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Abstract. Given a commutative ring A, a “formal A-module” is a formal

group equipped with an action of A. There exists a classifying ring LA of for-
mal A-modules. This paper proves structural results about LA and about the

moduli stack MfmA of formal A-modules. We use these structural results to

aid in explicit calculations of flat cohomology groups of M2−buds
fmA , the moduli

stack of formal A-module 2-buds. For example, we find that a generator of the

group H1
fl(MfmZ;ω), which also generates (via the Adams-Novikov spectral

sequence) the first stable homotopy group of spheres, also yields a generator

of the A-module H1
fl(M2−buds

fmA ;ω) for any torsion-free Noetherian commuta-

tive ring A. We show that the order of the A-modules H1
fl(M2−buds

fmA ;ω) and

H2
fl(M2−buds

fmA ;ω⊗ω) are each equal to 2N1 , where N1 is the leading coefficient

in the 2-local zeta-function of SpecA. We also find that the cohomology of
M2−buds

fmA is closely connected to the delta-invariant and syzygetic ideals stud-

ied in commutative algebra: H0
fl(M2−buds

fmA ;ω⊗ω) is the delta-invariant of the

largest ideal of A which is in the kernel of every ring homomorphism A→ F2,

and consequently H0
fl(M2−buds

fmA ;ω ⊗ ω) vanishes if and only if A is a ring in

which that ideal is syzygetic.
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1. Introduction and review of some known facts.

1.1. Introduction.

1.1.1. Formal modules. This paper is about the classifying ring LA and classifying
Hopf algebroid (LA, LAB) of formal A-modules; or, from another point of view,
the moduli stack MfmA of formal A-modules. We ought to explain what this
means. When A is a commutative ring, a formal A-module is a formal group law F
over a commutative A-algebra R, which is additionally equipped with a ring map
ρ ∶ A → End(F ) such that ρ(a)(X) ≡ aX modulo X2. An excellent introductory
reference for formal A-modules is [8]. Higher-dimensional formal modules exist, but
all formal modules in this paper will be implicitly understood to be one-dimensional.

Formal modules arise in algebraic and arithmetic geometry, for example, in Lubin
and Tate’s famous theorem [16] on the abelian closure of a p-adic number field, in
Drinfeld’s generalizations of results of class field theory in [5], and in Drinfeld’s
p-adic symmetric domains, which are (rigid analytic) deformation spaces of certain
formal modules; see [6] and [25]. Formal A-modules also arise in algebraic topology,
by using the natural map from the moduli stack of formal A-modules to the moduli
stack of formal groups to detect certain classes in the cohomology of the latter,
particularly in order to resolve certain differentials in spectral sequences used to
compute the Adams-Novikov E2-term and stable homotopy groups of spheres; for
example, see [30].

More to the point for the present paper: it is easy to show (see [5]) that there
exists a classifying ring LA for formal A-modules, i.e., a commutative A-algebra LA

such that homA−alg(LA,R) is in natural bijection with the set of formal A-modules
over R. It is not so easy to calculate LA, however. Here is a summary of known
results.

● The pioneer in this area was M. Lazard, who, in the case A = Z, proved in
[15] that LZ ≅ Z[x1, x2, . . . ], a polynomial algebra on countably infinitely
many generators. The ring LZ is consequently often called the Lazard ring.

● Next, in [5], Drinfeld handled the case in which A is the ring of integers
in a local nonarchimedean field (e.g. a p-adic number field). In that case
Drinfeld proved that LA ≅ A[x1, x2, . . . ], again a polynomial algebra.

● In [8], Hazewinkel proved that the same result holds for discrete valuation
rings, as well as for global number rings of class number one. That is, for all
such rings A, the classifying ring LA of formal A-modules is a polynomial
A-algebra on countably infinitely many generators.

● Hazewinkel also makes the observation, in 21.3.3A of [8], that the same
result cannot possibly hold for arbitrary global number rings. Specifically,
when A is the ring of integers in Q( 4

√
−18), then Hazewinkel shows that the

sub-A-module of LA consisting of elements of grading degree 2 (see Theorem
1.2.1 for where this grading comes from) is not a free A-module, which could
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not occur if LA were polynomial. Hazewinkel does not, however, attempt
to compute LA for such rings A.

● The preprint [28] contains calculations of LA for various Dedekind domains
A, including cases with nontrivial class group. For a Dedekind domain A
of characteristic zero, it is shown that LA is always a symmetric A-algebra
on a certain projective A-module, but fails to be a polynomial A-algebra
when the relevant projective module is not free.

The moduli stack MfmA admits a natural presentation by Spec of the Hopf al-
gebroid (LA, LAB), and the flat cohomology of MfmA coincides with the derived
functors of the cotensor product (i.e., Cotor) in the category of LAB-comodules.
Consequently some understanding of the ring LA and the Hopf algebroid (LA, LAB)
is a great help in calculating the cohomology of MfmA.

When formulated in terms of the Adams-Novikov spectral sequence, Adams’s
famous calculation of the image of the stable J-homomorphism, from [1], establishes
that for a positive integer n, the flat cohomology group H1

fl(MfmZ;ω⊗n) is a finite

abelian group of order equal to the denominator of the Riemann zeta-value ζ(1−n)
times a power of 2. Here ω is the line bundle of invariant differentials on MfmZ.
One would like to know if this result generalizes to rings other than Z. In the
paper [26], Ravenel remarks that this result does “not appear to generalize to other
number fields. For example if the field is not totally real its Dedekind zeta function
vanishes at all negative integers.”

This paper has two purposes:

(1) to carry out a structural study of the Hopf algebroid (LA, LAB) for a
general ring A, aimed particularly at establishing structural properties of
(LA, LAB) which would support cohomology calculations, again for a gen-
eral ring A, not just Z, and not just a number ring or a Dedekind domain.

(2) Subsequently, to use those structural properties, and some new computa-
tional tools, to make some cohomology calculations and demonstrate that
the flat cohomology of the moduli of formal A-modules do in fact carry
some zeta-function-theoretic data, for a general ring A.

1.1.2. Summary of structural results.

Colimits: The functor sending A to LA commutes with filtered colimits and
with coequalizers, but not coproducts. The same is true for the functor
sending A to the Hopf algebroid (LA, LAB). This is Proposition 2.1.1.

Localization: If A is a commutative ring and S a multiplicatively closed sub-

set of A, then the homomorphism of graded rings LA[S−1]→ LA[S−1
] is an

isomorphism. Furthermore, the homomorphism of graded Hopf algebroids

(LA[S−1], LAB[S−1])→ (LA[S−1
], LA[S−1

]B)

is an isomorphism. This is Theorem 2.2.1. This particular result is not
new: it appears also in Hazewinkel’s book [9], although we think the proof
we offer in this paper is a useful addition to the literature.

Localization and cohomology: Let A be a commutative ring and let S be a
multiplicatively closed subset of A. Let f denote the stack homomorphism
f ∶ MfmA[S−1] → MfmA classifying the underlying formal A-module of
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the universal formal A[S−1]-module. Then, for all quasicoherent OMfmA
-

modules F , we have an isomorphism

Hs
fl(MfmA;ω⊗t ⊗F)[S−1] ≅Hs

fl(MfmA[S−1];ω
⊗t ⊗ f∗F)

for all integers s, t. This is the stack-theoretic formulation of Corollary
2.2.2. It is also not new, having already appeared in [26] and in [21].
Examples of its application in the course of cohomological calculations occur
in Propositions 3.2.2 and 3.5.2.

Finite generation: Section 2.3 contains a variety of finiteness results which
establish that, for a wide class of commutative rings A, the graded rings
LA and LAB are finitely generated A-modules in each degree.

Completion: Theorem 2.3.12 establishes that, for a wide class of commu-
tative rings A, the functor sending A to the Hopf algebroid (LA, LAB)
commutes with completion at a maximal ideal I. As a consequence, Corol-
lary 2.3.14 establishes that the spectral sequence obtained from the I-adic
filtration on the cobar complex of (LA, LAB) converges to H∗

fl(MfmÂI
;F),

the cohomology of the moduli stack of formal ÂI -modules. The resulting
spectral sequence is useful for making explicit calculations: see section 4.1
and section 4.2 for examples.

1.1.3. Summary of cohomological results. Extensive partial calculations of the flat
cohomology of MfmZ have been made in stable homotopy theory, since
H∗

fl(MfmZ;ω⊗∗) is the E2-term of the Adams-Novikov spectral sequence which
converges to the stable homotopy groups of spheres. Partial calculations of
H∗

fl(MfmA;ω⊗∗) for A a (local or global) number ring can be found in [26], [29],

and [30], and for one particular number ring A, in [14]. That is the extent of
calculations of the cohomology of MfmA to be found in the literature.

In particular, there are no existing calculations of H∗

fl(MfmA;ω⊗∗) for rings A
of global dimension greater than one. There is good reason for this state of affairs:
there are great difficulties1 in calculating the ring LA when A has global dimension
> 1. As a consequence, we begin our cohomological investigation of MfmA with

calculations of the flat cohomology of the moduli stackM2−buds
fmA of formal A-module

2-buds, i.e., power series in R[[X,Y ]]/(X,Y )3 which are required only to satisfy the
formal group law axioms modulo (X,Y )3, and which are equipped with an action
of A which again is only required to be unital and associative modulo (X,Y )3.
Compared to MfmA, the Artin stack M2−buds

fmA is much simpler and easier to work
with. Nevertheless it already enjoys remarkable cohomological properties in low
degrees. Here are our results:

In degree zero: H0
fl(M2−buds

fmA ;ω⊗∗), i.e., the sections of the tensor powers
of the line bundle ω of invariant differentials, is described as follows. Let
A be a torsion-free commutative ring. In Theorem 3.4.1 we obtain an
isomorphism of A-modules:

H0
fl(M2−buds

fmA ;ω⊗n) ≅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if n < 0
A if n = 0
0 if n = 1
ker τ I2n if n > 1,

1See the footnote at the start of section 3.1 for an indication of where these difficulties lie.
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where I2 is the ideal of A generated by 2 and by a2 − a for all a ∈ A, and
where τ I2n is the A-module map

τ I2n ∶ Symn
A(I2)→ Symn−1

A (I2)
x1 ⋅ ⋅ ⋅ ⋅ ⋅ xn ↦ ι(x1)x2 ⋅ ⋅ ⋅ ⋅ ⋅ xn

+ ι(x2)x1 ⋅ x3 ⋅ ⋅ ⋅ ⋅ ⋅ xn
+ ⋅ ⋅ ⋅ + ι(xn)x1 ⋅ ⋅ ⋅ ⋅ ⋅ xn−1.

Here Symn
A(I2) is the nth symmetric power of the ideal I2, and ι denotes

the inclusion of the ideal I2 into A, regarded as an A-module morphism
ι ∶ I2 → A. See the discussion immediately preceding Theorem 3.4.1 for
some intuition behind the morphism τ I2n . See also section 2.4 for discussion
of the ideal I2, including a universal property which it enjoys: it is the
“universal F2-point-detecting ideal,” meaning it is the largest ideal of A
which is in the kernel of every ring homomorphism A→ F2.

Suppose A is Noetherian. Then, in the particular case n = 2, the kernel
ker τ I22 coincides with the delta-invariant of the ideal I2, which has enjoyed
some attention in commutative algebra: see for example Micali-Roby in [20],
and Simis-Vasconcelos in [31]. The delta-invariant δ(I) is known (see [3])
to agree with the second Andre-Quillen homology group H2(A,A/I;A/I)
of A/I regarded as an A-algebra, with coefficients in A/I.

Finitely generated ideals I whose delta-invariant vanishes are called
syzygetic in commutative algebra. We have Corollary 3.4.3: if A is a
Noetherian integral domain of characteristic zero, then H0

fl(M2−buds
fmA ;ω ⊗

ω) vanishes if and only if the universal F2-point-detecting ideal of A is
syzygetic.

If A is a Cohen-Macaulay integral domain of characteristic zero, then
Theorem 3.4.4 shows that H0

fl(M2−buds
fmA ;ω⊗n) is trivial for all n ≠ 0.

The EFM spectral sequence: In Theorem 5.2.1, we construct a spectral
sequence which converges to H∗

fl(M2−buds
fmA ;ω⊗∗). Its E1-term is a tensor

product of H∗

fl(M2−buds
fmZ ;ω⊗∗) and symmetric powers of a certain module

of twisted Kähler differentials in the sense of [11]. Because this spectral
sequence allows us to pass from the cohomology of the moduli of formal
groups (i.e., formal Z-modules) to the cohomology of the moduli of formal
groups equipped with a larger ring (namely, A) of formal multiplications,
we call it the “extension of of formal multiplications spectral sequence,” or
“EFM spectral sequence” for short.

Cohomology of certain twists: Assume that A is a torsion-free commuta-
tive Noetherian ring. Using the EFM spectral sequence, in Theorem 5.2.2
we calculate the flat cohomology in all degrees with coefficients in the first
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three tensor powers of ω:

H∗

fl(M2−buds
fmA ;ω⊗n) ≅ 0 if n < 0,

Hs
fl(M2−buds

fmA ;O) ≅ { A if s = 0
0 if s ≠ 0,

Hs
fl(M2−buds

fmA ;ω) ≅ { A/I2 if s = 1
0 if s ≠ 1,

Hs
fl(M2−buds

fmA ;ω⊗2) ≅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ(I2) if s = 0
A/I2

2 if s = 1
A/I2 if s = 2
0 otherwise,

Consequently we get Corollary 5.2.3: H1
fl(M2−buds

fmA ;ω) is a finite abelian

group of order equal to 2N1 , where N1 is the number of F2-points of SpecA,
i.e., the logarithmic derivative of the 2-local zeta-function Z(SpecA, t) of
the affine scheme SpecA, evaluated at t = 0. See Remark 2.4.3 for a very
brief discussion of the local zeta-function of an affine variety.

The local zeta-function is, when evaluated at t = p−s, an Euler factor
in the Hasse-Weil zeta-function of a variety. The point here is that, even
when restricting the scope of our calculations to the Artin stack of formal
A-module 2-buds, we still recover some zeta-function-theoretic information
about A, not only for number rings A (as Ravenel remarked about in [26]),
but for characteristic zero integral domains quite generally.

Some generalization to the number of k-points of SpecA for larger fi-
nite fields k is possible, but requires calculations of the flat cohomology of
Mn−buds

fmA for n > 2, or the flat cohomology of MfmA. We have some pre-
liminary results in this direction, but we regard them as beyond the scope
of this already-too-long paper.

Comparison to stable homotopy: The EFM spectral sequence calculates
H∗

fl(M2−buds
fmA ;ω⊗∗) in such a way that, along the way, it also calculates the

homomorphism

H∗

fl(M2−buds
fmZ ;ω⊗∗)→H∗

fl(M2−buds
fmA ;ω⊗∗)(1.1)

induced by the map of Artin stacks M2−buds
fmA → M2−buds

fmZ classifying the
underlying formal group law 2-bud of the universal formal A-module 2-bud.
There is also a stack map MfmZ →M2−buds

fmZ classifying the underlying 2-
bud of the universal formal group law. The flat cohomology of MfmZ is
the input for the Adams-Novikov spectral sequence converging to the stable
homotopy groups of spheres. In section 5.2 we calculate that the element
η in H1

fl(MfmZ;ω) which yields the generator of the first stable homotopy

group Z/2Z ∈ πst1 (S0) is the image, under the map

H1
fl(M2−buds

fmZ ;ω)→H1
fl(MfmZ;ω),

of a unique element H1
fl(M2−buds

fmZ ;ω). The image of this element in

H1
fl(M2−buds

fmA ;ω) is anA-module generator. TheA-moduleH1
fl(M2−buds

fmA ;ω)
has order equal to 2N1 , as already explained. In this sense, the same el-
ement in the flat cohomology of MfmZ which is responsible for the first
stable homotopy group of spheres is also responsible for the first coefficient
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in the 2-local zeta function for any torsion-free commutative Noetherian
ring.

The author of this paper is an algebraic topologist, but is optimistic that this
paper may be interesting to readers from various mathematical backgrounds. I
have made an effort to write this paper so that it will be readable by researchers in
other subjects. However, in computational algebraic topology, there is a tradition
of engaging in detailed and meticulous spectral sequence calculations, and to some
extent that tradition is reflected in the second half of this paper. I apologize to
readers who do not care for spectral sequence calculations, and I am grateful for
their patience with section 4 and section 5, and with the length of this paper.

Conventions 1.1.1.

● We often deal with graded rings in this paper, but we will always set up
the gradings on the classifying rings LA and on LAB so that all elements
are in even degrees. Consequently the Koszul graded-commutativity sign
relation does not occur in our discussions of the structure of LA and LAB.
We often use the phrase “commutative graded ring” rather than “graded-
commutative” to emphasize that the graded ring in question is assumed to
be strictly commutative, not merely commutative up to sign.

● We call a ring torsion-free when its underlying abelian group is torsion-free.

I am grateful to an anonymous referee for helpful comments on this paper.

1.2. Review of standard facts about LA and LAB. Nothing in this subsection
is new, but we think it may be helpful to the reader to have many of the basic
ideas and known results on formal modules and their classifying Hopf algebroids
collected in one place.

1.2.1. Formal modules and formal module n-buds. If A is a commutative ring and R
is a commutative A-algebra, then a (one-dimensional) formal A-module2 over R is
a formal group law F over R, together with a ring homomorphism ρ ∶ A→ End(F )
such that ρ(a) ∈ End(F ) ⊆ R[[X]] is congruent to aX modulo X2. Here End(F )
is a ring in which:

● addition is given by formal addition, i.e., the sum of f(X) and g(X) is
F (f(X), g(X)), not the ordinary componentwise addition of power series,

● and multiplication is given by composition of power series, not the usual
multiplication of power series in R[[X]].

If n is a positive integer, a formal A-module n-bud over R is a formal group law
n-bud over R, i.e., an element F (X,Y ) ∈ R[[X,Y ]]/(X,Y )n+1 which satisfies the
unitality, associativity, commutativity, and existence of inverses axioms modulo
(X,Y )n+1, together with a ring homomorphism ρ ∶ A → End(F ) such that the
endomorphism ρ(a) ∈ End(F ) ⊆ R[[X]]/(Xn+1) is congruent to aX modulo X2.

2Morally, a formal A-module F is a “formal group law with complex multiplication by A.”

This perspective was taken already by Lubin and Tate in [16], and suggests the close connection
between formal modules and abelian varieties with particular endomorphism rings. The turn of
phrase “formal group law with complex multiplication” is not as clear as might be hoped, however:
if A is the ring of integers in a totally real extension of Q, then an abelian variety with a suitable
action by A would be called an abelian variety with real multiplication, rather than complex

multiplication. Consequently we prefer to write “formal module” rather than “formal group law
with complex muliplication.” Rather than complex multiplication or real multiplication, we will
refer to the action of A on F as formal multiplication.
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In this paper we will always write End(F ) for the endomorphism ring of a formal
group law F or formal group law n-bud F . That is, even if F has the additional
structure of a formal module, by End(F ) we will mean the endomorphism ring of F
as a formal group law or formal group law n-bud, without regard to any additional
structure.

1.2.2. Hopf algebroids and stacks. This paper is largely about certain graded Hopf
algebroids, i.e., cogroupoid objects in commutative graded rings. We give only
a cursory review of the basic theory here. For more detail, we refer readers to
the standard reference for Hopf algebroids and their cohomology, Appendix 1 of
[27]. Whenever convenient, we will use the common notations for structure maps
of bialgebroids and Hopf algebroids: ηL for left unit, ηR for right unit, ∆ for
coproduct, and ε for augmentation.

Starting in section 3.4, we will make calculations of cohomology groups of Hopf
algebroids. The cohomology groups of a graded Hopf algebroid (A,Γ) with coeffi-
cients in a graded Γ-comodule M can be defined in two (isomorphic) ways:

● as the right derived functors Cotors,tΓ (A,M) = CotorsΓ(A,ΣtM) of the
cotensor product A ◻Γ − ∶ gr Comod(Γ)→ Ab applied to M ,

● or as the relative right derived functors Exts,t
(A,Γ)

(A,M) = Exts
(A,Γ)

(A,ΣtM)
of homgr Comod(Γ)(A,−) ∶ gr Comod(Γ) → Ab applied to M , relative to the
allowable class generated by the comodules tensored up from A. This is
a relative Ext-group, in the sense of relative homological algebra, as in
Chapter IX of [17],

● A third description of the cohomology of (A,Γ) with coefficients in M is
available whenever the unit maps ηL, ηR of the Hopf algebroid are smooth
(respectively, formally smooth). In that case, the stackification X of the
groupoid scheme (SpecA,Spec Γ) is an Artin (respectively, formally Artin)
stack in the fpqc topology. Its category of quasicoherent modules is equiv-
alent to the category of Γ-comodules. Under this equivalence, the Hopf
algebroid cohomology group CotorsΓ(A,M) is isomorphic to the flat stack

cohomology group Hs
fl(X ; M̃), where M̃ is the quasicoherent module as-

sociated to the comodule M . These facts are standard; a nice reference is
[23].

We also refer to “the moduli stack of formal A-modules” several times in this
paper. This is slightly ambiguous for the following reason: formal A-modules have
only a moduli prestack and not a moduli stack. This moduli prestack “stackifies”
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(as in [13]) to a stack which is a moduli stack for “coordinate-free” formal A-
modules3, a situation which parallels that of formal group laws and formal groups,
as in [32].

1.2.3. The Hopf algebroid (LA, LAB). Theorem 1.2.1 is the main foundational re-
sult about the Hopf algebroid (LA, LAB). It gathers together many results proven
in chapter 21 of [8], although parts of the theorem are older than Hazewinkel’s
book; for example, the computation of the ring LA, when A is a field or the ring of
integers in a nonarchimedean local field, is due to Drinfeld in [5].

Theorem 1.2.1. Let A be a commutative ring.

● Then there exist commutative A-algebras LA and LAB having the following
properties:

– For any commutative A-algebra R, there exists a bijection, natural in
R, between the set of A-algebra homomorphisms LA → R and the set
of formal A-modules over R.

– For any commutative A-algebra R, there exists a bijection, natural in
R, between the set of A-algebra homomorphisms LAB → R and the set
of strict4 isomorphisms of formal A-modules over R.

● The natural maps of sets between the set of formal A-modules over R and
the set of strict isomorphisms of formal A-modules over R (sending a strict
isomorphism to its domain or codomain; or sending a formal module to
its identity strict isomorphism; or composing two strict isomorphisms; or
sending a strict isomorphism to its inverse) are co-represented by maps
of A-algebras between LA and LAB. Consequently (LA, LAB) is a Hopf
algebroid co-representing the functor sending a commutative A-algebra R
to its groupoid of formal A-modules and their strict isomorphisms.

● If n is a positive integer, then the functor from commutative A-algebras to
groupoids which sends a commutative A-algebra R to the groupoid of formal
A-module n-buds over R and strict isomorphisms is also co-representable

3Here is a bit of detail about what a “coordinate-free” formal module is. These details are
routine, not important for the rest of this paper, and can be safely skipped by the reader.

It is classical that a formal group law over R is a power series F (X,Y ) ∈ R[[X,Y ]] satisfying

associativity, commutativity, unitality, and inverse axioms, i.e., F (X,Y ) defines the structure of
a commutative group object on the affine formal scheme SpfR[[X]], with identity element 0. A

formal group is a commutative group structure on the formal affine line Â1
R with identity element

0. Consequently a formal group law is a formal group together with a choice of isomorphism

Â1
R ≅ SpfR[[X]]. Formal groups form a stackMfg , while formal group laws only form a prestack

whose stackification is equivalent to Mfg .
A similar story applies here. It is usual to say “formal A-module” to mean the power series

F (X,Y ) ∈ R[[X,Y ]] equipped with the action of A by further power series over R, as defined

in section 1.2.1. Perhaps it would better if such objects were instead called “formal A-module
laws,” since such an object determines the structure of an A-module object on the affine formal

scheme SpfR[[X]], with identity element 0. Then we could use the term “formal A-module” to

mean the structure of an A-module object on Â1
R with identity element 0, and the terminology

would mirror the standard distinction between “formal group law” and “formal group.” Using

the terms in this way, formal A-module laws form a prestack, represented by the groupoid scheme
(SpecLA,SpecLAB). The stackification of that prestack is then equivalent to the stack of formal

A-modulesMfmA. Unfortunately the weight of tradition is against this distinction in terminology

between “formal modules” and “formal module laws.”
4Recall that an isomorphism f(X) of formal groups, or of formal A-modules, is said to be

strict if f(X) ≡ X mod X2.
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by a Hopf algebroid (LAn−buds, LAn−budsB). Since the groupoid of formal A-
modules over R is the inverse limit over n of the groupoid of formal A-
module n-buds over R, we have that

(LA, LAB) ≅ (colimn→∞LAn−buds, colimn→∞LAn−budsB) .

For example, LA
≤1 ≅ A as commutative A-algebras.

The filtration of LA and LAB by LAn−buds and LAn−budsB induces a grading
on LA and on LAB, in which the indecomposable homogeneous grading
degree 2n elements in LA are the parameters for deforming (i.e., extending)
a formal A-module n-bud to a formal A-module (n+1)-bud. The summands
of LA and of LAB of odd grading degree are trivial.

● If A is a field of characteristic zero or a discrete valuation ring or a global
number ring of class number one, then we have isomorphisms of graded
A-algebras

LAn−buds ≅ A[xA1 , xA2 , xA3 , . . . , xAn ],
LAn−budsB ≅ LAn−buds[tA1 , tA2 , tA3 , . . . , tAn ], and consequently

LA ≅ A[xA1 , xA2 , xA3 , . . . ],
LAB ≅ LA[tA1 , tA2 , tA3 , . . . ],

with each xAi and each tAi homogeneous of grading degree 2i. (However, the
natural map LA → LB induced by a ring homomorphism A → B does not
necessarily send each xAi to xBi !)

The factor of 2 in the gradings in Theorem 1.2.1 is due to the graded-commutativity
sign convention in algebraic topology and the fact that LZ, with the above grad-
ing, is isomorphic to the graded ring of homotopy groups π∗(MU) of the complex
bordism spectrum MU , while LZB with the above grading is isomorphic to the
graded ring π∗(MU ∧MU) of stable co-operations in complex bordism. In fact
(LZ, LZB) ≅ (π∗(MU), π∗(MU ∧MU)) as graded Hopf algebroids. See [24] for
these ideas. In the base case A = Z, one often writes L and LB rather than LZ and
LZB.

Proposition 1.2.2 appears as Proposition 1.1 in [5].

Proposition 1.2.2. Let A be a commutative ring, let n be an integer, and let DA

denote the homogeneous ideal in LA generated by all products of elements xy with

x, y ∈ LA each homogeneous of positive degree. Let L
A

denote the quotient ring

LA/DA. The ring L
A

is graded, so we may consider its degree n summand L
A

n

for various integers n. The ring LA is concentrated in even degrees, so L
A

is as

well. If n ≥ 2, then L
A

2n−2 is isomorphic to the A-module generated by symbols γ
and {ca ∶ a ∈ A}, that is, one generator ca for each element a of A along with one
additional generator γ, modulo the relations:

(an − a)γ = ν(n)ca for all a ∈ A(1.2)

ca+b − ca − cb = γCn(a, b) for all a, b ∈ A(1.3)

acb + bnca = cab for all a, b ∈ A,(1.4)

where:
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● ν(n) is defined to be the integer 1 if n is not a prime power, while ν(n) = p
if n is a power of a prime number p,

● and where Cn(x, y) is the polynomial (x+y)n−xn
−yn

ν(n)
∈ Z[x, y].

We will call this Drinfeld’s presentation for L
A

2n−2.

The grading degrees in Proposition 1.2.2 are twice what they are in Drinfeld’s
statement of the result in [5], for the sake of compatibility with the grading con-
ventions in algebraic topology.

1.3. Change of A. Proposition 1.3.1 is a standard tool in Hopf algebroids (see
A1.3.12 of [27]), and we omit the proof.

Proposition 1.3.1. Let (R,Γ) be a commutative bialgebroid over a commutative
ring A, and let S be a right Γ-comodule algebra, such that the following diagram
commutes:

(1.5) R
ηR //

f

��

Γ

f⊗RidΓ

��
S

ψ // S ⊗R Γ

where f is the R-algebra structure map R
fÐ→ S. Then we have a bialgebroid

(S,S ⊗R Γ), with right unit S → S ⊗R Γ equal to the comodule structure map ψ on
S. The map

(1.6) (R,Γ)→ (S,S ⊗R Γ),
with components f and ψ, is a morphism of bialgebroids.

If (R,Γ) is a Hopf algebroid (respectively, graded Hopf algebroid), then so is
(S,S ⊗R Γ), and (1.6) is a map of Hopf algebroids (respectively, graded Hopf alge-
broids).

If, furthermore, the following conditions are also satisfied:

● (R,Γ) is a graded Hopf algebroid which is connected (i.e., the grading degree
zero summand Γ0 of Γ is exactly the image of ηL ∶ R → Γ, equivalently
ηR ∶ R → Γ), and

● S is a graded R-module concentrated in degree zero, and
● N is a graded left S ⊗R Γ-comodule which is flat as an S-module, and
● M is a graded right Γ-comodule,

then we have an isomorphism

Exts,t
(R,Γ)

(M,N) ≅ Exts,t
(S,S⊗RΓ)

(S ⊗RM,N)

for all nonnegative integers s and all integers t.

Proposition 1.3.2 appeared originally in the unpublished doctoral thesis [21] of
A. Pearlman:

Proposition 1.3.2. Let f ∶ A → A′ be a homomorphism of commutative rings.

Then LA
′

admits a canonical LAB-comodule structure satisfying the conditions of
Proposition 1.3.1. Consequently we have an isomorphism of graded Hopf algebroids

(LA
′

, LA
′

B) ≅ (LA
′

, LA
′

⊗LA LAB),
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and an isomorphism in cohomology

Cotors,t
LAB

(M,N) ≅ Cotors,t
LA′B

(M ⊗LA LA
′

,N)

for all nonnegative integers s, all integers t, any graded right LAB-comodule M ,

and any graded LA
′

B-comodule N which is flat as a LA
′

-module.

2. Generalities on LA and LAB.

2.1. Colimits.

Proposition 2.1.1. Let L,LB be the functors

L ∶ Comm Rings→ Comm Rings

L(A) = LA

LB ∶ Comm Rings→ Comm Rings

LB(A) = LAB.
Then L and LB each commute with filtered colimits, and L and LB each commute
with coequalizers.

Proof. Let D be a small category. Suppose that either D is filtered or D is the
category indexing a parallel pair, i.e., the Kronecker quiver

● //
// ●.

Let G ∶ D → Comm Rings be a functor, let R be a commutative ring, and suppose
we are given a cone L○G→ R. Then R has the natural structure of a commutative
colimG-algebra, since the grading degree zero subring of each L(G(d)) is isomorphic
to the ring G(d) itself. Since Z is initial in commutative rings, there is a unique
cocone Z→ G and hence a canonical cocone LZ → L○G. Hence the cone L○G→ R
describes a choice of formal group law F over the commutative colimG-algebra
R, together with a choice of ring map ρd ∶ G(d) → End(F ) for each d ∈ ob D,
compatible with the morphisms in D, and such that ρd(r)(X) ≡ rX modulo (X2) ⊆
(colimG)[[X]] for all r ∈ G(d).

The colimit colimG here is computed in commutative rings. However, the ring
End(F ) is typically not commutative, so the universal property of colimG does
not automatically yield a ring map colimG → End(F ). We need one extra step
before we get such a ring map: we observe that the image im ρd of each ρd is a
commutative subring of End(F ), so the union of the family of subrings ∪d∈ob D im ρd
is a commutative subring of End(F ) since D is either filtered or is the category
indexing parallel pairs5. Hence we have a cone G → ∪d∈ob D im ρd in the category
of commutative rings, hence a canonical map ρ ∶ colimG→ ∪d∈ob D im ρd such that
ρ(r)(X) ≡ rX modulo X2 for all r ∈ colimG, hence F is a formal colimG-module
over R. Clearly if we began instead with a formal colimG-module over R, by neglect
of structure we get a cone L ○G→ R, and the two operations (sending such a cone
to its colimG-module, and sending the colimG-module to its cone) are mutually
inverse. So colim(L ○G) ≅ L(colimG).

5This is the only part of the argument that uses the assumption that D is either filtered or

the Kronecker quiver. The argument fails if D is only assumed to be an arbitrary small category.

As far as I know there is no reason to believe that the conclusion of Proposition 2.1.1 holds for
coproducts, precisely because of the distinction between coproducts in commutative rings and

coproducts in associative rings.
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For LB: we have already seen in Proposition 1.3.2 that LB is naturally equivalent
to the functor L⊗LZ LZB. Since base change commutes with arbitrary colimits of
commutative rings, the fact that L commutes with filtered colimits and coequalizers
implies the same for LB. �

Remark 2.1.2. Proposition 2.1.1 provides, at least in principle, a means of com-
puting LA and LAB for all commutative rings A: first, represent A as the coequal-
izer of a pair of maps

(2.7) Z[G] Z[R]oo
oo

where G is a set of generators and R a set of relations, and Z[G],Z[R] are the free
commutative algebras generated by the sets G and R, respectively. Then LA is just
the coequalizer, in commutative rings, of the two resulting maps LZ[R] → LZ[G].

Consequently, if one can compute LA for polynomial rings A, then one can (at
least in principle) compute LA for all commutative rings A. Unfortunately, the
computation of LA for polynomial rings A is quite difficult, and since the functor
L does not commute with coproducts, it is not as simple as computing LZ[x] and
then taking an n-fold tensor power to get LZ[x1,...,xn].

2.2. Localization. In the proof of Theorem 21.3.5 of Hazewinkel’s excellent book
[8], also appearing in the second edition [9], one finds the following statement:

“By the very definition of LA (as the solution of a certain universal
problem) we have that (LA)p = LAp

for all prime ideals p of A.”

It is true that (LA)p is isomorphic to LAp
. However, we prefer to give a few more

lines of proof, since the universal properties of these rings do not obviously imply
that every formal A-module over a commutative Ap-algebra extends to a formal
Ap-module, as the endomorphism ring End(F ) of a formal group law defined over
a ring R is typically not an R-algebra. This is clear from the famous example of
the endomorphism ring of a height n formal group law over Fpn being the maximal
order in the invariant 1/n central division algebra over Qp, which is certainly not
an Fpn -algebra. The claimed isomorphism also does not follow from Proposition
2.1.1, the fact that A ↦ LA commutes with coequalizers and filtered colimits,
since although localizations of modules can be defined as colimits in that category
of modules, a localization of a commutative ring is not usually expressible as a
colimit in the category of commutative rings. The morphisms in the diagram whose
colimit computes the localization of the underlying module typically fail to be ring
homomorphisms.

However, suppose that r is a unit in a commutative A-algebra R, and suppose
that F is a formal A-module over R. Then the power series ρ(r)(X) ∈ R[[X]]
admits a (unique) composition inverse, by the tangent condition ρ(r)(X) ≡ rX
mod X2 on the formal group law. Consequently, if S is a set of non-zero-divisors
in A, and if we write G for the universal formal A-module base-changed to LA ⊗A
A[S−1], then the formal A-multiplication map ρ ∶ A→ End(G) admits a unique ex-
tension to a ring homomorphism A[S−1]→ End(G), which furthermore satisfies the
tangent condition. Hence G is in fact a formal A[S−1]-module. Consequently every
formal A-module over a commutative A[S−1]-algebra admits a unique compatible
formal A[S−1]-multiplication. From here it is routine to see how Hazewinkel’s ar-

gument establishes the isomorphism (LA)[S−1] ≅ LA[S−1
], and consequently the

theorem:
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Theorem 2.2.1. Let A be a commutative ring and let S be a multiplicatively closed

subset of A. Then the homomorphism of graded rings LA[S−1] → LA[S−1
] is an

isomorphism. Even better, the homomorphism of graded Hopf algebroids

(LA[S−1], LAB[S−1])→ (LA[S−1
], LA[S−1

]B)
is an isomorphism of Hopf algebroids.

Corollary 2.2.2. Let A be a commutative ring and let S be a multiplicatively
closed subset of A. Then, for all graded left LA[S−1]-comodules M , we have an
isomorphism

(Cotors,t
LAB

(LA,M)) [S−1] ≅ Cotors,t
LA[S−1

]B
(LA[S−1

],M)
for all nonnegative integers s and all integers t.

2.3. Finiteness, separation, and completion properties.

Lemma 2.3.1. Let A be a commutative ring, and let R be a commutative graded
A-algebra which is connective, i.e., the degree n grading summand Rn is trivial for
all n < 0. Suppose that, for all integers n, the A-module Rn/Dn is finitely generated,
where Dn is the sub-A-module of Rn generated by all elements of the form xy where
x, y are homogeneous elements of R of grading degree < n.

Then, for all integers n, Rn is a finitely generated A-module.

Proof. Routine. �

Proposition 2.3.2. Let A be a commutative ring, and suppose that A is finitely
generated as a commutative ring. Then, for each integer m, the degree m summand
LAm of the classifying ring LA of formal A-modules is a finitely generated A-module.

Proof. Suppose that A is generated, as a commutative ring, by a finite set of gen-

erators x1, . . . , xn. Using Drinfeld’s presentation for L
A

2m−2, the Drinfeld relations

(1.3) and (1.4) yield that L
A

2m−2 is generated, as an A-module, by the n+1 elements
γ, cx1 , . . . , cxn . Now Lemma 2.3.1 implies that LAm is a finitely generated A-module
for all integers m. �

In Proposition 2.3.2 it is important that LA is typically not a finitely-generated
A-module, nor even finitely generated as an A-algebra; rather, the summand in
each individual degree is a finitely generated A-module.

Corollary 2.3.3. Let A be a commutative ring, and suppose that A is finitely
generated as a commutative ring. Let I be a maximal ideal of A, and let AI denote
A localized at I, i.e., A with all elements outside of I inverted. Then, for each
integer m, the grading degree m summand LAI

m of the classifying ring LAI of formal
AI-modules is a finitely-generated, I-adically separated AI-module.

Proof. By Propositions 2.2.1 and 2.3.2, (LAm)I ≅ LAI
m is a finitely generated AI -

module for all integers m. The ring AI is Noetherian and local, so the Krull
intersection theorem (classical; see Corollary 10.20 in [2]) implies that every finitely
generated AI -module is I-adically separated. �

Proposition 2.3.4. Let A be a local commutative ring with maximal ideal m.
Suppose that m can be generated by κ elements, where κ is some cardinal number.

Then, for each positive integer n, the A-module L
A

2n−2 can be generated by:
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● 1+κ elements, if the residue field A/m is isomorphic to a finite field Fq and
n is a power of q,

● and 1 element (i.e., L
A

2n−2 is a cyclic A-module) otherwise.

Proof. For this theorem we use Drinfeld’s presentation for L
A

2n−2. Let p denote the
characteristic of A/m. (We allow p = 0 as a possibility.) There are three cases to
consider:

● If n is not a power of p: Then ν(n) is not divisible by p, so ν(n) ∈ (A/m)×,
so ν(n) is a unit in A since A is local. So we can solve relation (1.2) to get

ca =
γ

ν(n)(a
n − a)

for all a ∈ A. Hence L
A

2n−2 is generated by γ.
● If n = pt and either A/m is infinite or A/m has ps elements and s ∤ t:

Then there exists some element a ∈ A/m such that ap
t ≠ a. Hence a lifts

to an element ã ∈ A such that ãp
t − ã is not in the maximal ideal in A.

Consequently ãp
t − ã ∈ A× and hence we can solve relation (1.2) to get

γ = pcã
ãpt − ã .

generated by ca. We may also solve (1.4) to get

cb =
bp

t − b
ãpt − ã cã.

Hence cã generates L
A

2n−2 as an A-module.
● If n = pt and A/m has ps elements and s ∣ t: This first half of this

argument was inspired by Hazewinkel’s Proposition 21.3.1 in [8]. Let M

denote the A-submodule of L
A

2n−2 generated by γ and by all the elements
cm with m ∈ m. Solving relation (1.4), we get

(2.8) (ap
t

− a)cm = (mpt −m)ca
for all a,m ∈ A. If m ∈ m, then mpt−1 −1 ∉ m, hence mpt−1 −1 is a unit since
A is local. Hence

(2.9)
ap

t − a
mpt−1 − 1

cm =mca

for all m ∈ m and all a ∈ A with a ∉ m. Hence L
A

2n−2/M is an A/m-vector
space.

Now s divides t, and hence xp
t = x for all x ∈ A/m, so relation (1.4)

becomes cab = acb + bca in L
A

2n−2/M . Similarly, since γ ∈M , (1.3) becomes

ca+b = ca + cb in L
A

2n−2/M . Hence the map

c ∶ A/m→ L
A

2n−2/M
a↦ ca

is a Z-linear derivation. But the relevant module of Kähler differentials
Ω1

(A/m)/Z vanishes, since A/m is a field. Hence c factors through the zero

module, i.e., c is the zero map. So ca = 0 in L
A

2n−2/M for all a ∈ A with
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a ∉ m, and ca = 0 in L
A

2n−2/M for all a ∈ m by the definition of M . So

L
A

2n−2/M is trivial, i.e., M = LA2n−2.
Now suppose we choose a set X of generators for the maximal ideal m

of A. We have already shown that M = {γ} ∪ {cm ∶ m ∈ m} is a set of A-

module generators for L
A

2n−2, but we still need to show that Q ∶= {γ}∪{cx ∶
x ∈X} ⊆ LA2n−2 is also a set of A-module generators for L

A

2n−2. By the same
argument as given two paragraphs ago, we may simplify the relations (1.2)

through (1.4) in L
A

2n−2/Q, yielding that L
A

2n−2/Q is an A/m-vector space in
which ca+b = ca + cb and acb + bca = cab.

As a consequence, if we consider any element m = ∑x∈Xmxx ∈ m, then

in the quotient A-module L
A

2n−2/Q we have

cα = ∑
x∈X

cmxx

= ∑
x∈X

(mxcx + xcmx)

= ∑
x∈X

mxcx ∈ Q.

That is, the A-submodule of L
A

2n−2 generated by Q contains all the genera-

tors of M , which we already showed to be equal to L
A

2n−2. Hence Q = LA2n−2,
as desired.

�

Corollary 2.3.5. Let A be a local commutative ring with maximal ideal m, and

suppose that m is finitely generated. Then, for each positive integer n, L
A

2n−2 is a
finitely generated A-module.

Corollary 2.3.6. Let A be a Noetherian complete local commutative ring. Then,
for each integer n, the grading degree n summand LAn of the classifying ring LA of
formal A-modules is m-adically separated and m-adically complete.

Proof. Krull’s intersection theorem implies that every finitely generated A-module
is m-adically separated, and it is elementary that every finitely generated module
over a Noetherian complete local ring with maximal ideal m is m-adically complete.

�

Lemma 2.3.7 is immediate, when R is Noetherian. The use of the lemma is when
R is not Noetherian but R0 is, e.g. R ≅MU∗ ≅ LZ.

Lemma 2.3.7. Let R be a Z-graded commutative ring which is connective, i.e.,
there exists some integer n such that Rm ≅ 0 for all m < n. Assume furthermore
that R0 is Noetherian and that Ri is a finitely generated R0-module for each integer
i.

Then, for any Z-graded finitely generated R-module M and any ideal I of R
generated by elements in R0, the natural map

R̂I ⊗RM → M̂I

is an isomorphism of Z-graded R̂I-modules.
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Proof. Since M is finitely generated as an R-module, M i is finitely generated as an
R0-module for any integer i, and since M i is a finitely generated module over the
Noetherian ring R0, the map R̂0

I ⊗R0 M i → M̂ i
I is an isomorphism for all i. �

Definition-Proposition 2.3.8. Let A be a commutative ring and let I be an ideal
in A. Let F be a formal group law defined over an A-algebra R. Equip the power
series ring R[[X]] with the I + (X)-adic filtration6, i.e., the decreasing filtration

(2.10) R[[X]] = F0 ⊇ F1 ⊇ F2 ⊇ . . .

in which Fn is the nth power of the sum of the ideals I and (X). Let cn be the
intersection of Fn with End(F ) ⊆ R[[X]]. Then

(2.11) End(F ) = c0 ⊇ c1 ⊇ c2 ⊇ . . .

is a sequence of two-sided ideals of End(F ). Furthermore, if x ∈ cm and y ∈ cn,
then xy ∈ cm+n.

We refer to the filtration (2.11) as the c-adic filtration on End(F ). We call the
resulting topology on End(F ), in which the ideals (2.11) are a neighborhood basis
of zero, the c-adic topology.

Proof. Let f(X), g(X) ∈ End(F ). It is routine to verify that

● if f(X), g(X) ∈ cn, then f + g ∈ cn,
● and if f(X) ∈ cm and g(X) ∈ cn, then fg ∈ cm+n (note that this product in

End(F ) is the composition of power series).

The special cases m = 0 and n = 0 of the latter observation establish that each cn is
a two-sided ideal of End(F ). �

Lemma 2.3.9. Let A be a Noetherian commutative ring and let I be an ideal in
A. Let R be a commutative A-algebra, and let F be a formal A-module. If R is I-
adically separated, then End(F ) is c-adically separated. If R is I-adically complete,
then End(F ) is c-adically complete.

Proof. If R is I-adically separated, then the filtration (2.10) on R[[X]] is as well,
so the intersection

⋂
n

cn = ∩n(Fn ∩End(F ))

must be zero.
Now suppose instead that R is I-adically complete, and that

(2.12) (ζ1(X), ζ2(X), . . . )

is a Cauchy sequence in the c-adic topology on End(F ). Let ζm,n denote the nth
coefficient in the power series ζm(X). For each n, the sequence ζ1,n, ζ2,n, . . . is an I-
adically Cauchy sequence in A, hence converges. Hence the limit limm ζm(X) exists
in the c-adic topology: it is merely the endomorphism of F whose nth power series
coefficient is limm ζm,n. So every c-adic Cauchy sequence in End(F ) converges, so
End(F ) is c-adically complete. �

6To avoid any potential confusion, we remind the reader that the endomorphism ring End(F )
of F is a subset of R[[X]], but the multiplication in End(F ) is given by composition, and the
addition in End(F ) is given by formal addition using F . Consequently End(F ) is not a subring

of the power series ring R[[X]].
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Lemma 2.3.10. Let A be a Noetherian commutative ring and let I be an ideal in
A. Suppose that A is separated (but not necessarily complete) in the I-adic topology.
Let R be a commutative A-algebra which is I-adically separated and complete, and
let F be a formal A-module over R. Then F is the underlying formal A-module of
exactly one formal ÂI-module. That is, the action map ρ ∶ A → End(F ) extends

uniquely to an action map ρ̃ ∶ ÂI → End(F ) making F a formal ÂI-module.

Proof. Choose an element a ∈ ÂI , and for each positive integer n, let an be the
image of a under the projection map ÂI → A/In, and let ãn be an element of
A whose reduction modulo In is an. (In other words: choose a sequence of ele-
ments (ã1, ã2, . . . ) of A converging to a in the I-adic topology.) Then the sequence

(ã1, ã2, . . . ) uniquely determines the element a ∈ ÂI , since we assumed that A is
separated in the I-adic topology.

The tangent condition on ρ (that ρ(X) ≡ X mod X2) implies that the im-
age of In under ρ is contained in the ideal cn of Definition-Proposition 2.3.8.
By Lemma 2.3.9, End(F ) is c-adically separated and complete, so the sequence
(ρ(ã1), ρ(ã2), . . . ) in End(F ) converges to a unique element in End(F ). Let ρ̃(a)
be defined to be this element. It is elementary to check that the resulting map
ρ̃ ∶ ÂI → End(F ) is a well-defined ring homomorphism and agrees with ρ when

composed with the injection A ↪ ÂI . (This map ρ̃ is, of course, the one given by
the universal property of completion, but we are giving some detail here because
End(F ) is not typically commutative and ρ does not typically have its image inside
the center of End(F ), so the situation is not exactly the textbook one encountered

in algebra.) The tangent condition for ρ̃ is similarly easy: any element a ∈ ÂI can
be approximated arbitrarily c-adically closely by an element of A, and ρ̃ satisfies
the tangent condition on elements of A since ρ̃ coincides with ρ on elements of A.

Consequently F is indeed the underlying formal A-module of a formal ÂI -
module. The fact that the ring homomorphism ρ̃ is the unique extension of ρ
to a ring map ÂI → End(F ) is as follows: any ring homomorphism ÂI → End(F )
extending ρ sends each In into cn and hence is continuous, hence is a continuous
homomorphism of abelian groups; now the universal property of the completion
implies that the extension ρ̃ is unique. �

Lemma 2.3.11. Let A be a Noetherian commutative ring and let I be an ideal
in A. Suppose that A is I-adically separated, and suppose that R is an I-adically
separated and complete A-algebra. Let F,G be formal ÂI-modules over R. Suppose
that f ∶ F → G is a strict isomorphism of the underlying formal A-modules of F
and G. Then f is also a strict isomorphism F → G of formal ÂI-modules.

Proof. Let ρF ∶ ÂI → End(F ) and ρG ∶ ÂI → End(G) denote the structure maps of

F and G as formal ÂI -modules, respectively. (The existence and uniqueness of these
structure maps follows from Lemma 2.3.10.) Then ρF (f(a)(X)) = f(ρG(a)(X))
for all a ∈ A, and we need to show that the same is true for all a ∈ ÂI . For any
a ∈ ÂI , choose a sequence of elements a1, a2, . . . in A such that limn→∞ an = a in
the I-adic topology. Then the fact that ρF and ρG are continuous (since each sends
I into c) implies that

f(ρF ( lim
n→∞

an)(X)) = f( lim
n→∞

ρF (an)(X)), and(2.13)

ρG( lim
n→∞

an)(f(X)) = lim
n→∞

ρG(an)(f(X)).(2.14)
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Now since f is a homomorphism of formal group laws, its constant coefficient is
zero, and hence f is continuous in a limited sense: whenever ξ1(X), ξ2(X), . . . is a c-
adically convergent sequence in End(F ) such that each power series
f(ξ1(X)), f(ξ2(X)), . . . is contained in End(G) ⊆ R[[X]] and c-adically conver-
gent, we get an equality limn→∞ f(ξn(X)) = f(limn→∞ ξn(X)). Consequently
(2.13) is equal to (2.14), and hence ρF (f(a)(X)) = f(ρG(a)(X)). �

Theorem 2.3.12. Let A be a commutative ring which is finitely generated as a
commutative ring. Let I be a maximal ideal of A, and suppose that A is separated7

in the I-adic topology. Then the natural maps of graded Hopf algebroids

(LA ⊗A ÂI , LAB ⊗A ÂI)→ ((LA)ˆI , (LAB)ˆI)(2.15)

→ (LÂI , LÂIB)(2.16)

are isomorphisms.

Proof. By Proposition 2.3.2, for all integers n the degree n summand LAn in the
ring LA is a finitely-generated A-module, and LAB ≅ LAB ⊗L LB ≅ LA[t1, t2, . . . ]
(by Proposition 1.3.2 and Theorem 1.2.1) is also a finitely-generated A-module
in each degree. Consequently Lemma 2.3.7 applies, since A is finitely generated
as a commutative ring and hence Noetherian, even though LA is typically not
Noetherian. So the map (2.15) is an isomorphism.

The more substantial result is that (2.16) is also an isomorphism. By Lemma
2.3.10, Lemma 2.3.11, and the universal properties of the rings involved, the map
(2.16) induces bijections

homÂI−alg
(LÂI ,R) ≅Ð→ homÂI−alg

(LA ⊗A ÂI ,R) and

homÂI−alg
(LÂIB,R) ≅Ð→ homÂI−alg

(LAB ⊗A ÂI ,R),

natural in R, for all commutative ÂI -algebras R which are I-adically separated and
complete.

Now the Yoneda lemma tells us that the ring maps LA⊗A ÂI → LÂI and LAB⊗A
ÂI → LÂIB are isomorphisms, as long as all four of these rings are actually objects
in the category of I-adically separated and complete commutative ÂI -algebras! The
graded ring LAI a finitely generated A-module in each degree by Corollary 2.3.3.
Hence the same is true of (LAI )ˆI ≅ LAI⊗AI

ÂI , hence (LAI )ˆI is I-adically separated
and I-adically complete by the same argument as in the proof of Corollary 2.3.6, and
the same is true for (LAIB)ˆI ≅ (LAI )ˆI ⊗L LB, by Proposition 1.3.2. On the other

hand, LÂI is I-adically separated and complete in each grading degree by Corollary

2.3.6, hence LÂIB ≅ LÂI ⊗L LB is as well, again by Proposition 1.3.2. �

Corollary 2.3.13. Let A be a commutative ring which is finitely generated as a
commutative ring. Let I be a maximal ideal of A, and suppose that A is separated
in the I-adic topology. Let M be a graded left LAB-comodule which is finitely-
generated as an A-module in each degree, and suppose that M is bounded-below,
i.e., there exists some integer b such that M is trivial below degree b. (For example,

7This separation condition is automatically satisfied if A is an integral domain, by Krull’s
intersection theorem.
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M = LA satisfies all these conditions on M .) Then, for all integers s, t with s ≥ 0,

we have isomorphisms of ÂI-modules

Exts,t
(LA,LAB)

(LA,M)⊗A ÂI ≅ Exts,t
(LA,LAB)

(LA, M̂I)(2.17)

≅ Exts,t
(LÂI ,LÂIB)

(LÂI , M̂I)(2.18)

Proof. Let C●

(LA,LAB)
(M) be the cobar complex8 of the Hopf algebroid (LA, LAB)

with coefficients in M . Then, since LAB is a finitely generated A-module in each
degree by Proposition 2.3.2, the same is true of LAB ⊗LA LAB ⊗LA ⋅ ⋅ ⋅ ⊗LA M =
(LAB)⊗LAn ⊗LA M . Consequently we have isomorphisms

(LAB)⊗LAn ⊗LA M̂I ≅ (LAB)⊗LAn ⊗LA M ⊗A ÂI
≅ (LAB ⊗A ÂI)

⊗
LA

⊗AÂI
n ⊗LA⊗AÂI

(M ⊗A ÂI)

≅ (LÂIB)⊗LÂI
n ⊗

LÂI
M̂I ,

which is the module of n-cochains Cn
(LÂI ,LÂIB)

(M̂I). These isomorphisms are nat-

ural, commuting with the cobar complex differentials, hence giving us isomorphism
(2.18). Meanwhile, isomorphism (2.17) follows from ÂI being a flat A-module (clas-

sical, as in Proposition 10.14 in [2]), hence tensoring with ÂI commutes with taking
cohomology of the cobar complexes. �

Corollary 2.3.14. Let A, I,M be as in Corollary 2.3.13. Let EI0M denote the
associated graded comodule of the I-adic filtration on M . Then there exists a con-
ditionally convergent spectral sequence

Es,t,u1 ≅ Cotors,t,u
LAB

(LA,EI0M)⇒ Cotors,t
LAB

(LA,M)ˆ
I

≅ Cotors,t
LÂIB

(LÂI , M̂I)(2.19)

dr ∶ Es,t,ur → Es+1,t,u+r
r .

Proof. This is the spectral sequence of the I-adic filtration on the cobar complex
of (LA, LAB) with coefficients in M . The isomorphism (2.19) is due to Corollary
2.3.13. �

See section 4.1 and section 4.2 for examples of explicit calculations with the
spectral sequence of Corollary 2.3.14.

2.4. Point-detecting ideals and the fundamental functional.

Definition 2.4.1. Let A be a commutative ring, and let k be a field. We say that
an ideal I of A detects all k-points I is in the kernel of every ring homomorphism
A→ k.

Let k be the finite field with pn elements. Then there exists a largest ideal of A
which detects all k-points: namely, the ideal generated by p and by the difference

8See Appendix 1 of [27] for the definition and basic properties of the cobar complex. All that
is necessary for us to know right now about the cobar complex is that its module of n-cochains

Cn
(LA,LAB)(M) is isomorphic to (LAB)⊗LAn ⊗LA M , and the cohomology of C●

(LA,LAB)(M) is

Ext∗,∗(LA,LAB)(L
A,M), i.e., Cotor∗,∗

LAB
(LA,M).
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ap
n − a for each a ∈ A. We will write Ipn for the largest ideal of A which detects all

k-points, so that

Ipn = (p, ap
n

− a for all a ∈ A) .
We call Ipn the universal Fpn-point-detecting ideal of A.

Proposition 2.4.2. Let A be a Noetherian9 commutative ring. Then the quotient
map A → A/Ip coincides with the universal map A →∏Fp, with the product taken
over all ring homomorphisms A → Fp. In particular, SpecA/Ip is the union of the
Fp-points of SpecA.

Proof. Elementary, but here is the argument: clearly A/Ipn has no nonzero nilpo-
tents, so Ip is reduced. Consequently, in its primary decomposition Ip = p1∩⋅ ⋅ ⋅∩pn,
each primary ideal pj is prime. The quotient map A → A/pj must factor through
A → A/Ip, so A/pj is an integral domain which is a quotient of A/Ip. In such an
integral domain, we have a(ap−1 − 1) = 0 for all a, hence ap−2 = a−1 for all nonzero
a, i.e., A/pj is a field. Hence Ip is an intersection of finitely many coprime maxi-
mal ideals, so the Chinese Remainder Theorem ensures that A/Ip is a product of
fields. �

Remark 2.4.3. The local zeta-function of an affine variety V = SpecA at some
prime number p is defined as

Z(V, t) = exp(∑
m≥1

Nm
m

tm) ,

where Nm is the number of Fpm-points of V . Proposition 2.4.2 shows that the
order of A/Ip is pN1 . An analogous statement holds for other prime powers, with
appropriate adjustments: A/Ip2 “counts” both the Fp-points and the Fp2 -points of
SpecA, for example.

Definition 2.4.4. Let n be a positive integer, and let A be a commutative ring.

Recall from Proposition 1.2.2 that L
A

2n−2 is described by Drinfeld’s presentation: it
is generated, as an A-module, by elements γ and {ca}a∈A, subject to the relations
(1.2), (1.3), and (1.4).

By the degree 2n−2 fundamental functional of A, we mean the unique A-module

homomorphism σ2n−2 ∶ L
A

2n−2 → A given by

σ2n−2(γ) = ν(n), and

σ2n−2(ca) = an − a.
Proposition 2.4.5. Let A be a commutative ring. Suppose that A has no nonzero

2-torsion. Then the degree 2 fundamental functional σ2 ∶ L
A

2 → A is injective, and
its image is the universal F2-point-detecting ideal I2 of A. Consequently we have

an isomorphism of A-modules L
A

2

≅→ I2.

Proof. It is straightforward from the definition of σ2 that its image is generated by
2 and by a2 − a for each a ∈ A, i.e., I2 = im σ2. All that needs to be checked is that
σ2 is injective.

9Without the Noetherian hypothesis, it is still true that A/Ip →∏Fp is injective, but surjectiv-

ity is not guaranteed: consider the case of the ring A = Fp[x1, x2, . . . ], which is countable (hence

A/Ip is also countable), but which has infinitely many Fp-points, hence ∏Fp is an uncountable

ring.
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Our argument for injectivity of σ2 involves the Hochschild homology of the com-
mutative ring A/2, with coefficients in a particular A/2-bimodule Ψ. To be clear,
by A/2 we mean the quotient of the ring A by its principal ideal generated by 2.
The A/2-bimodule Ψ is defined as follows:

● as a left A/2-module, Ψ is simply A/2 itself, i.e., free on one generator,
● and the right A/2-action on Ψ is given by letting a ⋅ x be the product a2x

in the ring A/2.

The cyclic bar complex (i.e., the standard resolution for calculating Hochschild
homology) with coefficients in Ψ is as follows:

0← A/2 d0←Ð A/2⊗F2 A/2 d1←Ð A/2⊗F2 A/2⊗F2 A/2 d2←Ð . . .

with

d0(a0 ⊗ a1) = (a2
1 − a1)a0, and

d1(a0 ⊗ a1 ⊗ a2) = a0a
2
1 ⊗ a2 − a0 ⊗ a1a2 + a2a0 ⊗ a1.

Let PA be the cokernel of the A-module homomorphism A → L
A

2 sending 1 to
γ. Consider the kernel kerd0 as a left A/2-module. It admits an A/2-module
homomorphism f ∶ kerd0 → PA given by f(a0 ⊗ a1) = a0ca1 . Let θ ∶ PA → A/2
be the A/2-module map given by θ(ca) = a2 − a. It is routine to check that the
resulting sequence of A/2-modules

0→ im d1 → kerd0
fÐ→ PA

θÐ→ A/2
is exact, by checking that Drinfeld relation (1.4) is precisely the relation imposed
on kerd0 by quotienting out by its submodule im d1. Consequently the Hochschild
homology group HH1(A/2; Ψ) vanishes if and only if θ is injective.

Now consider the commutative diagram with exact rows10

(2.20) kerγ //

��

A

id

��

γ // L
A

2

σ2

��

// PA //

θ

��

0

��
0 // A

2 // A // A/2 // 0.

A routine diagram chase in diagram (2.20) shows that σ2 is injective if and only if
θ is injective.

Finally, we invoke a 2007 calculation of Pirashvili, the main result of [22]: if n is
a positive power of a prime number p, B is a commutative Fp-algebra, and Φn(B)
is the ring B regarded as a B-bimodule via the free B-action on the left and via the
Frobenius-twisted B-action x ⋅ b ∶= bpx on the right, then the Hochschild homology
groups HHi(B; Φn(B)) are trivial for all i > 0. In particular, our Hochschild group
HH1(A/2; Ψ) is trivial. Hence θ is injective, hence σ2 is injective, as desired. �

Proposition 2.4.5 admits a generalization to the higher fundamental functionals
σn and the universal k-point-detecting ideals for all finite fields k. That generaliza-
tion is not used in this paper, so we do not present it here, but it can be found in
the preprint [28].

Proposition 2.4.5, and the proof we gave of it, involve the assumption that the
ring A is 2-torsion-free. The author does not know whether the conclusion of

10This is the place where we use the hypothesis that A is 2-torsion-free.
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Proposition 2.4.5 still holds even if A has nontrivial 2-torsion. Here is an amusing
class of examples:

Example 2.4.6. Let m be a positive integer, and consider the situation where the

ring A is Z/mZ. It is a nice exercise to calculate that, in the A-module L
A

2 , we have

the relation ci = (i
2
)γ for every integer i. Consequently L

A

2 ≅ A/(m
2
)A, generated by

γ. Elementary calculation then shows that L
A

2

σ2Ð→ A is an isomorphism for all m.

It does not seem urgent at present to find out whether the conclusion of Propo-
sition 2.4.5 still holds when A has nontrivial 2-torsion, since some of the later
cohomological calculations we make (e.g. the proof of Theorem 3.4.1) also require,
for other reasons, that A be torsion-free.

3. Generalities on the moduli of formal A-module 2-buds.

Now we begin to restrict our attention from formal A-modules down to only
their 2-buds, in order to facilitate explicit calculations which hold for a very large
class of rings A.

3.1. Structure of the classifying ring of formal A-module 2-buds. A formal
group law 2-bud is given by a single coefficient γ, so that F (X,Y ) ≡X + Y + γXY
mod (X,Y )3. The A-action map ρ ∶ A → End(F ) is given by ρa(X) ≡ aX + caX2

mod X3. It is classical (see [5]) that, by elementary calculation, one finds that the
relations among the elements γ and ca imposed by associativity of F , by ρab(X) =
ρa(ρb(X)), by ρa+b(X) = F (ρa(X), ρb(X)), and by F (ρa(X), ρa(Y )) = ρaF (X,Y ),
are the Drinfeld relations

(a2 − a)γ = 2ca(3.21)

ca+b − ca − cb = abγ(3.22)

acb + b2ca = cab.(3.23)

Definition 3.1.1. Let DrA denote the A-module generated by the symbols γ and
ca for each a ∈ A, subject to the relations (3.21) through (3.23).

That is, DrA ≅ LA2 . It follows easily11 that the classifying ring LA2−buds of formal

A-module 2-buds is the symmetric A-algebra SymA(DrA).
Remark 3.1.2. Among the elementary consequences of (3.22) and (3.23), we have

that c0 = 0 = c1, and that c−1 = γ. Consequently a smaller presentation for DrA is
possible: DrA is the A-module with a generator ca for each a ∈ A, subject to the
relations (3.21) through (3.23) but with c−1 written in place of γ throughout. This
is convenient for the sake of understanding the moduli of formal A-module 2-buds,

11The same claim cannot safely be made for formal module n-buds for n > 2. Consider the

situation in the case of 3-buds: we have a parameter γ2, and a parameter ca,2 for each a ∈ A,

which jointly determine the quadratic terms in the 3-bud. We also have a deformation parameter
γ3, and a deformation parameter ca,3 for each a ∈ A, for the cubic terms in the 3-bud. The

A-module L
A
3 generated by γ3 and ca,3, related by the cubic Drinfeld relations, is not necessarily

(i.e., not for all A) a projective A-module. What happens as a consequence is that the classifying

ring LA
3−buds of formal A-module 3-buds is not necessarily a symmetric A-algebra on L

A
2 ⊕ L

A
3 .

We have made some calculations of the ring LA
3−buds as a function of A, but those calculations do

not fit within the scope of this paper.
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but the coincidence c−1 = γ is specific to the case of 2-buds. Consequently it is
easier to recognize patterns that hold for formal A-module n-buds for n > 2 (and

for formal A-modules simpliciter) if we use the non-minimal presentation for DrA,
rather than replacing γ with c−1.

3.2. Structure of the moduli stack of formal A-module 2-buds. It follows
from section 3.1 and from the structure theory in section 2 that the classifying Hopf
algebroid (LA2−buds, LA2−budsB) of formal A-module 2-buds has the following simple
form:

LA2−buds ≅ SymA(DrA),
LA2−budsB ≅ SymA(DrA)[t],(3.24)

ηL(x) = x for all x ∈ LA2−buds,
ηR(γ) = γ + 2t,(3.25)

ηR(ca) = ca + (a2 − a)t for all a ∈ A,(3.26)

∆(t) = t⊗ 1 + 1⊗ t,(3.27)

ε(t) = 0.(3.28)

For any formal A-module 2-bud F , the truncated power series f(X) ≡ X + tX2

modulo X3 is a strict isomorphism from F to some formal A-module 2-bud G. The
parameter t in (3.24) is the parameter t in the strict isomorphism f(X) =X + tX2

of formal A-module 2-buds. If F (X,Y ) ≡ X + Y + γXY modulo (X,Y )3, then f
is a strict isomorphism from G to G(X,Y ) ≡X + Y + (γ + 2t)XY modulo (X,Y )3.
This yields (3.25).

Similarly, if the action map ρF ∶ A → End(F ) of the formal A-module 2-bud
F is given by ρF (a)(X) = aX + caX2 modulo X3, then the codomain of the strict
isomorphism f with domain F has A-action map ρG(a)(X) = aX+(ca+(a2−a)t)X2

modulo X3. This yields (3.26).
The formulas (3.27) and (3.28) arise from the observation that the composite of

strict isomorphisms f(X) ≡X + aX2 modulo X3 and g(X) ≡X + a′X2 modulo X3

is (f ○ g)(X) ≡X + (a + a′)X2 modulo X3.
Smoothness of the ring map ηL implies that the stackification of the groupoid

scheme represented by (SpecLA2−buds,SpecLA2−budsB) is an Artin stack. We write

M2−buds
fmA for the resulting moduli stack of formal A-module 2-buds. To be clear,

the groupoid of R-points of M2−buds
fmA is the groupoid of A-module structures, with

identity element 0, on the first-order neighborhood of SpecR in A1
R. Such an

A-module structure is slightly less data than a formal A-module 2-bud. To go
from the A-module structure to a formal A-module 2-bud, one needs to specify an
isomorphism of SpecR[X]/X2 with the first-order neighborhood of SpecR in A1

R.
The situation is entirely analogous to that described in section 1.2.1.

As described in section 1.2.2, it follows from standard arguments that the flat co-
homology groupHs

fl(M2−buds
fmA ;ω⊗t) is isomorphic to Cotors,2t

LA
2−buds

B
(LA2−buds, LA2−buds).

Here ω is the line bundle of differentials, which coincides with the quasicoherent
O
M

2−buds
fmA

-module corresponding to the graded LAB-comodule Σ2LA. Since LA2−buds

and LA2−budsB are trivial in odd degrees, the Cotor-groups

Cotors,t
LA

2−buds
B
(LA2−buds, LA2−buds) are trivial in odd internal degrees t. Hence each
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of the nontrivial Cotor-groups Cotors,t
LA

2−buds
B
(LA2−buds, LA2−buds) agrees with a flat

cohomology group of M2−buds
fmA . Consequently, throughout the rest of this paper,

we will often state our results in terms of flat cohomology of the Artin stack
M2−buds

fmA , but the proofs will be carried out in terms of Cotor over the Hopf al-

gebroid (LA2−buds, LA2−budsB). The reader who strongly prefers one perspective over
the other can translate all statements about flat cohomology into statements about
Cotor, or conversely.

Lemma 3.2.1. Suppose 2 is a unit in the commutative ring A. Then the LA2−budsB-
comodule LA2−buds is a summand of the LA2−budsB-comodule LA2−budsB.

Proof. By the assumption 1
2
∈ A, the right unit map

ηR ∶ LA2−buds → LA2−budsB = LA2−buds[t]

admits the retraction given by the LA2−buds-algebra map

r ∶ LA2−budsB → LA2−buds

t↦ d

2
.

It is elementary to verify that r is a left LA2−budsB-comodule algebra homomorphism,
and that r○ηR = idLA

2−buds
, i.e., LA2−buds is a LA2−budsB-comodule retract of LA2−budsB.

�

Here is a simple cohomological application of Theorem 2.2.1:

Proposition 3.2.2. Let A be a commutative ring. Then, for all s > 0 and all t,
the abelian group Hs

fl(M2−buds
fmA ;ω⊗t) is 2-power-torsion.

Proof. By Theorem 2.2.1, we have

Cotors,t
LA

2−buds
B
(LA2−buds, LA2−buds)[2−1] = Cotors,t

L
A[2−1

]

2−buds
B
(LA[2−1

]

2−buds, L
A[2−1

]

2−buds).(3.29)

By Lemma 3.2.1, L
A[2−1

]

2−buds is a relatively injective L
A[2−1

]

2−budsB-comodule (see appendix
1 of [27] for basic properties of relatively injective comodules). Consequently the

right-hand side of (3.29) is trivial for s > 0. Hence Cotors,t
LA

2−buds
B
(LA2−buds, LA2−buds)

is killed by inverting 2 for s > 0, i.e., Cotors,t
LA

2−buds
B
(LA2−buds, LA2−buds) is 2-power-

torsion for s > 0. �

3.3. H∗

fl(M2−buds
fmA ;ω⊗∗) as the cohomology of a Ga-action. Here is a slightly

more conceptual way to phrase the presentation for the Hopf algebroid given by
(3.24) through (3.28). Given a Hopf algebroid (B,Γ) and a left Γ-comodule algebra
C, one can form the Hopf algebroid (C,Γ ⊗B C) by the construction given in
Proposition 1.3.1. We will refer to (C,Γ⊗B C) as the one-sided base-change Hopf
algebroid of (B,Γ) along B → C. The left Γ-coaction on C is necessary in order
to define the right unit map on the one-sided base change Hopf algebroid, and
making different choices of left Γ-coaction on C will yield different Hopf algebroids
(C,Γ ⊗B C). Specializing to the case of formal A-module 2-buds: consider the
situation where the Hopf algebroid (B,Γ) is the Hopf Z-algebra representing the
additive group scheme Ga over A. Concretely, (B,Γ) is the Hopf algebra (A,A[t]),
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with t primitive. We have a left Γ-coaction on the ring LA2−buds given by the A-
algebra map

ψ ∶ LA2−buds → A[t]⊗A LA2−buds(3.30)

d↦ 1⊗ d + 2t⊗ 1

ca ↦ 1⊗ ca + (a2 − a)t⊗ 1.

The map ψ is simply the ring map classifying the underlying formal A-module of
the target of the universal strict isomorphism of formal A-modules. From (3.24)
through (3.28), we see that (LA2−buds, LA2−budsB) is simply the one-sided base change
of (A,A[t]) along the map ψ.

One useful consequence, which we use in computations throughout the rest of this
paper, is an isomorphism in Cotor: by the change-of-rings isomorphism of Proposi-
tion 1.3.1, the identification of (LA2−buds, LA2−budsB) as a one-sided base change Hopf
algebroid yields isomorphisms of bigraded A-modules

Hs
fl(M2−buds

fmA ;ω⊗t) ≅ Cotors,2t
LA

2−buds
B
(LA2−buds, LA2−buds)(3.31)

≅ Cotors,2t
A[t]

(A,LA2−buds).(3.32)

3.4. Calculation of H0
fl(M2−buds

fmA ;ω⊗∗). Now we begin to make cohomological

calculations. The global sections (i.e., H0) of the line bundles ω⊗∗ over M2−buds
fmA

are already nontrivial and interesting. The graded abelian group

Γ(ω⊗∗,M2−buds
fmA ) ≅H0

fl(M2−buds
fmA ;ω⊗∗) ≅ Cotor0,2∗

LA
2−buds

B
(LA2−buds, LA2−buds)

is simply the cotensor product LA2−buds ◻LA
2−buds

B LA2−buds, i.e., the kernel of the

difference

ηR − ηL ∶ LA2−buds → LA2−budsB

of the unit maps on the Hopf algebroid (LA2−buds, LA2−budsB). Let A be a commuta-
tive ring of characteristic zero. It follows from the presentation for (LA2−buds, LA2−budsB)
given in (3.24) through (3.28) that we have a commutative square

LA2−buds
ηR−ηL //

≅

��

LA2−budsB

≅

��
SymA(DrA) δ // SymA(DrA)[t]

where δ is the A-module homomorphism which is given as follows:

● On the zeroth symmetric power Sym0
A(DrA) = A of DrA, δ is the zero map.

● On the first symmetric power Sym1
A(DrA) = DrA of DrA, δ is the funda-

mental functional σ2, defined in Definition 2.4.4,

σ2 ∶ DrA → A = A{t} ⊆ Sym0
A(DrA)[t] ⊆ SymA(DrA)[t].

That is, δ(γ) = 2t and δ(ca) = (a2 − a)t.
● On the second symmetric power Sym2

A(DrA) of DrA, δ is given by

δ(xy) = ((σ2x)y + x(σ2y)) t + (σ2x)(σ2y)t2,(3.33)

where x, y ∈ DrA.
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● On the third symmetric power Sym3
A(DrA) of DrA, δ is given by

δ(xyz) = ((σ2x)yz + x(σ2y)z + xy(σ2z)) t(3.34)

+ ((σ2x)(σ2y)z + (σ2x)y(σ2z) + x(σ2y)(σ2z)) t2

+ (σ2x)(σ2y)(σ2z)t3,

where x, y, z ∈ DrA.
● More generally12, on the nth symmetric power Symn

A(DrA) of DrA, δ is
given by

δ(x1 . . . xn) =
n

∑
i=1

∑
U∈Pi({1,...,n})

σU2 (x1, . . . , xn)ti,(3.35)

where Pi({1, . . . , n}) is the set of i-element subsets of {1, . . . , n}, and where
σU2 (x1, . . . , xn) is the product of the elements x1 . . . xn with σ2 applied to
each xj such that j ∈ U .

Hence our task is to calculate the kernel of δ. We accomplish this in Theorem
3.4.1. First, we need to define a certain function τn. Suppose that I is an ideal in
a commutative ring A. Write ι ∶ I → A for the inclusion map. For each positive
integer n, we can consider the nth symmetric power Symn

A(I). Given an element
x1 ⋅ x2 ⋅ ⋅ ⋅ ⋅ ⋅ xn of Symn

A(I), we could take one of the elements xj ∈ I and regard
it as an element of A, with the idea that x1 ⋅ . . . xj−1 ⋅ ι(xj)xj+1 ⋅ . . . xn is then an

element of Symn−1
A (I). That construction would not quite yield a map Symn

A(I)→
Symn−1

A (I): the trouble is that we cannot single out a particular factor xj in the
product x1 ⋅ x2 ⋅ ⋅ ⋅ ⋅ ⋅ xn, since x1 ⋅ x2 ⋅ ⋅ ⋅ ⋅ ⋅ xn is an element of the symmetric power
Symn

A(I). To get a well-defined, natural map Symn
A(I)→ Symn−1

A (I), we must sum
over the values j = 1,2, . . . , n, yielding the A-module morphism

τ In ∶ Symn
A(I)→ Symn−1

A (I)(3.36)

x1 ⋅ ⋅ ⋅ ⋅ ⋅ xn ↦ ι(x1)x2 ⋅ ⋅ ⋅ ⋅ ⋅ xn
+ ι(x2)x1 ⋅ x3 ⋅ ⋅ ⋅ ⋅ ⋅ xn
+ ⋅ ⋅ ⋅ + ι(xn)x1 ⋅ ⋅ ⋅ ⋅ ⋅ xn−1.

Theorem 3.4.1. Let A be a torsion-free commutative ring. Write I2 for the uni-
versal F2-point-detecting ideal (2, a2 − a for all a ∈ A) ⊆ A in A, as in section 2.4.
Then we have an isomorphism of A-modules:

H0
fl(M2−buds

fmA ;ω⊗n) ≅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if n < 0
A if n = 0
0 if n = 1
ker τ I2n if n > 1,

where τ I2n is the A-module morphism defined in (3.36).

Proof. By Proposition 2.4.5, σ2 yields an isomorphism of A-modules σ̃2 ∶ DrA
≅Ð→

I2. The projection of δ(x1 . . . xn) to the (n−1)st symmetric power Symn−1
A (DrA){t} ⊆

SymA(DrA)[t] is given by the formula δ(x1 . . . xn) = τ I2n (x1 . . . xn)t.

12Of course the formula (3.35) subsumes formulas (3.33) and (3.34). We have chosen to present
the ideas in this redundant way, because it is easier to read formulas (3.33) and (3.34), and to

grasp the simple pattern they fit into, than to parse the general formula (3.35).
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Consequently, for an element of Symn
A(DrA) to be in the kernel of δ, that element

must be in the kernel of τ I2n . We claim that the converse is also true. That is, we
claim that the kernel of δ ∣Symn

A(DrA)
is precisely the kernel of the map τ I2n . To prove

this claim, suppose that x ∈ Symn
A(DrA) is in the kernel of τ I2n . We will have cause

to consider a more general class of A-module homomorphisms, defined as follows
for each positive integer n and each integer i such that 0 ≤ i ≤ n:

Gn
i ∶ Symn

A(DrA)→ Symn−i
A (DrA)

x1 . . . xn ↦ ∑
U∈Pi({1,...,n})

σU2 (x1, . . . , xn).

We introduce the functions Fn
i because of the following three observations:

(1) The formula (3.35) for δ is equivalent to

δ(x1 . . . xn) =
n

∑
i=1

Gn
i (x1 . . . xn)ti.(3.37)

(2) By a simple combinatorial argument, the composite

Gi−j
k ○Gi

j ∶ Symi
A(DrA)→ Symi−j−k

A (DrA)

is equal to the binomial coefficient (j+k
j
) times the map Fi

j+k.

(3) Fn
1 = τ I2n .

Consequently Fn
i is equal to a product of nonzero binomial coefficients times

the composite Fi+1
1 ○ ⋅ ⋅ ⋅ ○ Fn−1

1 ○ Fn
1 . Since A is torsion-free and since x was

assumed to be in the kernel of τ I2n = Fn
1 , we now have that x is in the ker-

nel of Fn
i for each i. Formula (3.37) now yields that x is in the kernel of δ.

Hence Cotor0,2n

LA
2−buds

B
(LA2−buds, LA2−buds) ≅ ker δ coincides with the kernel of τ I2n , as

claimed. �

In particular, if A is torsion-free, then H0
fl(M2−buds

fmA ;ω⊗2) is isomorphic to the
kernel of the canonical multiplication map

(3.38) Sym2
A(I2)→ I2

2 ,

i.e., the kernel of the canonical comparison map from the symmetric square of I2
to the Rees module Rees2

A(I2). If A is a domain, then I2
2 ⊆ A is torsion-free, so the

kernel of the multiplication map (3.38) must be torsion. Torsion in SymA(I) is well-
studied in commutative algebra: see [10] for a nice entry-point into the literature.

The kernel of the multiplication map Sym2
A(I) → I2, in particular, coincides with

the delta-invariant of a finitely-generated ideal I: see [20], or Corollary 1.2 of [31].
Since the delta-invariant δ(I) is known to agree with the second Andre-Quillen
homology group H2(A,A/I;A/I) of A/I regarded as an A-algebra, with coefficients
in A/I, we have:

Corollary 3.4.2. Let A be a Noetherian integral domain of characteristic zero.
Then the following A-modules are isomorphic:

● The sections H0
fl(M2−buds

fmA ;ω⊗2) of the second tensor power ω⊗2 of the bun-

dle of invariant differentials on M2−buds
fmA .

● The Andre-Quillen homology group H2(A,A/I2;A/I2).
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Since at least the 1980s, the kernel of the map Symn
A(I)→ In has drawn attention

in commutative algebra13, especially in the case n = 2. For example, an ideal I in
an integral domain R is called syzygetic if the map Sym2

A(I) → I2 is injective
(equivalently, an isomorphism); see [4] for some discussion and relevant results. We
have:

Corollary 3.4.3. Let A be a Noetherian integral domain of characteristic zero.
Then H0

fl(M2−buds
fmA ;ω⊗2) vanishes if and only if the universal F2-point-detecting

ideal of A is syzygetic.

If I2 can be generated by a regular sequence, or more generally a d-sequence
in the sense of Huneke [10], then Symn

A(I2) → In2 is an isomorphism for all n, and
consequently H0

fl(M2−buds
fmA ;ω⊗n) vanishes for n > 0. This explains why, in Theorem

3.2 of [26], Ravenel obtained the vanishing of Cotor0,n
LAB

(LA, LA) for all n ≠ 0 and
all number rings A: the same would be true for any regular integral domain of
characteristic zero. More generally:

Theorem 3.4.4. If A is a Cohen-Macaulay integral domain of characteristic zero,
then H0

fl(M2−buds
fmA ;ω⊗n) is trivial for all n ≠ 0.

Proof. Since A is Cohen-Macaulay, the ideal I2 can be generated by a regular
sequence, so the multiplication map

(3.39) Symn
A(I2)→ In2

is injective for all n. The map (3.39) is equal to the function Fn
n defined in the

proof of Theorem 3.4.1. In that proof, it was shown that Fn
n factors as a product

of nonzero binomial coefficients times the composite F2
1 ○ ⋅ ⋅ ⋅ ○Fn−1

1 ○Fn
1 . Hence

the injectivity of (3.39) implies the injectivity of the composite

(3.40) Gi+1
1 ○ ⋅ ⋅ ⋅ ○Gn−1

1 ○Gn
1

for each i = 1, . . . , n−1. The composite (3.40) is equal to a product of nonzero bino-
mial coefficients times Fn

i , so since A is an integral domain of characteristic zero,

Fn
i is injective for all j. Hence, by equation (3.37), the cobar complex differential

morphism δ ∶ SymA(DrA) → SymA(DrA)[t] is injective in positive internal degrees

> 0, so Cotor0,n

LA
2−buds

B
(LA2−buds, LA2−buds) vanishes for n > 0. �

3.5. Consequences for torsion in LA. To date, there is no known example of
an integral domain A such that the classifying rings LA or LA2−buds have nontrivial
A-torsion. The H0 calculations from section 3.4, together with Theorem 2.2.1,
yield some insight about when and why LA2−buds is torsion-free. In this section, we
obtain the first known example of an integral domain A such that LA2−buds is not
torsion-free.

We begin with a simple observation for the case where A is a field:

Proposition 3.5.1. Let K be a field of characteristic zero. Then H0
fl(M2−buds

fmK ;ω⊗n)
is trivial for n ≠ 0.

13For example, in the paper [12], it is remarked that “Finding the defining equations of Rees
rings is a classical problem in elimination theory that amounts to determining the kernel A of the

natural map from the symmetric algebra Sym(I) onto R.”
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Proof. Since K is a field, the symmetric powers Symn
K(I2) are all free K-modules,

hence torsion-free. Consequently τ I2n is injective. Now Theorem 3.4.1 yields the
result. �

Proposition 3.5.2. Let A be an integral domain of characteristic zero. Then, for
each n > 0, the A-module H0

fl(M2−buds
fmA ;ω⊗n) is A-torsion, and an A-submodule of

LA2−buds.

Proof. We have isomorphisms

H0
fl(M2−buds

fmA ;ω⊗∗) ≅ Cotor0,2∗

LA
2−buds

B
(LA2−buds, LA2−buds)

≅ LA2−buds ◻LA
2−buds

B L
A
2−buds ⊆ LA2−buds,

so H0
fl(M2−buds

fmA ;ω⊗n) is an A-submodule of the degree n summand of LA2−buds.

Write K for the field of fractions of A. From the localization theorem (Theorem
2.2.1) and Proposition 3.5.1, we have isomorphisms

0 ≅H0
fl(M2−buds

fmK ;ω⊗n)
≅H0

fl(M2−buds
fmA ;ω⊗n)⊗AK

for n ≠ 0. Hence H0
fl(M2−buds

fmA ;ω⊗n) must be torsion for n ≠ 0. �

Corollary 3.4.3 and Proposition 3.5.2 now yield:

Corollary 3.5.3. Let A be an integral domain of characteristic zero. If the ideal
I2 in A is not syzygetic, then LA2−buds is not torsion-free.

Example 3.5.4. Let A = Z[a, b, c, x]/(2a − (x2 − x)b, 2b − (x2 − x)c). Write x̂ as
shorthand for x2 − x. Then x̂a and x̂b and x̂c are elements of the ideal I2 of A. It
is routine to check that the product

x̂a ⋅ x̂c − x̂b ⋅ x̂b ∈ Sym2
A(I2)

is nonzero, and furthermore that

2(x̂a ⋅ x̂c − x̂b ⋅ x̂b) = x̂b ⋅ 2x̂b − 2x̂b ⋅ x̂b = 0.

Consequently there is a nonzero 2-torsion element of Sym2
A(I2) ≅H0

fl(M2−buds
fmA ;ω⊗2),

hence also a nonzero 2-torsion element in LA2−buds. To the author’s knowledge, this
is the first known example of an integral domain A such that LA2−buds has nontrivial
torsion.

4. Cohomology of M2−buds
fmZ in low degrees.

We consider the moduli stackM2−buds
fmA of formal A-module 2-buds in the case A =

Z. We will calculate the first cohomology group of the moduli stack of formal group
2-buds, i.e., Cotor1,∗

LZ
2−buds

B
(LZ

2−buds, L
Z
2−buds). The author does not know where this

specific calculation appears in the literature, but the author does not believe that
this particular calculation should be seen as especially new: it is quite similar to 2-
primary calculations of portions of the Adams-Novikov spectral sequence E2-term,
and also to various standard 2-primary calculations in Iwasawa theory. Nevertheless
it is worth the effort to present the calculation here, as the base case A = Z will
be used in section 5 as input for the extension-of-formal-multiplications spectral
sequence which converges to H∗

fl(MfmA;ω⊗∗) for rings A other than Z.
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4.1. Construction of the 2-adic spectral sequence. The Z-module DrZ is free
on the generator γ, and consequently the Z[t]-comodule algebra LZ

2−buds is isomor-
phic to Z[γ], with the coaction

ψ ∶ Z[γ]→ Z[t]⊗Z Z[γ]
ψ(γ) = 1⊗ γ + t⊗ 2,(4.41)

as described above in (3.30). The ideal (2) of LZ
2−buds is closed under the Z[t]-

coaction, i.e., the (2)-adic filtration

LZ
2−buds ⊇ (2) ⊇ (2)2 ⊇ (2)3 ⊇ . . .

of LZ
2−buds is a multiplicative filtration and also a filtration by subcomodules. Writ-

ing E
(2)
0 LZ

2−buds for the associated graded comodule of the 2-adic filtration on

LZ
2−buds, we get a multiplicative conditionally convergent spectral sequence14

Ep,q,u1 ≅ Cotorp,q,uZ[t] (Z,E(2)
0 LZ

2−buds)⇒ Cotorp,qZ[t](Z, L
Z
2−buds)ˆ2(4.42)

≅Hp
fl(MfmZ;ω⊗q/2)ˆ2(4.43)

dr ∶ Ep,q,ur → Ep+1,q,u+r
r .

We will refer to spectral sequence (4.42) as the 2-adic spectral sequence. To be clear
about the notation: the abutment Cotor∗,∗Z[t](Z, L

Z
2−buds)ˆ2 is the 2-adic completion

of Cotor∗,∗Z[t](Z, L
Z
2−buds). The spectral sequence is trivial for odd q, so the tensor

power ω⊗q/2 is well-defined.

The associated graded Z[t]-comodule algebra E
(2)
0 LZ

2−buds of the 2-adic filtra-

tion on LZ
2−buds is isomorphic to F2[2̃, γ], with 2̃ in 2-adic filtration degree 1, and

with trivial coaction. Consequently the E1-term of the 2-adic spectral sequence is
isomorphic to

Cotor∗,∗,∗Z[t] (Z,F2[2̃, γ]) ≅ Cotor∗,∗,∗F2[t]
(F2,F2)⊗F2 F2[2̃, γ]

≅ F2[η,Pη,P 2η,P 3η, . . . ]⊗F2 F2[2̃, γ],(4.44)

with tridegrees 2̃ ∈ E0,0,1
1 , and γ ∈ E0,2,0

1 , and P jη ∈ E1,2j+1,0
1 . Isomorphism (4.44)

is due to the isomorphism

Cotor∗,∗F2[t]
(F2,F2) ≅ F2[η,Pη,P 2η,P 3η, . . . ],(4.45)

where

● Pnη ∈ Cotor1,2n+1

F2[t]
(F2,F2),

● Pnη is represented in the cobar complex of (F2,F2[t]) by the 1-cocycle t2
n

,
● and P is the algebraic Steenrod operation P 0 which operates in Cotor

by applying the Frobenius operation to cocycle representatives in the cobar
complex. For these ideas, see the material on algebraic Steenrod operations
in Appendix 1 of [27], or [19].

14It is automatic that this spectral sequence converges to Cotorp,qZ[t] (Z, (L
Z
2−buds)̂2). The fact

that it also converges to Cotorp,qZ[t](Z, L
Z
2−buds)̂2 is a consequence of the finite generation of LZ

2−buds
and of LZ

2−budsB in each degree. Similar spectral sequence convergence results for rings A other

than Z, and for the full moduli stack of formal A-modules and not merely of formal A-module
2-buds, and for various filtrations including (but not limited to) the 2-adic filtration, follow from

the finiteness and completion results in section 2.3.
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A straightforward way to see isomorphism (4.45) is to observe that F2[t] splits, as

a coalgebra, as the tensor product of the tensor factors F2[t2
n]/(t2n)2 over all n ≥ 0.

The Cotor-algebra of F2[ε]/ε2 is polynomial on a single generator in cohomological
degree 1, represented by the 1-cocycle ε in the cobar complex of F2[ε]/ε2. The cobar
complex multiplication is concatenation of tensors, and in the case of F2[t], it is
routine to make the cocycle-level calculation to verify that the coalgebra splitting

F2[t] ≅⊗
n≥0

F2[t2
n

]/(t2
n

)2(4.46)

induces a ring isomorphism

Cotor∗F2[t]
(F2,F2) ≅⊗

n≥0

Cotor∗F2[t2
n
]/(t2n)2(F2,F2)

despite (4.46) not respecting the ring structure.

4.2. Running the 2-adic spectral sequence: Hn
fl(M2−buds

fmZ ;ω⊗∗) for n = 0,1.
As the 2-adic spectral sequence is a multiplicative spectral sequence, to calculate
the d1-differential it suffices to calculate the d1 differential on the generators 2̃, γ,
and P jη for each j = 0,1,2, . . . . We accomplish this using cocycle representatives for

each such generator in the cobar complex for Z[t] with coefficients in E
(2)
0 LZ

2−buds:

● Since 2̃ is represented by the 0-cocycle 2̃, which lifts to the 0-cocycle 2 in
the cobar complex for Z[t] with coefficients in LZ

2−buds, we have

d1(2̃) = 0,

and in fact 2̃ is an infinite cocycle.
● The generator γ is represented by the 0-cocycle γ, which lifts to the 0-

cochain γ in the cobar complex for Z[t] with coefficients in LZ
2−buds. We

have

δ(γ) = t⊗ 2 ∈ Z[t]⊗Z L
Z
2−buds

in that cobar complex, and since t ⊗ 2 represents a cocycle representative

for 2̃η in the cobar complex for Z[t] with coefficients in E
(2)
0 LZ

2−buds, we
have

d1(γ) = 2̃η.

● The generator P jη is represented by the 1-cocycle t2
j ⊗1, which lifts to the

1-cochain t2
j ⊗ 1 in the cobar complex for Z[t] with coefficients in LZ

2−buds.
We have

δ(t2
j

⊗ 1) =
2j

∑
i=1

(2j

i
)t2

j
−i ⊗ ti ⊗ 1

in that cobar complex, whose unique term of least 2-adic filtration is

( 2j

2j−1)t2
j−1 ⊗ t2j−1 ⊗ 1, since the central binomial coefficient ( 2j

2j−1) has 2-adic
valuation 1. Consequently

d1(P jη) =
( 2j

2j−1)
2

2̃(P j−1η)2.
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● Consequently, by the Leibniz rule, we have

d1 (2̃hγiP jη) = 2̃h+1γi−1 ⎛
⎝
iηP jη + γ

( 2j

2j−1)
2

(P j−1η)2⎞
⎠
,

with the understanding that negative powers of γ and of P are zero. Con-
sequently the Cotor1-line in the E2-page of the 2-adic spectral sequence
consists of the F2[2̃]-linear combinations of the elements γ2iη and the ele-
ments γ2i(γη − Pη), for i ≥ 0. We write Qη as shorthand for γη − Pη, i.e.,
the cohomology class of the 1-cocycle t ⊗ γ − t2 ⊗ 1 in the cobar complex

C●

Z[t](E
(2)
0 LZ

2−buds) for Z[t] with coefficients in E
(2)
0 LZ

2−buds.

In the remaining calculations in the 2-adic spectral sequence, we will be sloppy
about the distinction between t⊗ γ − t2 ⊗ 1 and t⊗ γ + t2 ⊗ 1, since they represent
the same class in the associated graded of the 2-adic filtration.

We can calculate the Cotor0 and Cotor1 lines on later pages by similar arguments,
together with the calculations

d2(γ2) = [(t⊗ 2 + 1⊗ γ)2 − 1⊗ γ2]
= [4(t2 ⊗ 1 + t⊗ γ)]

∼ 2̃2Qη in the cobar complex C●

Z[t](E
(2)
0 LZ

2−buds),
d3(γ4) = [(t⊗ 2 + 1⊗ γ)4 − 1⊗ γ4]

= [23(2t4 ⊗ 1 + 22t3 ⊗ γ + 3t2 ⊗ γ2 + t⊗ γ3)]

∼ 2̃3γ2Qη in the cobar complex C●

Z[t](E
(2)
0 LZ

2−buds),

d4(γ8) ∼ 2̃4γ6Qη in the cobar complex C●

Z[t](E
(2)
0 LZ

2−buds),

and in general,

dr+1(γ2r

) ∼ 2̃r+1γ2r
−2Qη in the cobar complex C●

Z[t](E
(2)
0 LZ

2−buds).(4.47)

We are using the symbol ∼ to denote the equivalence relation “is cohomologous to,
modulo terms of higher 2-adic filtration.”

Differential formula (4.47) yields the following description of the Cotor0 and

Cotor1 lines on each page of the 2-adic spectral sequence:

(4.48)

r Cotor0 -line in the Er-page Cotor1 -line in the Er-page

1 F2[2̃, γ] F2[2̃, γ] {η,Pη,P 2η, . . .}
2 F2[2̃, γ2] F2[2̃, γ2] {η,Qη} /2̃η
3 F2[2̃, γ4] F2[2̃,γ

4
]{η,Qη,γ2η,γ2Qη}

(2̃η,2̃2Qη,2̃γ2η)

4 F2[2̃, γ8] F2[2̃,γ
8
]{η,Qη,γ2η,γ2Qη,γ4η,γ4Qη,γ6η,γ6Qη}

(2̃η,2̃2Qη,2̃γ2η,2̃3γ2Qη,2̃γ4η,2̃2γ4Qη,2̃γ6η)
,

and in the limit, the Cotor0-line in the E∞-page is F2[2̃], while the Cotor1-line in
the E∞-page is

F2[2̃] {γ2nη, γ2nQη ∀n ≥ 0} / (2̃γ2nη, 2̃1+ν2(2n+2)γ2nQη ∀n ≥ 0) .
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Resolving the extension problems to pass from the E∞-page to the abutment
Cotor∗,∗Z[t](Z, L

Z
2−buds)ˆ2, we have

Cotor0
Z[t](Z, LZ

2−buds)ˆ2 ≅ Ẑ2,

Cotor1
Z[t](Z, LZ

2−buds)ˆ2 ≅
Z{γ2nη, γ2nQη ∀n ≥ 0}

(2γ2nη,21+ν2(2n+2)γ2nQη ∀n ≥ 0)
.

From the 2-adic completions of these Cotor-groups, it is easy to make the cocycle-
level calculations and to use the finiteness results from section 2.3 to deduce that
before 2-adic completion, we must have

Cotor0
Z[t](Z, LZ

2−buds) ≅ Z,

Cotor1
Z[t](Z, LZ

2−buds) ≅
Z{γ2nη, γ2nQη ∀n ≥ 0}

(2γ2nη,21+ν2(2n+2)γ2nQη ∀n ≥ 0)
.

4.3. Running the 2-adic spectral sequence: H2
fl(M2−buds

fmZ ;ω⊗n) for n ≤ 3. For
later spectral sequence calculations in section 5.2, it will be useful to have calculated
Cotor2,2n

Z[t] (Z, L
Z
2−buds) ≅H2

fl(M2−buds
fmZ ;ω⊗n) for a few small values of n. We do this

by running the 2-adic spectral sequence in internal15 degrees ≤ 6. In principle,
there is no reason that similar calculations could not be done for a much wider
range of internal and cohomological degrees. However, in order to keep this paper
at a manageable length, we confine our attention to only the most immediately
relevant calculations.

4.3.1. Internal degrees q < 4. In these internal degrees, the 2-adic spectral sequence
has no summands which contribute to Cotor2.

4.3.2. Internal degrees q = 4,5. In internal degree 4, the 2-adic spectral sequence
E1-page is straightforwardly calculated. The charts are as follows:

u = 0

u = 1

u = 2

u = 3

p = 0 p = 1 p = 2
γ2 Qη γη η2

●

●

●

●

●

●

●

●

●

●

●

●

Figure 1. 2-adic SS
E1-page, q = 4
d1(γη) = 2̃η2

d2(γ2) = 2̃2Qη

u = 0

u = 1

u = 2

u = 3

p = 0 p = 1 p = 2
Qη η2

●

Figure 2. 2-adic SS
E3 ≅ E∞-page, q = 4

15The spectral sequence of a filtered cochain complex of abelian groups is bigraded: it has

the cohomological degree, and the filtration degree. If the cochain complex is furthermore a
filtered cochain complex of graded abelian groups, then the spectral sequence has a third grading,

traditionally called the internal grading. For example, since (LA, LAB) is a graded Hopf algebroid,

the cobar complex of (LA, LAB) is a cochain complex of graded A-modules, and the 2-adic spectral
sequence has an internal grading as a consequence. The internal degree is the degree q in (4.42).
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Empty bidegrees are understood to be trivial. Each nontrivial element name is
understood to be an F2-linear basis element. Vertical black arrows indicate towers
of multiplications by 2̃, so for example, the E1-page is a free F2[2̃]-algebra on
the four elements γ2,Qη, γη, and η2. The E∞-page is F2[2̃]{Qη, η2}/ (2̃2Qη, 2̃η2).
Resolving the extensions, we have that

Cotorn,4
(LZ

2−buds
,LZ

2−buds
B)

(LZ
2−buds, L

Z
2−buds) ≅Hn(M2−buds

fmZ ;ω⊗2)

≅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if n = 0
Z/4Z{Qη} if n = 1
Z/2Z{η2} if n = 2
0 if n > 2.

(4.49)

Since LZ
2−buds is concentrated in even internal degrees, the Cotor-groups

Cotor∗,∗Z[t](Z, L
Z
2−buds) vanish in internal degree 5.

4.3.3. Internal degrees q = 6. The 2-adic spectral sequence charts in internal degree
6 are as follows:

u = 0

u = 1

u = 2

u = 3

p = 0 p = 1 p = 2 p = 3
γ3

●

●

●

γ2η

●

●

●

γQη

●

●

●

ηQη

●

●

●

γη2

●

●

●

η3

●

●

●

Figure 3. 2-adic SS
E1-page, q = 6
d1(γ3) = 2̃γ2η

d1(Qη ⋅ γ) = 2̃η ⋅Qη
d1(η2 ⋅ γ) = 2̃η3

u = 0

u = 1

u = 2

u = 3

p = 0 p = 1 p = 2 p = 3
γ2η ηQη η3

Figure 4. 2-adic SS
E3 ≅ E∞-page, q = 6
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There is no room for nontrivial extensions, so from the E∞-page we have that

Cotorn,6
(LZ

2−buds
,LZ

2−buds
B)

(LZ
2−buds, L

Z
2−buds) ≅Hn(M2−buds

fmZ ;ω⊗3)

≅

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if n = 0
Z/2Z{γ2η} if n = 1
Z/2Z{η ⋅Qη} if n = 2
Z/2Z{η3} if n = 3
0 if n > 3.

Remark 4.3.1. As a consequence of the calculations in this section, we have that
the bigraded ring∐s,tH

s
fl(M2−buds

fmZ ;ω⊗t) is 2-locally isomorphic in the range t−s ≤ 3

to ∐s,tH
s
fl(MfmZ;ω⊗t), i.e., the input for the Adams-Novikov spectral sequence.

Drawn with the Adams conventions:

s = 0

s = 1

s = 2

s = 3

s = 4

s = 5

s = 6

t − s = 0 t − s = 1 t − s = 2 t − s = 3 t − s = 4 t − s = 5 t − s = 6

Z{1}

Z/2Z{η}

Z/2Z{η2}

Z/2Z{η3}

Z/4Z{Qη}

Z/2Z{η ⋅Qη}

Z/2Z{γ2η}

The green-shaded region lies beyond what we have just calculated. Of course it
is possible to run the 2-adic spectral sequence in higher internal degrees for a more
far-reaching comparison of H∗

fl(M2−buds
fmZ ;ω⊗∗) with the E2-term H∗

fl(MfmZ;ω⊗∗)
of the Adams-Novikov spectral sequence, but in this paper our priority is on making
calculations of H∗

fl(M2−buds
fmA ;ω⊗∗) in low bidegrees for a very wide range of rings

A. Those calculations begin in the next section, and the low-degree calculations of
H∗

fl(M2−buds
fmZ ;ω⊗∗) here are only in the service of those in the next section.

5. H0 and H1 of the moduli of formal A-module 2-buds.

5.1. The symmetric filtration on symmetric powers. In section 5.2, we will
construct and use a spectral sequence which passes from the cohomology of the
moduli stack of formal Z-module 2-buds to the cohomology of the moduli stack
of formal A-module 2-buds. The construction of this spectral sequence relies on a
certain filtration of symmetric powers. This subsection is about that filtration. The
filtration is constructed in Definition 5.1.4, and its associated graded is calculated
in Proposition 5.1.5.

The filtration is, at least under certain hypotheses, quite well-known. Given a
commutative ring R and a short exact sequence of R-modules

(5.50) 0→M ′ →M →M ′′ → 0,

we ask for an increasing R-module filtration on the symmetric algebra Sym∗

R(M)
such that the associated graded R-algebra E0 Sym∗

R(M) is isomorphic to
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Sym∗

R(M ′) ⊗R Sym∗

R(M ′′). It is standard that such a filtration exists, if the R-
modules M,M ′,M ′′ are projective; see exercise 5.16 in chapter II of [7], for example.

However, to build the spectral sequence that we will use in section 5.2, it will be
necessary to relax those hypotheses slightly. The essential condition is that each
of the maps s1, s2, . . . in a certain sequence, (5.56), are one-to-one. It turns out
that this condition is satisfied in the case of interest in section 5.2, even though
certain of the R-modules involved are not projective, and even though the short
exact sequence (5.50) will not split.

The results in this section are elementary, but technical, involving colimits over
certain “truncated-cube-shaped” diagrams. The author apologizes for not being
able to find a simpler way to present the ideas. Surely these ideas cannot be new,
and must be well-known within some circles, but we were unable to find a reference
in the literature.

Now we begin the relevant definitions. First we must introduce the indexing
categories for certain colimits.

Definition 5.1.1.

● Let I denote the category with
– two objects, 0 and 1,
– a single homomorphism 0→ 1,
– and no non-identity endomorphisms.

In other words, I is the partially-ordered set {0,1}, regarded as a category.
● Let n be a nonnegative integer. Let In be the n-fold Cartesian product

category I × ⋅ ⋅ ⋅ × I. That is, In is the partially-ordered set of n-tuples
{0,1} × ⋅ ⋅ ⋅ × {0,1}, regarded as a category. The relevant partial ordering is
the one in which (a1, . . . , an) ≤ (b1, . . . , bn) if and only if ai ≤ bi for all i.

● Let i, n be nonnegative integers, with i ≤ n. Let Ini denote the full subcate-
gory of In containing precisely those objects (a1, . . . , an) such that ∑j aj ≤ i.

For example, when n = 2, we have the following pictures of I2
0 ,I2

1 , and I2
2 = I2:

(0,0)

Figure 5. I2
0

(0,0) //

��

(1,0)

(0,1)

Figure 6. I2
1

(0,0) //

��

(1,0)

��
(0,1) // (1,1)

Figure 7. I2
2 = I2

When n = 3, we have the following pictures:



38 A. SALCH

(0,0,0)

Figure 8. I3
0

(0,0,0) //

��

��

(1,0,0)

(0,1,0)

(0,0,1)

Figure 9. I3
1

(0,0,0) //

��

��

(1,0,0)

��

��

(0,1,0) //

��

(1,1,0)

(0,0,1) //

��

(1,0,1)

(0,1,1)

Figure 10. I3
2

(0,0,0) //

��

��

(1,0,0)

��

��

(0,1,0) //

��

(1,1,0)

��

(0,0,1) //

��

(1,0,1)

��
(0,1,1) // (1,1,1)

Figure 11. I3
3 = I3

Definition 5.1.2. Let R be a commutative ring, let n be a nonnegative integer, let
M0,M1 be R-modules, and let f ∶M0 →M1 be an R-module homomorphism.

● Let F ∶ In →Mod(R) be the functor given by sending (a1, . . . , an) to Ma1⊗R
⋅ ⋅ ⋅ ⊗RMan .

● For each nonnegative integer i ≤ n, we have the restriction F ∣In
i
∶ Ini →

Mod(R) of F to the full subcategory Ini of In.

● For each nonnegative integer i < n, the restriction functor resi ∶ Mod(R)In
i+1 →

Mod(R)In
i admits a left adjoint. We write Li for this left adjoint.

Of course colimF is simply the n-fold tensor power of M1, and using the natural
action of Σn on In, we have (colimF)Σn ≅ Symn

R(M1). The idea of introducing
the subcategories Ini of In is to obtain a useful filtration of the symmetric power
Symn

R(M1).

Lemma 5.1.3. Let R,n,M0,M1, f,F be as in Definition 5.1.2. Let M̃0 denote
M0, and let M̃1 denote the cokernel of f ∶M0 →M1. For each nonnegative integer
i < n, the cokernel of the counit map

(5.51) Li resi(F ∣In
i+1

)→ F ∣In
i+1

is the functor Ini+1 → Mod(R) that sends (a1, . . . , an) to 0 if ∑j aj ≤ i, and sends

(a1, . . . , an) to M̃a1 ⊗ ⋅ ⋅ ⋅ ⊗ M̃an if ∑j aj = i + 1.
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Proof. By the pointwise formula for Kan extensions (classical; see [18] for example),
Li resi(F ∣In

i+1
) is given as follows:

Li resi(F ∣In
i+1

)(a1, . . . , an) = { F(a1, . . . , an) if ∑j aj ≤ i
colim(b1,...,bn)<(a1,...,an)F(b1, . . . , bn) if ∑j aj = i + 1.

(5.52)

using the partial ordering on In from Definition 5.1.1.
Cokernels in functor categories are computed levelwise, so the fact that (5.52)

coincides with F if ∑j aj ≤ i tells us that the cokernel ci ∶ Ini+1 → Mod(R) of the
map (5.51) vanishes on all tuples (a1, . . . , an) such that ∑j aj ≤ i, as claimed.

As for those tuples (a1, . . . , an) such that ∑j aj = i + 1: let I<(a1,...,an) de-
note the full subcategory of Ini+1 consisting of those tuples (b1, . . . , bn) satisfying

(b1, . . . , bn) < (a1, . . . , an). Then I<(a1,...,an) is isomorphic to Ii+1
i . Let F̃(a1,...,an) ∶

I<(a1,...,an) →Mod(R) denote the constant functor taking the value F(a1, . . . , an).
We have a natural map F ∣I<(a1,...,an)

→ F̃(a1,...,an) which is an isomorphism when

evaluated on (a1, . . . , an). Again using the fact that cokernels are calculated level-
wise in functor categories, the value of the cokernel of (5.51) at (a1, . . . , an) agrees
with the value of the cokernel of the composite map

(5.53) Li resi(F ∣In
i+1

) ∣I<(a1,...,an)
→ F ∣I<(a1,...,an)

→ F̃(a1,...,an)

at (a1, . . . , an).
The cokernel of the composite map (5.53) is the functor which sends (b1, . . . , bn)

to the cokernel of the map F(b1, . . . , bn)→ F(a1, . . . , an). In the case that ∑j bj = i,
this cokernel is precisely M̃b1⊗R ⋅ ⋅ ⋅⊗RM̃bn . It is routine to verify that the colimit of

the cokernel of (5.53) is consequently M̃a1⊗R ⋅ ⋅ ⋅⊗RM̃an . Consequently the cokernel

of (5.53) sends (a1, . . . , an) to M̃a1 ⊗R ⋅ ⋅ ⋅ ⊗R M̃an , as claimed. �

Definition 5.1.4. Let R,n,M0,M1, f,F be as in Definition 5.1.2. Let n be a
nonnegative integer.

● Given a nonnegative integer i < n, write ˜resi for the restriction functor
Mod(R)In → Mod(R)In

i , i.e., the composite of the functors resi ○ ⋅ ⋅ ⋅ ○
resn−2 ○ resn−1 from Definition 5.1.2. Write L̃i for its left adjoint, i.e.,
the composite of the functors resn−1 ○ ⋅ ⋅ ⋅ ○ resi+1 ○Li, also from Definition
5.1.2.

● Given a positive integer i < n, we have the natural transformation of func-
tors In →Mod(R)

(5.54) L̃i−1 ˜resi−1F → L̃i ˜resiF .

We write si for the induced map of R-modules

(5.55) (colim L̃i−1 ˜resi−1F)
Σn
→ (colim L̃i ˜resiF)

Σn
.
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By the symmetric layer sequence we mean the sequence of R-module maps

(5.56) Symn
R(M0) = // (colim L̃0 ˜res0F)

Σn

s1

��
(colim L̃1 ˜res1F)

Σn

s2

��
⋮

sn−1

��
(colim L̃n−1 ˜resn−1F)

Σn

sn

��
(colimF)Σn

= // Symn
R(M1).

● If each of the maps si is injective, then the symmetric layer sequence (5.56)
is a filtration of Symn

R(M1), and we call this filtration the symmetric filtra-
tion.

Using Lemma 5.1.3 to identify the cokernels of the maps in (5.54), we have:

Proposition 5.1.5. Let R,n,M0,M1, f,F be as in Definition 5.1.2. Suppose that
each of the maps si in the symmetric layer sequence (5.56) is injective. Then
the symmetric filtration is an increasing filtration of Symn

R(M1) whose associated
graded R-module is isomorphic to the direct sum

n

∐
i=0

Symi
R(M0)⊗R Symn−i

R (coker f).

If each of the maps si in the symmetric layer sequence (5.56) is injective for all
nonnegative integers n, then, in particular, f is injective, so we regard M0 as a
submodule of M1, and we have an isomorphism of graded R-algebras

E0 Sym∗

R(M1) ≅ Sym∗

R(M0)⊗R Sym∗

R(M1/M0).

5.2. The extension-of-formal-multiplications (EFM) spectral sequence.
We now use the calculations from section 4 to obtain calculations of
H1
fl(M2−buds

fmA ;ω⊗∗) for a broad class of rings A, not just the base case A = Z. The

main tool is a spectral sequence which allows us to pass from H∗

fl(M2−buds
fmZ ;ω⊗∗) to

H∗

fl(M2−buds
fmA ;ω⊗∗). As this is a matter of passing from the cohomology of the mod-

uli of formal group law 2-buds with a small ring of formal multiplications (namely,
Z) to the cohomology of the moduli of formal group 2-buds with a larger ring of
formal multiplications (namely, A), we call this spectral sequence the extension-of-
formal-multiplications spectral sequence, or for short, “EFM spectral sequence.”

Theorem 5.2.1. Let A be a torsion-free commutative ring. Let A/2 denote the

reduction of the ring A modulo the ideal (2). Let Ω̃A denote the free bigraded
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A/2-module16 on the set of generators {ca ∶ a ∈ A} modulo the relations

ca+b = ca + cb for all a, b ∈ A,
cab = acb + b2ca for all a, b ∈ A,
ca = 0 for all a ∈ Z.

Then there exists a conditionally convergent spectral sequence17

Ep,q,u1 ≅
⎧⎪⎪⎨⎪⎪⎩

A⊗Z Cotorp,qZ[t](Z, L
Z
2−buds) if u = 0

∐i≥0 Cotor
p,q−2(i+u)

F2[t]
(F2,F2)⊗F2 Symu

A/2(Ω̃A){γi} if u > 0
(5.57)

⇒ Cotorp,q
A[t]

(A,LA2−buds)

≅ Cotorp,q
LA

2−buds
B
(LA2−buds, LA2−buds)

dr ∶ Ep,q,ur → Ep+1,q,u−r
r

with tridegrees as follows:

Coh. class Coh. degree (p) Int. degree (q) Filt. degree (u)
γ 0 2 0
ca 0 2 1
Pnη 1 2n+1 0,

where the elements η,Pη,P 2η, . . . are the generators of Cotor1,∗
F2[t]

(F2,F2), as in

(4.45) in section 4.2, and η is also the generator of Cotor1,∗
Z[t](Z, L

Z
2−buds), as in

section 4.2.

Proof. Consider the symmetric layer sequence, as in (5.56), arising from the A-

module homomorphism A ⊗Z DrZ ↪ DrA. Since A ⊗Z DrZ is a free A-module of
rank 1, each of its symmetric powers is also a free A-module of rank 1, and the
natural map

Symn
A(A⊗Z DrZ)→ Symn

A(DrA)
is simply the inclusion of the A-submodule of (LA)2n generated by γn. Hence
the maps in the symmetric layer sequence are injective. The resulting symmetric
filtration of Sym∗

A(DrA) ≅ LA2−buds is the increasing filtration

F0L
A
2−buds ⊆ F1L

A
2−buds ⊆ F2L

A
2−buds ⊆ . . .

on LA2−buds given by letting F0L
A
2−buds be the A-subalgebra of LA2−buds generated

by γ, and letting FnL
A
2−buds be the F0L

A
2−buds-submodule of LA2−buds generated by

all products of up to n elements ca with a ∈ A. By the coaction formulas given
in (3.30), this is a filtration by A[t]-subcomodules of LA2−buds. The filtration is

16The A/2-module Ω̃2 is a module of “twisted Kähler differential forms” in the sense of [11].
This is intriguing, but we do not know of any general theorems about modules of twisted Kähler

differentials which give us any leverage here. Perhaps this is a reasonable direction for later
investigations.

17The author admits to finding it difficult to visualize the spectral sequence’s E1-term merely
from the description given in (5.57). We find the charts drawn below, starting in Figure 13, much

more helpful for visualizing the spectral sequence.
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multiplicative, exhaustive, complete, and separated, hence we have a conditionally
convergent multiplicative spectral sequence

Ep,q,u1 ≅ Cotorp,q
A[t]

(A,FuLA2−buds/Fu−1L
A
2−buds)⇒ Cotorp,q

A[t]
(A,LA2−buds)(5.58)

dr ∶ Ep,q,ur → Ep+1,q,u−r
r .

Since Ω̃A ≅ DrA /(A ⊗Z DrZ), by Proposition 5.1.5 the associated graded A[t]-
comodule E0LA2−buds =∐u FuL

A
2−buds/Fu−1L

A
2−buds of the symmetric filtration is iso-

morphic to

(5.59) Sym∗

A(A⊗Z DrZ)⊗A Sym∗

A(Ω̃A).

To more explicitly identify the E1-term of spectral sequence (5.58), we need to know
what happens when we apply the functor Cotor∗A[t](A,−) to (5.59). In general
there is no particularly nice Künneth-like formula for Cotor applied to a tensor
product of comodules, but in this case, we are fortunate: if u > 0, then the A[t]-
coaction on FuL

A
2−buds lands in Fu−1L

A
2−buds. Consequently the A[t]-coaction on

∐u>0 FuL
A
2−buds/Fu−1L

A
2−buds is trivial. Hence, for positive u, we use Proposition

5.1.5 to obtain isomorphisms

Cotorp,q
A[t]

(A, FuL
A
2−buds

Fu−1LA2−buds
) ≅ Cotorp,q

A[t]
(A,∐

i≥0

Symi
A(A⊗Z DrZ)⊗A Symu

A(Ω̃A))

≅ Cotorp,q
A[t]

(A,∐
i≥0

Symi
A(A⊗Z DrZ)⊗A Symu

A/2(Ω̃A))

≅ (∐
i≥0

Cotorp,∗
A/2[t]

(A/2,A/2)

⊗A/2 (A/2⊗Z Symi
Z(DrZ))⊗A/2 Symu

A/2(Ω̃A))
q

≅ (∐
i≥0

Cotorp,∗F2[t]
(F2,F2)⊗Z Symi

Z(DrZ)⊗Z Symu
A/2(Ω̃A))

q

.

�

To avoid any potential confusion: in the statement of Theorem 5.2.2, A/I2
2 de-

notes the quotient of A by the square of its ideal I2.
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Theorem 5.2.2. Let A be a torsion-free commutative Noetherian18 ring. Then we
have isomorphisms of A-modules

Hs
fl(M2−buds

fmA ;O) ≅ { A if s = 0
0 if s ≠ 0,

Hs
fl(M2−buds

fmA ;ω) ≅ { A/I2 if s = 1
0 if s ≠ 1,

Hs
fl(M2−buds

fmA ;ω⊗2) ≅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ(I2) if s = 0
A/I2

2 if s = 1
A/I2 if s = 2
0 otherwise,

where δ(I2) is the delta-invariant of the universal F2-point-detecting ideal I2 of A,
i.e., δ(I2) is isomorphic to the Andre-Quillen homology group H2(A,A/I;A/I), as
explained in Corollary 3.4.2.

The claim that H1
fl(M2−buds

fmA ;ω⊗n) vanishes for n ≤ 0 is quite trivial, since

the Hopf algebroid (LA2−buds, LA2−budsB) vanishes in negative degrees, and is eas-
ily seen to have no coalgebroid primitives in degree zero. It is the calculation
of H1

fl(M2−buds
fmA ;ω) and of H1

fl(M2−buds
fmA ;ω⊗2) which takes a bit more work. We

carry out this calculation with by running spectral sequence (5.58) in the necessary
bidegrees.

Throughout the calculation, we will often begin with an element a ∈ A, and then
need to consider the element a2 − a ∈ A. We adopt the following notation, which
serves to streamline the discussion: given an element a ∈ A, we will write â for the
element a2−a ∈ A. It will become convenient later to have taken note of a few basic
properties of â:

âb = âb̂ + a2b + ab2, and

âcb + b̂ca = 2cab − 2bca − 2acb

= âb̂γ.(5.60)

The EFM spectral sequence differentials preserve the internal degree q, so it is
convenient to carry out the further calculations in the spectral sequence by pro-
ceeding one internal degree at a time.

5.2.1. Internal degree q = 0. In negative degrees and in odd internal degrees, ev-
erything is trivial, since LA and LAB vanish in those internal degrees. In internal
degree q = 0, the spectral sequence is as depicted:

18The assumption that A is Noetherian is used only to ensure that I2 is finitely generated, so
that the results on the delta-invariant from [20] and [3] apply. If A is not assumed Noetherian,

the theorem holds as stated, except for the identification of the summand H0
fl(M2−buds

fmA ;ω⊗2) in

terms of the delta-invariant.
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u = 0

u = 1

u = 2

u = 3

p = 0 p = 1 p = 2
A{1}

Figure 12. EFM SS
E1 ≅ E∞-page, q = 0

No differentials.

Bidegrees left blank are understood to be zero. Consequently we have

Cotor0,0
A[t]

(A,LA2−buds) ≅H0
fl(M2−buds

fmA ;O) ≅ A{1}

trivially, for degree reasons.

5.2.2. Internal degree q = 2. The EFM spectral sequence is as depicted:

u = 0

u = 1

u = 2

u = 3

p = 0 p = 1 p = 2

Ω̃A

A/2{η}

Figure 13. EFM SS
E1-page, q = 2
d1(ca) = âη

u = 0

u = 1

u = 2

u = 3

p = 0 p = 1 p = 2
A/I2{η}

Figure 14. EFM SS
E2 ≅ E∞-page, q = 2

For degree reasons, dr(η) = 0 for all r. By the coaction map (3.30), we have
the differential d1(ca) = âη in the spectral sequence; this is the differential drawn

in red in the q = 2 diagram in Figure 13. Consequently Cotor1,2
A[t]

(A,LA2−buds) is a

free A/I2-module on the generator η. We also have that Cotor0,2
A[t]

(A,LA2−buds) is

the kernel of that d1-differential, but this Cotor-group was calculated already in
section 3.4.

5.2.3. Internal degree q = 4. We use isomorphism (4.49), obtained from the 2-adic
spectral sequence, to identify the u = 0-line in the EFM spectral sequence E1-term:
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u = 0

u = 1

u = 2

u = 3

p = 0 p = 1 p = 2

Sym2
A/2(Ω̃A)

Ω̃A{γ} Ω̃A{η}

A/4{Qη} A/2{η2}

Figure 15. EFM SS E1-page, q = 4
d1(caη) = âη2 d1(caγ) = 2âQη

d1(cacb) = 0 d2(cacb) = âb̂Qη

u = 0

u = 1

u = 2

u = 3

p = 0 p = 1 p = 2

δ(I2)

A/I2
2{Qη} A/I2{η2}

Figure 16. EFM SS E∞-page, q = 4

The differential d1 ∶ Sym2
A/2(Ω̃A)→ Ω̃A{η} vanishes due to the equalities

d1(cacb) = (âcb + b̂ca)η
= ((a2cb + bca) + (acb + b2ca))η
= (cab + cab)η
= 0(5.61)

in the associated graded E0LA2−buds of the symmetric filtration on LA2−buds. Mean-

while, by the Leibniz rule, the differential d1 ∶ Ω̃A{η} → A⊗Z Cotor2,4
Z[t](Z, L

Z
2−buds)

is merely η times the q = 2 d1-differential Ω̃A → A ⊗Z Cotor1,2
Z[t](Z, L

Z
2−buds). Since

t⊗t⊗1 is not a coboundary in the cobar complex of Z[t] with coefficients in LZ
2−buds,

η2 is nonzero, although 2η2 = 0. Hence the kernel of d1 ∶ E1,4,1
1 → E2,4,0

1 is the kernel
of the A-module homomorphism

Ω̃A{η}→ A/2{η2}
caη ↦ âη2.
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Since d1(cacb) was already shown to vanish, the kernel of d1 ∶ E1,4,1
1 → E2,4,0

1 is

E1,4,1
2 . Hence we have an isomorphism

E0,2,1
2

≅Ð→ E1,4,1
2

x↦ xη.

Since E0,2,1
2 ≅ Cotor0,2

LA
2−buds

B
(LA2−buds, LA2−buds) is trivial by Theorem 3.4.1, E1,4,1

2

also is trivial.
We have the d2-differential E0,4,2

2 → E1,4,0
2 given by the cobar complex calculation

d2 ∶ Sym2
A/2(Ω̃A)→ E1,4,0

2

d2(cacb) = [(ca ⊗ 1 + â⊗ t)(cb ⊗ 1 + b̂⊗ t) − cacb ⊗ 1](5.62)

= [(âcb + b̂ca)⊗ t + âb̂⊗ t2]
= âb̂ [γ ⊗ t + 1⊗ t2](5.63)

= âb̂Qη,
with (5.63) a consequence of (5.60). Hence we have isomorphisms

Cotor1,4
A[t]

(A,LA2−buds) ≅ E1,4,0
3

≅ E1,4,0
∞

≅ A/I2
2{Qη}.

As a corollary of Remark 2.4.3 and Theorem 5.2.2, we have:

Corollary 5.2.3. Let A be a Noetherian integral domain of characteristic zero.
Then H1

fl(M2−buds
fmA ;ω) is a finite abelian group of order equal to 2N1 , where N1

is the number of F2-points of SpecA, i.e., the logarithmic derivative of the 2-local
zeta-function Z(SpecA, t) evaluated at t = 0.
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