TOPOLOGICAL MODULAR FORMS AND MAASS FORMS SEMINAR: LECTURE 1

LUCA CANDELORI

In the first part of this seminar we will be concerned with analytic properties of *L*-functions, such as analytic continuations, functional equations and special values. We will start by exploring the analytic properties of the most elementary *L*-function, the *Riemann* ζ function. This is a function of $s \in \mathbb{C}$ defined by:

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p \left(1 - \frac{1}{p^s}\right)^{-1}.$$

For $\Re[s] > 1$ the above series converges uniformly on compact subsets of \mathbb{C} , and therefore it is an analytic function there. The goal of this lecture is to present Riemann's proof of the functional equation of ζ relating $\zeta(s)$ to $\zeta(1-s)$. As a by-product, we will see that $\zeta(s)$ has meromorphic continuation to all of \mathbb{C} with a simple pole at s = 1.

The functional equation of ζ is stated in terms of the Γ -function, a classical complex analytic function whose basic properties we briefly recall.

DEFINITION 1. For $s \in \mathbb{C}$, the Γ -function is defined as:

$$\Gamma(s) := \int_0^\infty e^{-t} t^s \, \frac{dt}{t}$$

Note that the integral defining the Γ -function converges at ∞ for all s, but at 0 it only converges for $\Re[s] > 0$. How can we then extend Γ to all of \mathbb{C} ? The idea is to use the following property of $\Gamma(s)$:

THEOREM 2 (Functional equation of $\Gamma(s)$). For all s such that $\Re[s] > 0$,

$$\Gamma(s+1) = s\Gamma(s)$$

Proof. Exercise. (Hint: use integration by parts.)

Using this functional equation, we can extend Γ to $\Re[s] < 0$ by recursively setting $\Gamma(s) := \Gamma(s+1)/s$ (note that the pole at 0 is nevertheless carried over in the analytic continuation). Consequently, we obtain

• $\Gamma(s)$ extends to a meromorphic function on all of \mathbb{C} with simple poles at all negative integers.

• For all positive integers n,

$$\Gamma(n) = (n-1)!$$

Therefore Γ can be viewed as a complex analytic function interpolating the values of the factorial function.

• $\Gamma(s) \neq 0$ for all $s \in \mathbb{C}$. This can be seen from the well-known identity

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)}$$

together with the functional equation.

We are now ready to state the functional equation of the Riemann zeta function:

THEOREM 3 (Functional equation of $\zeta(s)$). Let $\Lambda(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s)$. Then

$$\Lambda(s) = \Lambda(1-s)$$

for all s with $\Re[s] > 1$.

Now by definition $\zeta(s)$ converges for $\Re[s] > 1$. Thanks to the functional equation of Theorem 3, we can extend $\zeta(s)$ to $\Re[s] < 0$. Convergence on the remaining strip $0 \leq \Re[s] \leq 1$ (the **critical strip**) will be deduced as a by-product of the proof of Theorem 3.

We will follow Riemann's proof of Theorem 3, which will lend itself to a wide range of generalizations. The proof exploits the **theta function** $\theta : \mathbb{R}_{>0} \to \mathbb{C}$ given by:

$$\theta(t) := \sum_{n \in \mathbb{Z}} e^{-\pi n^2 t}$$

We want to view this function as a Mellin transform.

DEFINITION 4. Let $g : \mathbb{R}_{>0} \to \mathbb{C}$ be a continuous function of rapid decay (i.e. $|g(t)| \ll t^{-N} \forall N \ge 0$). Then the Mellin transform of g is the function:

$$M(g)(s) := \int_0^\infty g(t)t^s \, \frac{dt}{t}$$

Note that the rapid decay of g implies that the integral defining the Mellin transform always converges at ∞ .

EXAMPLE 5. $\Gamma(s) = M(e^{-t})(s)$.

In the proof of Theorem 3 the basic principle is that $\Lambda(s)$ essentially is the Mellin transform of θ . The transformation properties of θ (which is our first example of a 'modular form', to be defined later) then translate into the functional equation of Λ via the Mellin transform.

An immediate problem with this idea is that $\theta(t) = \sum_{n \in \mathbb{Z}} e^{-\pi n^2 t}$ is **not a function of rapid decay**, since the constant term in the series is not of rapid decay. We then replace θ by:

$$\omega(t) := \sum_{n=1}^{\infty} e^{-\pi n^2 t}$$

which is related to θ by:

$$\theta(t) = 1 + 2\omega(t)$$
 , $\omega(t) = \frac{\theta(t) - 1}{2}$.

The function $\omega(t)$ is of rapid decay, and therefore we can take its Mellin transform.

THEOREM 6.

$$M(\omega)(s) = \pi^{-s} \Gamma(s) \zeta(2s) = \Lambda(2s)$$

Proof. By definition, we have:

$$M(\omega)(s) = \int_0^\infty \omega(t) t^s \frac{dt}{t} = \int_0^\infty \left(\sum_{n=1}^\infty e^{-\pi n^2 t}\right) t^s \frac{dt}{t}.$$

Now all the terms in the infinite series are of rapid decay, and therefore we can switch the order of integration (exercise!):

$$\int_0^\infty \left(\sum_{n=1}^\infty e^{-\pi n^2 t}\right) t^s \frac{dt}{t} = \sum_{n=1}^\infty \int_0^\infty e^{-\pi n^2 t} \cdot t^s \frac{dt}{t}.$$

Each term of the series looks almost like a Γ function. In fact, if we make the change of variables $u = \pi n^2 t$ for each term in the series, we get:

$$\sum_{n=1}^{\infty} \int_0^\infty e^{-\pi n^2 t} \cdot t^s \, \frac{dt}{t} = \sum_{n=1}^\infty \int_0^\infty e^{-u} \pi^{-s} n^{-2s} u^s \, \frac{du}{u}$$
$$= \pi^{-s} \cdot \left(\int_0^\infty e^{-u} u^s \, \frac{du}{u} \right) \cdot \left(\sum_{n=1}^\infty n^{-2s} \right)$$
$$= \pi^{-s} \Gamma(s) \zeta(2s)$$

The point of expressing $\Lambda(s)$ as the Mellin transform of $\omega(t)$ is that ω enjoys nice transformation properties coming from those of θ .

THEOREM 7 (Functional equation for θ). For all t > 0,

$$\theta\left(\frac{1}{t}\right) = \sqrt{t} \cdot \theta(t).$$

Proof. The proof uses Poisson summation, and can be found in every classical reference on theta functions. \Box

COROLLARY 8 (Functional equation for ω). For all t > 0,

$$\omega\left(\frac{1}{t}\right) = \sqrt{t} \cdot \omega(t) + \frac{\sqrt{t}}{2} - \frac{1}{2}.$$

Proof.

$$\omega\left(\frac{1}{t}\right) = \frac{\theta(1/t) - 1}{2}$$
$$= \frac{\sqrt{t} \cdot \theta(t) - 1}{2}$$
$$= \frac{\sqrt{t} \cdot (1 + 2\omega(t)) - 1}{2}$$
$$= \sqrt{t} \cdot \omega(t) + \frac{\sqrt{t}}{2} - \frac{1}{2}$$

We are now ready to prove the functional equation of $\zeta(s)$ and its analytic continuation (to the critical strip as well).

Proof of Theorem 3. By Theorem 6 we know that:

$$\Lambda(s) = M(\omega)(s/2) = \int_0^\infty \omega(t) t^{s/2} \frac{dt}{t}.$$

This integral converges for all s near ∞ , since ω is of rapid decay. However, the convergence at 0 will depend on the growth of $\omega(t)$ near 0. Now

$$\omega(t) \approx C \cdot t^{-1/2}$$
 as $t \to 0$ (Exercise)

and therefore the integral converges provided $\Re[s] > 1$ (we know that Λ has a pole at s = 1 coming from ζ , therefore we cannot hope to go past that just by using the definition).

Next, we break down the integral into two pieces:

(1)
$$\int_0^\infty \omega(t) t^{s/2} \frac{dt}{t} = \int_0^1 \omega(t) t^{s/2} \frac{dt}{t} + \int_1^\infty \omega(t) t^{s/2} \frac{dt}{t}.$$

Note that the second integral in (1) converges for all $s \in \mathbb{C}$, whereas the first integral only converges for $\Re[s] > 1$. We would then like to change the first integral into one that looks like the second, i.e. with limits from 1 to ∞ and with ω in the integrand. Of course, this can be accomplished with the substitution $t \to 1/t$ and by using the functional equation for ω :

$$\int_0^1 \omega(t) t^{s/2} \frac{dt}{t} = \int_\infty^1 \omega\left(\frac{1}{t}\right) t^{-s/2} \frac{-dt}{t} \qquad \text{(substitution } t \to 1/t)$$
$$= \int_1^\infty \left(\sqrt{t} \cdot \omega(t) + \frac{\sqrt{t}}{2} - \frac{1}{2}\right) t^{-s/2} \frac{dt}{t} \qquad \text{(functional equation of } \omega.)$$

Substituting into (1) we obtain:

$$\begin{split} \Lambda(s) &= \int_0^\infty \omega(t) t^{s/2} \frac{dt}{t} = \int_1^\infty \omega(t) t^{\frac{1-s}{2}} \frac{dt}{t} + \int_1^\infty \omega(t) t^{s/2} \frac{dt}{t} + \frac{1}{2} \int_1^\infty t^{\frac{-1-s}{2}} dt - \frac{1}{2} \int_1^\infty t^{-1-s/2} dt \\ &= \int_1^\infty \omega(t) t^{\frac{1-s}{2}} \frac{dt}{t} + \int_1^\infty \omega(t) t^{s/2} \frac{dt}{t} - \frac{1}{1-s} - \frac{1}{s}. \end{split}$$

From this expression we deduce that $\Lambda(s)$ has meromorphic continuation to all of \mathbb{C} with simple poles at s = 0 and s = 1 and moreover that

$$\Lambda(s) = \Lambda(1-s).$$

Since $\Lambda(s) = \pi^{s/2} \Gamma(s/2) \zeta(s)$, and $\Gamma(s) \neq 0$ for all $s \in \mathbb{C}$, we obtain the following consequences of Theorem 3:

- $\zeta(s)$ has a pole at s = 1 (since $\Gamma(s)$ is analytic at s = 1/2 but $\Lambda(s)$ has a simple pole at s = 1).
- $\underline{\zeta(s)}$ is analytic at 0 and $\underline{\zeta(0)} = -1/2 \neq 0$ (since $\Gamma(s)$ has a simple pole at s = 0 and so does $\Lambda(s)$).
- $\zeta(s)$ vanishes at all even integers < 0 (since $\Gamma(s)$ has poles at negative integers but $\overline{\Lambda(s)}$ does not).

These observations should give a rough picture of how $\zeta(s)$ looks like in the region $\Re[s] < 1$.