗(X) ⊇ . . . .
Of course (3) is not new: it is simply the E(n)-Adams spectral sequence of X. The
new part is spectral sequence (2), which together with (3), gives us a means to pass

of L(n,n). This is a finite calculation, and in principle a computer can attempt this, and it can
succeed for low values of n. However, since L(n,n) is n2-dimensional, the Chevalley-Eilenberg

complex is 2(n
2
)-dimensional. This grows extremely quickly as n grows, and exhausts any feasible

supply of RAM if n > 5.

The cohomology of L(n,n) also grows quickly as n grows. For p > n + 1, the total Fp-linear

dimension of H∗(L(n,n);Fp) and of the Chevalley-Eilenberg complex is given by the following
table:

n dimFp H∗(L(n,n);Fp) dimFp Λ●(L(n,n)∗)

1 2 2
2 12 16

3 152 512
4 3440 65536

The cohomology H∗(L(n,n);Fp) is not known for n > 4. The n = 4 case is in the preprint [15],
where it is also observed that these Fp-linear dimensions agree with the coefficients in a particular

generating function. If the coefficients of that generating function continue (for higher n) to

agree with the Fp-linear dimension of H∗(L(n,n);Fp), then, for example, H∗(L(5,5);Fp) will be
128512-dimensional, while H∗(L(6,6);Fp) will be 7621888-dimensional.

In the preprint [15], a “height-shifting” approach is used to calculate H∗(L(4,4);Fp). This
approach is much more efficient and illuminating than brute-force calculation of the cohomology
of the Chevalley-Eilenberg complex, but it is still quite demanding, increasingly so as n grows.
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from the cohomology of a solvable Lie algebra to the E(n)-local stable homotopy
groups of a finite E(n − 1)-acyclic CW-complex.

We think that the methods used to prove our main results are themselves of
interest. The basic strategy is to find integral deformations of the objects involved
in the construction of the Ravenel-May spectral sequence. Here is a sketch of the
steps involved:

● For each positive integer n, in section 3 we construct a Lie Z-algebra
Lint(n), free over Z, whose mod p reduction for each p is equal to the
Lie Fp-algebra L(n,n).

● The Z-linear dual of the universal enveloping Z-algebra of Lint(n) is a
divided power Z-algebra. Inside this divided power algebra, there is a
natural polynomial Hopf Z-algebra, which we call Z(n).

● We filter Z(n) in such a way that, for p >> n, upon reducing modulo p
and modulo all the pth powers of the polynomial generators, we recover
Ravenel’s filtration on S(n, p). This filtration, and the definition of Z(n)
itself, are in section 4.

● In section 4 we also show that the resulting spectral sequence

Cotor∗Fp⊗ZE0Z(n)(Fp,Fp)⇒ Cotor∗Fp⊗ZZ(n)(Fp,Fp)(4)

collapses immediately.
● In section 5, we construct a set of cocycles in the cobar complex of E0Z(n)

which map, for p >> n, to an Fp-linear basis for Cotor∗E0S(n,p)(Fp,Fp) ≅
H∗(L(n,n);Fp).

● We then show that these cocycles survive the integral Ravenel-May spectral
sequence (4), and that their images in the Ravenel-May spectral sequence
(1) must also survive. Hence, for p >> n, all elements of H∗(L(n,n);Fp)
must survive the Ravenel-May spectral sequence, i.e., the spectral sequence
collapses immediately with no differentials.

One corollary is that the cohomology of our n2-dimensional Lie Z-algebra Lint(n)
has, upon reduction modulo p, the same cohomology as H∗

c (str Aut(G1/n;Fp) for
p >> n. In that sense, if one makes the single calculation of the Lie algebra coho-
mology of Lint(n), then one knows the mod p cohomology of the height n strict
Morava stabilizer group scheme for all but finitely many p. We demonstrate with
explicit integral calculations for n = 1 and n = 2 in section 6.

We also define an integral deformation Sint(n)● of the cobar complex of the
Morava stabilizer algebra S(n, p) itself. However, to prove the main results, the
smaller object Z(n) (whose cobar complex is a sub-DGA of Sint(n)●) suffices. Since
it is not used in the proofs of the main results, we consign the definition of Sint(n)●
to an appendix.

We remark that Theorems 5.2 and 5.3 are used in our joint work with Mohammad
Behzad Kang, currently in preparation, in which we show that the cohomology
of the height n full Morava stabilizer group, with trivial mod p coefficients, is
isomorphic to the cohomology H∗(U(n);Fp) of the unitary group for all p >> n.

The author thanks D. Ravenel for many valuable discussions about chapter 6 of
[13] when the author was a student.

1.1. Conventions.
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● The symbol Cn denotes a cyclic group of order n. Throughout, we fix a
choice of generator σ for Cn.

● The symbol ⌊i⌋ denotes the integer floor of a rational number i.
● For each prime p and each positive integer n, the height n Morava stabilizer

algebra is a certain Hopf Fp-algebra. It is denoted S(n) in the standard
reference, [13], but this suppresses the choice of prime p from the notation.
It will be convenient to include the choice of p in the notation for the Morava
stabilizer algebra, so we will write S(n, p) rather than S(n).

● Throughout, all formal group laws will be implicitly understood to be one-
dimensional.

● Given a prime number p and a positive integer n, we use the symbol G1/n

for the p-typical height n formal group law over Fp classified by the ring
map BP∗ → Fp sending the Hazewinkel generator vn ∈ BP∗ to 1 and sending
the other Hazewinkel generators vi to zero. (Sometimes this formal group
law is called the “height n Honda formal group law.”) The symbol G1/n

comes from the Dieudonné-Manin classification [4] of p-divisible groups over
a separably closed perfect field.

● In this paper we will need to consider the cohomology of restricted Lie al-
gebras and also of their underlying unrestricted Lie algebras over fields of
positive characteristic. We write H∗

res(g, ρ) and H∗(g, ρ) for the restricted
Lie algebra cohomology Ext∗V g(k, ρ) and the unrestricted Lie algebra coho-

mology Ext∗Ug(k, ρ), respectively, with coefficients in a representation ρ of
g.

2. Review of Ravenel’s Lie algebras and associated spectral
sequences.

This section is a review of known results, for readers unfamiliar with Ravenel’s
computational approach to the cohomology of the Morava stabilizer algebras. Read-
ers already familiar with the ideas from chapter 6 of [13] can skip ahead to section 3.

The p-primary height n Morava stabilizer algebra S(n, p) is isomorphic, as a
Z/2(pn − 1)Z-graded Fp-algebra, to

(5) Fp[t1, t2, . . . ]/(tp
n

i − ti ∀i),

with ti in degree 2(pi−1) [11]. The algebra S(n, p) is a Cn-equivariant commutative
Hopf algebra over Fp, where Cn acts by the Frobenius map. The prime spectrum
SpecS(n, p) represents a profinite group scheme, the strict automorphism group
scheme of the p-height n formal group law G1/n. This group scheme is pro-étale,

i.e., after a separable base change4, the Hopf algebra S(n, p) becomes isomorphic
to the continuous linear dual of the group ring of a profinite group—an actual
group, not just a group scheme. This profinite group is a pro-p-group, isomorphic
to a maximal pro-p-subgroup of the group of units in the maximal order in an
invariant 1/n central division algebra over Qp, and isomorphic also to the strict

automorphism group of any height n formal group law over Fp.
In section 1 of [12] (see chapter 6 of [13] for a textbook reference), Ravenel puts

an increasing filtration on the Morava stabilizer algebra S(n, p) as follows:

4In fact, base change to Fpn suffices.



6 A. SALCH

● Let dn,i be the integer defined recursively by the rule

dn,i = { 0 if i ≤ 0
max{i, pdn,i−n} if i > 0.

● Let the filtration degree of tp
j

i be dn,i for each j. More generally, let the

filtration degree of tki be dn,i times the sum of the coefficients in the base p
expansion of k. The filtration is otherwise multiplicative, e.g. the filtration
degree of titj is equal to dn,i times dn,j , if i ≠ j.

The associated graded Hopf algebra E0S(n, p) is isomorphic, as a graded Hopf
algebra, to Fp[ti,j ∶ i ≥ 1, j ∈ Z/nZ]/tpi,j , with ti,j in degree 2(pi − 1)pj . The element

ti,j of E0S(n, p) represents the element tp
j

i of S(n, p).
Ravenel’s filtration has the agreeable property that its associated graded Hopf

algebra E0S(n, p) is the linear dual of a primitively generated Hopf algebra, so
the methods of Milnor–Moore [9] and May’s thesis [6] can be applied. In par-
ticular, E0S(n, p) is dual to the restricted enveloping algebra V P (E0S(n, p)∗) of
the restricted Lie Fp-algebra P (E0S(n, p)∗) of primitives in the dual Hopf algebra
E0S(n, p)∗. In [5],[6], and [7], May constructed a spectral sequence

E∗,∗,∗
1 ≅H∗(g, k)⊗k P (g∗)⇒H∗

res(g, k)(6)

dr ∶ Es,t,u
r → Es+1,t+r,u

r

for every graded restricted Lie algebra g, concentrated in even degrees, over a field
k of characteristic p. Here P (g∗) is the free commutative k-algebra on the dual
k-vector space of g. The grading is as follows: elements of Hs(g, k) in internal5

grading u are in tridegree (s,0, u). Nonzero elements of g∗ ⊆ P (g∗) of internal
degree u are in tridegree (2,1, pu). Elements in tridegree (s, t, u) contribute, in the
abutment, to elements of Hs

res(g, k) of internal degree u.
Spectral sequence (6) was one of two new spectral sequences studied in May’s

thesis. In the literature, both spectral sequences have at times been called “the May
spectral sequence.” To resolve the ambiguity in naming, we will refer to (6) as the
Lie-May spectral sequence, since it is the spectral sequence from May’s thesis which
relates restricted Lie algebra cohomology to unrestricted Lie algebra cohomology.
(The other spectral sequence studied in May’s thesis was the spectral sequence of a
Hopf algebra, and particularly the 2-primary Steenrod algebra, filtered by powers
of its augmentation ideal.)

In Theorem 1.6 of [12] (cf. [13, Theorem 6.3.5]), Ravenel shows that spectral
sequence (6) admits a tensor splitting in the case that g = P (E0S(n, p)∗). One
tensor factor converges to Fp concentrated in tridegree (0,0,0), while the other
tensor factor has E1-term isomorphic to

H∗ (L(n, ⌊ pn

p − 1
⌋) ;Fp)⊗Fp P (bi,j ∶ 1 ≤ i ≤ ⌊ n

p − 1
⌋, j ∈ Z/nZ) ,

where the notation and gradings are as follows:

● L (n, ⌊ pn
p−1

⌋) is a certain n⌊ pn
p−1

⌋-dimensional quotient Lie algebra of P (E0S(n, p)∗),
● elements of Hs (L (n, ⌊ pn

p−1
⌋) ;Fp) in internal grading u are in tridegree

(s,0, u),
5We follow the standard convention of referring to the grading on H∗(g, k) induced by the

grading on g itself as the internal grading.
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● and the polynomial generator bi,j is in tridegree (2,1,2pi+1(pj − 1)).
Consequently Ravenel gets a spectral sequence

E∗,∗,∗
1 ≅H∗ (L(n, ⌊ pn

p − 1
⌋) ;Fp)⊗Fp P (bi,j ∶ 1 ≤ i ≤ ⌊ n

p − 1
⌋, j ∈ Z/nZ)(7)

⇒H∗

res (P (E0S(n, p)∗) ;Fp)
≅ Cotor∗E0S(n,p)(Fp,Fp)

dr ∶ Es,t,u
r → Es+1,t+r,u

r .

We will refer to (7) as the Ravenel-Lie-May spectral sequence, or RLMSS for short.
It will be useful to have an explicit description of the Lie Fp-algebra L(n,m)

for positive integers n,m. In Theorem 1.4 of [12] (cf. [13, Theorem 6.3.3]),
Ravenel shows that the restricted Lie Fp-algebra P (E0S(n, p)∗) has Fp-linear basis
{xi,j ∶ i ≥ 1, j ∈ Z/nZ} , with Lie bracket

[xi,j , xk,`] = { δ`i+jxi+k,j − δ
j
k+`xi+k,` if i + k ≤ ⌊ pn

p−1
⌋

0 otherwise
.(8)

The Lie Fp-algebra L(n,m) is defined to be the quotient of P (E0S(n, p)∗) by the
linear span of the elements xi,j satisfying i >m.

We also have the spectral sequence

E∗,∗,∗
1 ≅H∗

res (P (E0S(n, p)∗) ;Fp)(9)

≅ Cotor∗E0S(n,p)(Fp,Fp)
⇒ Cotor∗S(n,p)(Fp,Fp)

dr ∶ Es,t,u
r → Es+1,t,u−r

r(10)

arising from applying Ravenel’s filtration to the cobar complex of S(n, p). Here s is
the cohomological degree, t the internal degree, and u the Ravenel filtration degree.
As in section 1, we will call (9) the Ravenel-May spectral sequence, or RMSS for
short.

If p > n+1, then ⌊ pn
p−1

⌋ = n, and consequently the polynomial factor in the E1-term

of the RLMSS is trivial. Hence the RLMSS collapses, yielding an isomorphism of
graded rings H∗ (L(n,n);Fp) ≅H∗

res (P (E0S(n, p)∗) ;Fp). This is why, for p > n+1,
the E1-term of the RMSS is simply the cohomology of the Lie algebra L(n,n), as
described above in (1).

The RMSS is known to have nonzero differentials for some values of p and n
satisfying p ≤ n + 1. For example, in the case p = 2, n = 3, we have the nonzero
Ravenel-May differential d1(b20) = h11b11 + h12b10, as in6 Theorem 6.3.14 of [13].
However, it is not known whether there exist any nonzero RMSS differentials for
p > n + 1.

Here is some explanation of how Ravenel-May differentials arise. The coproduct
in S(n, p) is given by

∆(ti) =
i

∑
k=0

tk ⊗ tp
k

i−k(11)

6To be clear, in [13], the indexing on the RMSS is slightly different from the indexing given
above in (10). In the indexing used in [13], the differential on b20 is a d2 rather than a d1.
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for i ≤ n, while the coproduct in E0S(n, p) is given by

∆(ti,j) =
i

∑
k=0

tk,j ⊗ ti−k,j+k(12)

for i ≤ n. The element ti,j in E0S(n, p) represents the element tp
j

i in S(n, p), so
(12) is a simple consequence of (11). If i > n, then the coproduct on ti in S(n, p),
and on ti,j in E0S(n, p), is more complicated than the formulas (11) and (12).
However, if p > n + 1, then it is the coproduct on ti for i ≤ n which is responsible
for the Cotor-groups, in the sense that the the cohomology of L(n,n) agrees with
Cotor over E0S(n, p), and the Lie bracket (8) in L(n,n) is dual to the coproduct
on elements ti,j in E0S(n, p) with i ≤ n.

To summarize: the Hopf algebra E0S(n, p) can be generated by elements {ti,j}
which are representable by generators {tp

j

i } for S(n, p), and on the generators whose
coproducts determine the Cotor groups, the coproduct in E0S(n, p) agrees with the
coproduct in S(n, p). At a glance, this makes it seem like S(n, p) and E0S(n, p)
must have the same Cotor-groups. In fact, this was Ravenel’s argument from [12],
which he later [13] pointed out was not correct. The trouble is the difference
between the relations in E0S(n, p) and in S(n, p). In S(n, p), the pnth power of
each generator ti is equal to ti itself. Meanwhile, in E0S(n, p), the pth power of
each generator ti,j is zero. As a consequence, a cocycle in the cobar complex for
E0S(n, p) can involve linear combinations of tensor products of polynomials in the
generators ti,j with the property that, upon applying the cobar complex differential
d, each term involves a pth power of some generator, hence is zero. If we lift such
an element to the cobar complex of S(n, p) by replacing each instance of ti,j with

tp
j

i , it is an a priori possibility that applying d to the resulting cochain does not
yield zero, since pth powers of generators are no longer zero: for example in S(1, p)
we have tpi = ti instead of tpi = 0.

This phenomenon—a cocycle in the cobar complex of S(n, p) lifting to a non-
cocycle in the cobar complex of E0S(n, p) due to the difference between the mul-
tiplicative relations in S(n, p) and in E0S(n, p)—would occur whenever there is a
nonzero differential in the RMSS for p > n + 1, if such differentials indeed exist.

3. A simultaneous integral lift of Ravenel’s height n Lie algebras
for all primes.

Fix a positive integer n. For each prime p, we have the Lie Fp-algebra L(n,n).
There exists a simultaneous integral lift of all these Lie algebras, for fixed n:

Definition 3.1. Let Lint(n,n) denote the Cn-equivariant Lie Z-algebra with Z-
linear basis

{xi,j ∶ i ∈ {1, . . . , n}, j ∈ Z/nZ}
where Cn acts freely by letting σxi,j = xi,j+1, and where the Lie bracket is defined
by the rule (8), above.

While Lint(n,n) is n2-dimensional as a Lie Z-algebra, it is only n-dimensional
as a Lie Z[Cn]-algebra. To be clear, Lie algebra cohomology does depend on the
choice of ground ring7, and throughout, whenever we speak of the cohomology of

7Consider how this goes in the more familiar situation over Fp, rather than over Z. The

Lie algebra L(2,2) is four-dimensional and unimodular, hence H4
unr(L(2,2);Fp) is nontrivial,
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Lint(n,n), we shall always mean its cohomology as a Lie Z-algebra, not as a Lie
Z[Cn]-algebra.

The Lie Z-algebra Lint(n,n) is free and finite-dimensional over Z, and its re-
duction modulo a prime p is Ravenel’s Lie Fp-algebra L(n,n). We recall the rela-
tionship in cohomology between a finite-dimensional Z-free Lie Z-algebra and its
mod p reduction. The author has never seen this relationship in print, nor heard
it mentioned, so we offer a proof, but the proof is easy, and the result must surely
be well-known. This relationship is used later, in the proof of Lemma 5.1.

Proposition 3.2. Let L be a Lie Z-algebra which is finite-dimensional and free over
Z. Then, for each prime p and each integer m, the natural map Hm(L;Z)⊗Z Fp →
Hm(L⊗Z Fp;Fp) fits into a short exact sequence

0→Hm(L;Z)⊗Z Fp →Hm(L⊗Z Fp;Fp)→ TorZ1(Hm+1(L;Z),Fp)→ 0.(13)

Proof. Recall that the Chevalley-Eilenberg complex of L is the Z-linear dual of the
exterior Z-algebra on UL. Exterior powers and the universal enveloping algebra
functor U each commute with base-change, so we have isomorphisms

homZ(Λ●

Z(L),Z)⊗Z Fp ≅ homZ(Λ●

Z(L),Fp)(14)

≅ homFp(Λ●

Z(L)⊗Z Fp,Fp)
≅ homFp

(Λ●

Fp
(L⊗Z Fp),Fp) .(15)

The cohomology of cochain complex (15) is H∗(L⊗ZFp;Fp), while the cohomology
of cochain complex (14) is describable by the universal coefficient sequence relating
the cohomology of a base-changed cochain complex to the base-changed cohomology
of the cochain complex. The resulting exact sequence is (13). �

4. The Hopf algebra Z(n).
To introduce the Hopf algebra Z(n), it is convenient to begin with some general,

well-known observations about the relationship between Lie algebras, divided power
algebras, and polynomial algebras. Suppose that L is a Lie Z-algebra which is free
and finite-dimensional over Z. For any free Z-module A, we will write A∗ for its
Z-linear dual homZ(A,Z). The dual (UL)∗ of the universal enveloping algebra UL
is, as a ring8, the divided power Z-algebra on any Z-linear basis for L∗. We write
ΓZ(L∗) for this divided power Z-algebra. Inside the divided power algebra, we have
the subring generated by L∗, i.e., the free commutative Z-algebra Z[L∗] on the Z-
module L∗. Put another way, Z[L∗] is the polynomial ring with one generator for
each element in a fixed Z-linear basis for L∗. The inclusion of Hopf Z-algebras
Z[L∗]↪ ΓZ(L∗) induces a map

Cotor∗Z[L∗](Z,Z)↪ Cotor∗ΓZ(L∗)
(Z,Z)(16)

spanned by h1,0h1,1h2,0h2,1. However, if we consider L(2,2) as a Lie Fp[C2]-algebra rather than
as a Lie Fp-algebra, then it is only two-dimensional, hence its Chevalley-Eilenberg complex (over

Fp[C2]!) is trivial above cohomological dimension 2, and certainly does not have vanishing H4. It
is the cohomology over Fp, not over Fp[Cn], which is always considered in applications to stable

homotopy.
8The coproduct on (UL)

∗ depends on the Lie bracket of L, but the product on (UL)
∗ is totally

insensitive to the bracket.
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which is generally not an isomorphism, although it becomes an isomorphism after
rationalization. It is a nice exercise to calculate that the domain of (16) has a lot
of torsion elements which map to zero in the codomain of (16).

Now we consider the special case in which n is a positive integer and L is the
Lie Z-algebra Lint(n,n). We have an isomorphism of rings

(ULint(n,n))∗ ≅ ΓZ (ti,j ∶ i ∈ {1, . . . , n}, j ∈ Z/nZ) ,(17)

where ti,j denotes the dual element of xi,j . It is a routine calculation (essentially
the same as that of Theorem 6.3.2 of [13]) to show that, under the isomorphism
(17), the coproduct on the Hopf Z-algebra (ULint(n,n))∗ yields the coproduct on

ΓZ (ti,j ∶ i ∈ {1, . . . , n}, j ∈ Z/nZ) given by the formula ∆(ti,j) = ∑i
k=0 tk,j ⊗ ti−k,j+k.

We have explained how, within the divided power algebra (UL)∗, there is the
natural polynomial algebra Z[L∗]. We now define the Hopf algebra Z(n) to be
precisely that polynomial subalgebra of (ULint(n,n))∗.

Definition 4.1. Let Z(n) be the Cn-equivariant commutative Hopf Z-algebra which,
as a commutative ring, is the subring of ΓZ (ti,j ∶ i ∈ {1, . . . , n}, j ∈ Z/nZ) generated
by the elements ti,j.

Consequently, Z(n) has the following presentation:

● As a commutative Z[Cn]-algebra, Z(n) is free on generators t1, t2, . . . , tn.

● The coproduct on Z(n) is given by ∆(t i) = ∑i
j=0 tj ⊗ σjti−j.

● The augmentation on Z(n) is given by ε(t i) = 0 for all i.
● The map Z(n)↪ ΓZ (ti,j ∶ i ∈ {1, . . . , n}, j ∈ Z/nZ) sends σjti to ti,j.

Definition 4.2. Given integers n ≥ 1 and q ≥ 2, the q-Ravenel filtration on Z(n)
is the increasing filtration in which, for all j, the element σjti is in degree dn,q,i.

For a prime p, write Ep
0Z(n) for the associated graded Hopf Z-algebra of the

p-Ravenel filtration on Z(n).

Observation 4.3. For all n and p, the product and coproduct on Z(n) each
strictly preserve the p-Ravenel filtration. Consequently Ep

0Z(n) = Z(n).

We have a map of Cn-equivariant Hopf algebras Z(n)⊗Z Fp → S(n, p) given by

sending σjti to tp
j

i . This map sends the p-Ravenel filtration on Z(n) to the Ravenel
filtration on S(n, p). Each of these two filtrations yields a May-type spectral se-
quence. Hence we have a map of spectral sequences

(18) Cotor∗,∗,∗
Ep

0 (Z(n)⊗ZFp)
(Fp,Fp) +3

��

Cotor∗,∗
Z(n)⊗ZFp

(Fp,Fp)

��
Cotor∗,∗,∗

E0S(n,p)
(Fp,Fp) +3 Cotor∗,∗

S(n,p)
(Fp,Fp).

5. The Ravenel-May spectral sequence collapses immediately at
large primes.

Finally, in this section we use the definitions in the preceding sections to actually
prove something new.

Lemma 5.1. Fix a positive integer n. Then there exists an integer N such that,
if p > N , then the left-hand vertical map in diagram (18) is surjective.
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Proof. Choose a Q-linear basis B for the rational Lie algebra cohomology H∗(Q⊗Z
Lint(n,n);Q). For each element b ∈ B, choose a cocycle representative b̃ for b in the
cobar complex of the Q-linear dual U(Q⊗ZLint(n,n))∗ of the universal enveloping
Q-algebra of Q⊗Z Lint(n,n). By exactness of rationalization, that cobar complex
is the rationalization of the cobar complex of the Z-linear dual (ULint(n,n))∗ of
the universal enveloping Z-algebra of Lint(n,n).

Since B is finite, we may clear denominators to pass from the rationalization of
the cobar complex of (ULint(n,n))∗ to the cobar complex of (ULint(n,n))∗ itself.
Write D for the least common multiple of the denominators of the chosen elements
{b̃ ∶ b ∈ B} of the cobar complex of (Q ⊗Z ULint(n,n))∗ ≅ Q ⊗Z ΓZ(Lint(n,n)∗).
Write D ⋅ B̃ for the subset {D ⋅ b̃ ∶ b ∈ B} of ΓZ(Lint(n,n)∗).

Finally, for each element D ⋅ b̃, there exist only finitely many denominators in
the expression of D ⋅ b̃ in terms of divided powers of the elements of Lint(n,n)∗.
Hence, again using the finiteness of B, we may also clear the denominators in all
those divided powers. That is, there exists a positive integer E such that

E ⋅D ⋅ B̃ ∶= {E ⋅D ⋅ b̃ ∶ b ∈ B}
⊆ Z[Lint(n,n)∗]
⊆ ΓZ(Lint(n,n)∗).

For any prime p > n + 1, Ravenel proved (see section 2, above) that the map of
Hopf Fp-algebras

(UL(n,n))∗ → E0S(n, p)
ti,j ↦ ti,j

induces an isomorphism

Cotor∗
(UL(n,n))∗(Fp,Fp)→ Cotor∗E0S(n,p)(Fp,Fp).(19)

The domain of (19) is the Lie algebra cohomology H∗(L(n,n);Fp). We now make
use of Proposition 3.2: since Lint(n,n) is a finite-dimensional Lie Z-algebra, its
cohomology H∗(Lint(n,n);Z) is a finitely generated abelian group, hence has `-
torsion for only finitely many primes `. Hence, if we choose p sufficiently large,
then the Tor1-group in Proposition 3.2 vanishes, yielding an isomorphism

H∗(Lint(n,n);Z)⊗Z Fp
≅Ð→H∗(L(n,n);Fp).

The set of cocycles E ⋅ D ⋅ B̃ in the cobar complex of Z(n) = Z[Lint(n,n)∗]
is finite, and each member E ⋅D ⋅ b̃ of E ⋅D ⋅ B̃ is a sum of rank 1 tensors, each
of which is a tensor of elements in Z[Lint(n,n)∗], each of which has only finitely
many coefficients in Z. The point is that there can be only finitely many primes
that divide any of these coefficients in any of these rank 1 tensors in any element
E ⋅D ⋅ b̃ of E ⋅D ⋅ B̃. Consequently, if p is sufficiently large, then the only Z-linear
combinations α1E ⋅D ⋅ b̃1 + ⋅ ⋅ ⋅ +αmE ⋅D ⋅ b̃m of the members of E ⋅D ⋅ B̃ which map
to zero in H∗(Lint(n,n)⊗ZFp;Fp) are those in which all the coefficients α1, . . . , αm

are divisible by p.
Consequently, for p >> n, the set of cocycles E ⋅ D ⋅ B̃ in the cobar complex

of Z(n) maps to a Fp-linear basis for Cotor∗E0S(n,p)(Fp,Fp). Consequently the

classes in Cotor∗Z(n)⊗ZFp
(Fp,Fp) represented by the members of E ⋅ D ⋅ B̃ surject

on to Cotor∗E0S(n,p)(Fp,Fp). Using Observation 4.3 to identify Z(n) ⊗Z Fp and
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Ep
0(Z(n)⊗Z Fp) ≅ (Ep

0Z(n))⊗Z Fp, the left-hand vertical map in (18) is surjective.
�

Theorem 5.2. Fix a positive integer n. Then there exists some integer N such
that, for all p > N , the Ravenel-May spectral sequence

E∗,∗,∗
1 ≅ Cotor∗E0S(n,p)(Fp,Fp)⇒ Cotor∗S(n,p)(Fp,Fp)

has no nonzero differentials.

Proof. Using Lemma 5.1, choose p large enough that the left-hand vertical map in
(18) is surjective. The spectral sequence drawn along the top horizontal edge of
diagram (18) collapses immediately with no differentials, by Observation 4.3. It is
elementary to see that, if a map of spectral sequence is surjective on some page,
and the domain spectral sequence has no nonzero differentials on and after that
page, then the codomain spectral sequence also has no nonzero differentials on and
after that page. Hence the spectral sequence drawn along the bottom horizontal
edge of (18)—i.e., the Ravenel-May spectral sequence—collapses with no nonzero
differentials at the E1-page. �

Theorem 5.3. Fix a positive integer n. Then there exists some integer N such
that, for all p > N , the mod p continuous cohomology H∗

c (str Aut(G1/n);Fp) of the
height n strict Morava stabilizer group scheme is isomorphic, as a graded ring, to
the cohomology H∗(L(n,n);Fp) of the solvable Lie Fp-algebra L(n,n).

Proof. For p > n+ 1, we have the RMSS H∗(L(n,n);Fp)⇒H∗

c (str Aut(G1/n);Fp).
By Theorem 5.2, the spectral sequence collapses with no differentials for p >> n, so
for sufficiently large p, H∗(L(n,n);Fp) and H∗

c (str Aut(G1/n);Fp) are isomorphic
as graded abelian groups.

We need to show that H∗(L(n,n);Fp) and H∗

c (str Aut(G1/n);Fp) are also iso-
morphic as graded rings. The RMSS is a spectral sequence of algebras, so we only
need to verify that there are no multiplicative filtration jumps in the abutment of
the spectral sequence. The argument here is much the same as used in the proof
of Theorem 5.2: we have the map of spectral sequences (18), which is surjective
on the E1-page for p >> n, by Lemma 5.1. The domain of the map of spectral
sequences collapses immediately with no nonzero differentials, and furthermore has
no multiplicative filtration jumps, since Z(n) = Ep

0Z(n) by Observation 4.3. Hence
for p >> n, there are no multiplicative filtration jumps. �

Corollary 5.4. Let n be a positive integer. Suppose that the Smith-Toda com-
plex V (n − 1) exists for all p >> n. Equip H∗(L(n,n);Fp) with the Adams grad-
ing, i.e., the grading in which an element in cohomological degree d and internal
degree i is in Adams degree i − d. Then, for p >> n, the K(n)-local homotopy
groups π∗(LK(n)V (n− 1)) of V (n− 1) are isomorphic as a graded abelian group to

H∗(L(n,n);Fp)⊗Fp Fp[v±1
n ], with vn in degree 2(pn−1) and with the Adams degree

as the grading on H∗(L(n,n);Fp).
If it is furthermore true that V (n − 1) is a homotopy-associative ring spectrum

for p >> n, then the isomorphism π∗(LK(n)V (n−1)) ≅H∗(L(n,n);Fp)⊗Fp Fp[v±1
n ]

for p >> n is an isomorphism of graded rings.
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Proof. Whenever V (n − 1) exists, we have a spectral sequence

Es,t
2 ≅ (Cotors,∗

S(n,p)
(Fp,Fp)⊗Fp K(n)∗)

t
⇒ πt−s(LK(n)V (n − 1))(20)

dr ∶ Es,t
r → Es+r,t+r−1

r .

Spectral sequence (20) is most simply constructed as the E(n)-Adams spectral
sequence of V (n − 1), which converges to π∗(LE(n)V (n − 1)) ≅ π∗(LK(n)V (n −
1)). The Morava-Miller-Ravenel change-of-rings isomorphism (see [8] or [10] or
section 6.1 of [13]) identifies the E2-page Cotor∗,∗

E(n)∗E(n)
(E(n)∗,E(n)∗V (n−1)) of

the E(n)-Adams spectral sequence for V (n − 1) with the continuous cohomology
H∗

c (str Aut(G1/n);K(n)∗) ≅H∗

c (str Aut(G1/n);Fp)⊗Fp K(n)∗.
The s-line in the E2-term of spectral sequence (20) is concentrated in Adams

degrees congruent to −s modulo 2p − 2. If p > n2
+n+2
2

, then an elementary bide-
gree argument shows that any E(n)-Adams differential would have to cross the
horizontal vanishing line at s = n2 + n, hence must be zero. The same bidegree
argument also rules out multiplicative filtration jumps in the E(n)-Adams spectral

sequence when p > n2
+n+2
2

. (This argument for collapse of spectral sequence (20) for

p > n2
+n+2
2

is folklore, and certainly not new. What is new here is that Theorems
5.2 and 5.3 identify the input for (20) in terms of Lie algebra cohomology.) �

We report one more corollary of Theorems 5.2 and 5.3:

Corollary 5.5. Let n be a positive integer, and let p be a prime satisfying p > Nn.
Suppose that X is an E(n−1)-acyclic finite CW-complex. Then there exist strongly
convergent spectral sequences

E∗,∗,∗
1 ≅H∗(L(n,n);Fp)⊗Fp E0E(n)∗(X)⇒ Cotor∗,∗

E(n)∗E(n)
(E(n)∗,E(n)∗(X)),

(21)

E∗,∗
2 ≅ Cotor∗,∗

E(n)∗E(n)
(E(n)∗,E(n)∗(X))⇒ π∗(LE(n)X),

(22)

where E0E(n)∗(X) is the associated graded abelian group of the p-adic filtration
on E(n)∗(X).

Proof. Spectral sequence (22) is, of course, not new: it is simply the E(n)-Adams
spectral sequence for X, which converges strongly to π∗(LE(n)X) by the existence
of a horizontal vanishing line at a finite page in the E(n)-Adams spectral sequence
of every finite CW-complex; see [14, Theorem A.6.11]. If p > n+1, then the category
of E(n)∗E(n)-comodules has relative-injective dimension n2 + n, so this vanishing
line occurs already at the E2-page.

Recall that Σ(n) is the Hopf Fp-algebra

Σ(n) =K(n)∗ ⊗BP∗ BP∗BP ⊗BP∗ K(n)∗
= E(n)∗E(n)/(p, v1, . . . , vn−1, ηR(v1), . . . , ηR(vn−1))
= E(n)∗E(n)/(p, v1, . . . , vn−1).

Spectral sequence (21) arises from a four-step process:

● First, filter E(n)∗(X) by powers of the ideal (p, v1, . . . , vn−1) in E(n)∗, so
that the associated graded E(n)∗E(n)-comodule is a Σ(n)-comodule. This
filtration is finite because we have assumed that X is finite and E(n − 1)-
acyclic.
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● Recall (e.g. from the beginning of section 6.2 of [13]) that Z-graded Σ(n)-
comodules are equivalent to Z/2(pn − 1)Z-graded S(n, p)-comodules, via
the isomorphism Σ(n)/(1 − vn) ≅ S(n, p).

● Now observe that the pro-p-group scheme represented by SpecS(n, p)—i.e.,
the height n strict Morava stabilizer group scheme—is pro-unipotent. To
see this, recall the presentation (5) for S(n, p). For a positive integer m,

let S(n, p)≤m be the Hopf subalgebra Fp[t1, . . . , tm]/(tp
n

i − ti ∀i) of S(n, p).
Then SpecS(n, p)≤m is the strict automorphism group scheme of the formal
m-bud truncation of the formal group law G1/n. The affine group scheme
SpecS(n, p) is the limit, over m, of the affine group schemes SpecS(n, p)≤m,
so our task is to show that SpecS(n, p)≤m is unipotent for each m.

We use the filtration criterion for unipotence: see [16, section 8.3] for
an excellent textbook reference. The filtration criterion states that, if k
is a field and A is a finitely generated commutative Hopf k-algebra, then
SpecA is unipotent if and only if there is a chain of k-linear subspaces
A0 ⊆ A1 ⊆ A2 ⊆ . . . with A0 = k and with ∆(x) ∈ ∑j

i=0Ai ⊗k Aj−i for all
x ∈ Aj . This condition is satisfied by S(n, p), hence also9 by S(n, p)≤m,
by Ravenel’s recursive formula [13, Theorem 4.3.13] for the coproduct in
BP∗BP and hence also in S(n, p)≤m.

● Since SpecS(n, p) is pro-unipotent, the only irreducible continuous rep-
resentations of SpecS(n, p) are one-dimensional (e.g. see exercises 5-6 in
chapter 9 of [16]). Hence the (p, . . . , vn−1)-adic filtration on E(n)∗(X)/(1−
vn) admits a finite refinement by subcomodules whose filtration quotients
are each one-dimensional. The relationship between Σ(n)-comodules and
S(n, p)-comodules lets us lift this filtration to a finite filtration of E(n)∗(X)
by E(n)∗E(n)-subcomodules whose filtration quotients are each copies of
the trivial Σ(n)-comodule K(n)∗.

Consequently the spectral sequence arising from applying
Cotor∗,∗

E(n)∗E(n)
(E(n)∗,−) to this filtration has E1-page

Cotor∗,∗
E(n)∗E(n)

(E(n)∗,E0E(n)∗(X)) ≅ Cotor∗,∗
Σ(n)

(K(n)∗,E0E(n)∗(X))
(23)

≅ Cotor∗,∗
Σ(n)

(K(n)∗,K(n)∗)⊗K(n)∗ E0E(n)∗(X)

≅ (H∗(L(n,n);Fp)⊗Fp K(n)∗)⊗K(n)∗ E0E(n)∗(X)
≅H∗(L(n,n);Fp)⊗Fp E0E(n)∗(X),

where (23) is from the Morava-Miller-Ravenel change-of-rings isomorphism.
Here E0E(n)∗(X) is the associated graded of the finite filtration we have
constructed on E(n)∗(X) using pro-unipotence of SpecS(n, p), but as an
abelian group, it agrees with the associated graded of the p-adic filtration
on E(n)∗(X). Strong convergence of the spectral sequence is a routine
consequence of finiteness of the filtration.

9Both S(n, p) and S(n, p)≤m satisfy the filtration criterion for unipotence. We introduce
S(n, p)≤m because it is finitely generated, and as far as we know, unipotence is only studied when
an affine group scheme is algebraic, i.e., when the representing Hopf algebra of the group scheme

is finitely generated. In particular, the author does not know whether the filtration criterion for
unipotence guarantees that the only irreducible comodules are one-dimensional, except when the
representing Hopf algebra is finitely generated.
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Remark 5.6. The proof of Lemma 5.1 is nonconstructive: given a positive integer
n, there is no obvious way to write down an integer M such that the left-hand verti-
cal map in (18) is surjective for all primes p >M . However, all existing calculations
are consistent with the possibility that M can be chosen to be simply 1: that is,
the left-hand vertical map in (18) is surjective for all n and all p.

Theorems 5.2 and 5.3 inherit their nonconstructiveness from Lemma 5.1. For a
fixed choice of n, let Nn denote the least integer N ≥ n+1 satisfying the conditions
described in the statement of Theorem 5.2. We would very much like to have some
understanding of the sequence of integers N1,N2,N3, . . . . In section 6.1, we see that
N1 = 2, and in section 6.2, we see that N2 = 3. The “optimistic answer” described
in section 1 is the proposition that Nn = n+1 for all n ≥ 1. All existing calculations
are consistent with the possibility that the RMSS collapses for all p > n + 1, i.e.,
Nn = n + 1, although as Ravenel remarks following Theorem 6.3.5 of [13], Ravenel
suspects that this possibility is dashed by a hypothetical RMSS differential for
n = 9, p = 11.

6. Explicit example calculations.

The mod p reductions of the integral calculations in this section can be compared
with those of section 3 of [12] or section 6.3 of [13], to see that we indeed recover
known cases of the mod p cohomology of Morava stabilizer algebras.

6.1. Height 1. The Lie Z-algebra Z(1) is the abelian Lie Z-algebra on a single
generator x1. Consequently we have H∗(Z(1);Z) ≅ ΛZ(h10). Upon reduction
modulo p for p sufficiently large, we recover the cohomology ΛFp(h10) of the height
1 strict Morava stabilizer group; in fact, p > 2 suffices.

6.2. Height 2. The Lie Z-algebra Z(2) has Z-linear basis x10, x11, x20, x21, with
Lie bracket determined by [x10, x11] = x20 − x21 and by x20, x21 being central in
Z(2). Running the Cartan-Serre spectral sequence for the extension of Lie Z-
algebras

1→ Z{x20, x21}→ Z(2)→ Z{x10, x11}→ 1,

one calculates easily that

H∗(Z(2);Z) ≅ ΛZ(ζ2)⊗Z (ΛZ(h10, h11)⊗Z Z[h10h20, h11h20]) /
(h10 ⋅ h11, (h10h20)2, (h11h20)2,

(h10h20) ⋅ h11 = −(h11h20) ⋅ h10, h10h20 ⋅ h11h20) ,
where ζ2 is the cohomology class of the Chevalley-Eilenberg cocycle h20 +h21. The
action of C2 is by

σ(h10) = h11 σ(h11) = h10

σ(h10h20) = h11h20 − h11ζ2 σ(h11h20) = h10h20 − h10ζ2

σ(ζ2) = ζ2.
Upon reduction modulo p for p sufficiently large, we recover the cohomology of the
height 2 strict Morava stabilizer group (compare [12, Theorem 3.2] or [13, Theorem
6.3.22]); in fact, p > 3 suffices.
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Appendix A. Simultaneous integral lift of the height n Morava
stabilizer algebras at all primes.

In this appendix, for each positive integer n, we define a differential graded
Z-algebra Sint(n)● which, in a sense that we make precise, “specializes” at each
prime p to the p-primary height n Morava stabilizer algebra S(n, p). We do not
need Sint(n)● for the main theorems in this paper, because the smaller object
Z(n) suffices for our purposes. This is because the main theorems in this paper
are asymptotic: they are about the cohomology of the p-primary height n strict
Morava stabilizer groups for p >> n. For large p, the Hopf algebra Z(n) is an
integral lift of a large enough piece of the Morava stabilizer algebras S(n, p) to
detect all the cohomology of S(n, p) at large primes p. Readers with any interest
in small-primary phenomena will perhaps want to know about an integral lift of
the height n Morava stabilizer algebras which “gets the cohomology right” even at
small primes. That integral lift is Sint(n)●.

A.1. The definition of the integral lift Sint(n)●. It would be nice to have a
single Hopf Z-algebra Sint(n) whose mod p reduction, for each p, is isomorphic to
S(n, p). We are skeptical that such a Hopf Z-algebra can exist. Instead we will
construct a differential graded Z-algebra Sint(n)● whose reduction at each prime
p is the cobar complex of S(n, p). We give the construction in several steps, as
follows:

● Let R(n) denote the free commutative Z[Cn]-algebra on a set of generators
{t1, t2, . . .}.

● Let T (n)● denote the differential graded Z[Cn]-algebra whose degree i sum-
mand is the i-fold tensor power R(n)⊗Z i of R(n). We refer to R(n)⊗Z i as
the group of i-cochains in T (n)●.

We define the Cn-action on T (n)● by letting the operator σ act diago-
nally on R(n)⊗Z i. Hence, for example, σ(tj ⊗ tk) = (σtj)⊗ (σtk).

The graded algebra T (n)● has a certain feature in common with the
cobar complex of a Hopf algebra (or Hopf algebroid), as defined in appendix
1 of [13]: it has two natural-looking multiplication operations, and unless
care is taken to distinguish them, there will be confusion and errors. The
degree i summand R(n)⊗Z i of T (n)● is, in itself, a ring, so we can multiply
two i-cochains and get an i-cochain. We will call this multiplication the
internal product on T (n)●. By contrast, we can instead take an element x ∈
R(n)⊗Z i and an element y ∈ R(n)⊗Z j , and concatenate them across a tensor

symbol to get an element x⊗y ∈ R(n)⊗Z(i+j). We will call this multiplication
the cup product on T (n)●. For the sake of producing a differential graded
algebra, it is the cup product on T (n)● which is the relevant multiplication
operation.

● Let Sint(n)● be the graded Z[Cn]-algebra obtained from T (n)● by freely
(in the category of associative graded Z[Cn]-algebras) adjoining generators
b1, b2, b3, . . . in degree 2.
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● We define a Z[Cn]-linear differential d ∶ Sint(n)● → Sint(n)● of degree +1
by the following rules:

d(t i) =
i−1

∑
j=1

tj ⊗σjti−j +
i/n

∑
k=1

σkn+1bi−kn,(24)

d(bi) = −σ−1−kn ⎛
⎝
i+n−1

∑
j=1

d(tj ⊗σjti+n−j) +
i
n−1

∑
k=1

d(bi−nk)
⎞
⎠

(25)

with the understanding that bi is zero if i ≤ 0.
The formula (25) is not a closed-form formula for d(bi), but it is enough

to let us solve recursively for d(bi) by first calculating d(b1), d(b2), and so
on.

Note that (25) is a consequence of (24): since d ○ d must be zero, apply d to both
sides of (24) and solve for d(bi−n), then re-index to arrive at formula (25).

Definition A.1. For each positive integer n, the integral lift of the height n Morava
stabilizer algebra is the Cn-equivariant differential graded Z-algebra Sint(n)● de-
fined above.

The cobar complex of Z(n) embeds into Sint(n)● by the differential graded
Z[Cn]-algebra homomorphism Z(n) → Sint(n)● sending t i to t i and preserving
both the internal product and the cup product.

A.2. How to specialize Sint(n)● to a prime. We now need to explain the sense
in which Sint(n)● is an integral lift of the Morava stabilizer algebras S(n,2), S(n,3),
S(n,5), . . . . It is not a matter of simply reducing the Z-algebra Sint(n)● modulo a
prime p to recover S(n, p). Instead, to recover the cobar complex of S(n, p), one
must “specialize” Sint(n)● in the following way:

Definition A.2. Fix a positive integer n and a prime p. By the specialization of
Sint(n)● at p, we mean the Cn-equivariant differential graded Fp-algebra obtained
by:

● setting p to zero,
● setting σ to the internal Frobenius endomorphism, i.e., setting σ(x) = xp

for all homogeneous x, where the pth power is taken using the internal
product, as defined in appendix A.1,

● and, for each positive integer i, setting bi to −1 times the transpotent of t i,
i.e., setting bi to the mod p reduction of the integral sum − 1

p ∑
p−1
j=1 (p

j
) tji ⊗ tp−ji .

We will write Sint(n)● ↓ p for the specialization of Sint(n)● at p.

Write C●

S(n,p) for the cobar complex of S(n, p). Then C●

S(n,p) is a Cn-equivariant

differential graded Fp-algebra, with Cn acting by the internal Frobenius map x↦ xp,
i.e., the zeroth algebraic Steenrod operation P 0, as defined in [13, appendix 1 section
5]. It is straightforward to use the calculations of sections 4.3 and 6.3 of [13] to
verify that the map of Cn-equivariant differential graded algebras

Sint(n)● ↓ p→ C●

S(n,p)

t i ↦ ti

bi ↦ bi,0

is an isomorphism.
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A.3. The q-Ravenel filtration on Sint(n)●. To show that the Ravenel-May spec-
tral sequence also has an integral lift, even at small primes, we define a lift of the
Ravenel filtration to the integral lift Sint(n)● of the Morava stabilizer algebras. In
fact we will have a family of such lifts, one lift for each integer q ≥ 2. It is defined
in the same way as the q-Ravenel filtration on Z(n), from Definition 4.2:

Definition A.3. For integers n ≥ 1 and q ≥ 2, let dn,q,i be the integer defined
recursively by the rule

dn,q,i = { 0 if i ≤ 0
max{i, qdn,q,i−n} if i > 0.

Now equip the Cn-equivariant differential graded Z-algebra Sint(n)● with the in-
creasing filtration in which, for all j, the element σjti is in degree dn,q,i and the
element σjbi is in degree dn,q,i+n. We call this the q-Ravenel filtration on Sint(n)●.

In the case p = q, the q-Ravenel filtration on Sint(n)● specializes (in the sense of
appendix A.2) to the Ravenel filtration on S(n, p).
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