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Abstract. Time-series data are amongst the most widely-used in biomedi-
cal sciences, including domains such as functional Magnetic Resonance Imag-

ing (fMRI). Structure within time series data can be captured by the tools
of topological data analysis (TDA). Persistent homology is the mostly com-

monly used data-analytic tool in TDA, and can effectively summarize com-

plex high-dimensional data into an interpretable 2-dimensional representation
called a persistence diagram. Existing methods for statistical inference for

persistent homology of data depend on an independence assumption being sat-

isfied. While persistent homology can be computed for each time index in a
time-series, time-series data often fail to satisfy the independence assumption.

This paper develops a statistical test that obviates the independence assump-

tion by implementing a multi-level block sampled Monte Carlo test with sets
of persistence diagrams. Its efficacy for detecting task-dependent topological

organization is then demonstrated on simulated fMRI data. This new statis-

tical test is therefore suitable for analyzing persistent homology of fMRI data,
and of non-independent data in general.

1. Introduction. Functional magnetic resonance imaging (fMRI) is a tool that3

provides a rich avenue for studying brain activity via the hemodynamic responses.4

Making sense of the complex spatio-temporal relationships in fMRI data can provide5

insight into the functional and structural organization of the brain. A common goal6

in fMRI experiments is to establish associations between changes in the fMRI signal7

induced by the given task used specifically to evoke changes in the signal. Statistical8

and data-analytic methods play a pivotal role in identifying and evaluating the9

validity of such associations.10
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Statistical methods for fMRI analyses differentiate themselves by the type of1

effects they evaluate, and the manner by which they incorporate spatial informa-2

tion in the analysis. The general linear model (GLM), a predominant statistical3

workhorse, mostly evaluates effects under the assumption that the relationship be-4

tween the signal and any underlying variables or co-variates is linear. However, such5

effects or associations are frequently non-linear, and not straightforwardly discover-6

able. The fMRI signal is high dimensional, and characterized by hidden properties,7

the nature of which are not always known a priori. In this vein, topological data8

analysis (TDA) is in fact a viable option for exploring associations related to the9

topological or geometric characteristics of fMRI [21]. Within TDA, persistent ho-10

mology is one of the best known tools for characterizing topological features of a set11

of points in a relatively high-dimensional space, such as the four-dimensional space12

(three spatial dimensions, and one signal amplitude dimension) in which fMRI data13

naturally sit.14

Persistent homology is a technique for discovery, but many scientific applications15

of any technique demand hypothesis testing to validate discoveries. Thus, if tools16

like persistent homology are to be widely adopted for fMRI research (and, more17

broadly, by scientists in biomedical and other fields), it is necessary to incorporate18

conventional statistical ideas for hypothesis testing into their application. In partic-19

ular, it is necessary to have a statistical test which can be applied to the results of20

using persistent homology to summarize fMRI data (or, more generally, to any class21

of time series data). The statistical test should ideally yield a numerical measure,22

such as a p-value, that is informative of the statistical significance of any kind of23

topological phenomena encoded in persistence diagrams. Our explicit goal herein is24

to provide a unique statistical measure that, when applied to persistent homology,25

permits conventional hypothesis testing to derive the significance of differences in26

topological properties summarized across experimental conditions or groups. Be-27

cause we focus on time series data, we describe a method for determining whether28

topological characteristics within a set of time series intervals are significantly dif-29

ferent from those in another set of time series intervals, where these intervals are30

related to different experimental conditions. This investigation builds on our previ-31

ous work [21] where we demonstrated the use of persistent homology to characterize32

structure in fMRI data, though without a framework for statistical inference.33

We begin with the original motivating example for this paper: suppose we are34

given the data of an fMRI (functional magnetic resonance imaging) scan for a single35

participant in a study. This data set consists of, for each time index t and each36

spatial coordinate (x, y, z) in some representative set of spatial locations within the37

physical space of the brain, a number f(x, y, z, t), the fMRI signal amplitude,38

which varies with the ratio of oxygenated hemoglobin to deoxygenated hemoglobin39

within the brain tissues near spatial location (x, y, z) at time t. The fMRI signal40

amplitude f(x, y, z, t) is understood to vary, in an indirect and highly nonlinear41

way, with neuronal activity in the brain near (x, y, z) shortly preceding time t. In42

a task-based fMRI acquisition, the participant is engaged in a controlled cognitive43

experiment while fMRI data are being contemporaneously acquired. In an epoch44

structure for an associative memory experiment for instance:45

Epoch 1: the person is asked to memorize associations between different classes46

of memoranda,47

Epoch 2: the person’s memory for those associations is tested using cued recall.48

A typical data-analytic approach might involve:49
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• the use of a spatial “mask” to the data, focusing analyses on a specific region1

(e.g. the hippocampus),2

• before asking whether the masked fMRI data collected in the two epochs is3

statistically significantly different from each other.4

If statistically significant differences in activity in the brain region (e.g., the5

hippocampus) differs across each of the epoch types or from some baseline, then by6

inference the task exerts significant effects on the region. Of course, this deductive7

method is not restricted to fMRI data, but generalizes to any time series data8

originating from any empirical study1.9

With the rise of the use of topological methods in data analysis in the past ten10

years (see [23] for an introduction and brief survey) and in fMRI in particular (see11

[21] for an introduction and brief survey), here, we motivate a combination of sta-12

tistical inference with topological methods. The idea is to calculate the persistence13

diagram (see [16] for an introduction) of the time-series data at each time index14

separately, and then to ask whether the temporal organization of the data into15

epochs can be recovered from the persistence diagrams in some statistically signif-16

icant way. A Monte Carlo test for statistically significant clustering of persistence17

diagrams was given in [20] and generalized in [4], but in both of those references,18

an independence hypothesis on the persistence diagrams makes the resulting test19

unsuited to time-series data. In particular, fMRI time-series data usually fails to20

satisfy an independence assumption, since ongoing state-based processes in a given21

brain region can cause the collected fMRI signal in that region at a given time index22

to be dependent on the collected signal at the previous time index. More generally,23

it is well-accepted that the fMRI signal is an index of dynamic continuing processes,24

the state of the signal at any time t is dependent on the signal at time t − 1, and25

will be predictive to some degree of the signal at time t+ 1.26

In the current paper we lift the independence assumption by describing a multi-27

level block-sampled version of that Monte Carlo test. We demonstrate the utility of28

our version on simulated fMRI time series data but reiterate its suitability for hy-29

pothesis testing relating to any time-series data. We provide the R software package,30

that our group developed for this test, at https://github.com/hassan-abdallah/31

TimeSeriesTDA. Furthermore, while time-series data is the main area of applica-32

tion for this test, it is also useful on any other set of observations in which the33

independence hypothesis fails.34

As input, our analytic methods takes a) a set of points of a time-series (each35

of which is a point cloud2) b) a labelling of the points (i.e., which epoch do they36

1As an example which is far removed from fMRI, we might consider average property value
pv(x, y, t) in some city, as a function of time t and of longitude-latitude coordinate pairs (x, y).

At each individual time index t, the persistent H1 of the point cloud of triples (x, y, pv(x, y, t))

in R3 is sensitive to pockets of significantly higher or significantly lower property value than their
surroundings. This persistent H1 changes over time as the property values change, and over

long periods of time, one might imagine that certain economic policies might have a statistically
significant impact on the presence and distinctness of these pockets of higher or lower property

value. This yields a labelling scheme, in the sense of our Definition 4.2, by labelling each time

index with the economic policies in effect during that time. Our statistical test yields a way to
determine whether the economic policies indeed have a statistically significant effect on the presence
and distinctness of these pockets of higher or lower property value, insofar as these pockets are

visible in persistent homology.
2A point cloud is a finite subset of the Euclidean space Rn for some n. Consequently our

analytic method requires that the observations have some kind of spatial organization to begin
with.

https://github.com/hassan-abdallah/TimeSeriesTDA
https://github.com/hassan-abdallah/TimeSeriesTDA
https://github.com/hassan-abdallah/TimeSeriesTDA
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belong to), c) a grouping of the points into exchangeability blocks, d) a labelling1

scheme for those blocks. A careful definition of this kind of structure is given in2

Definitions 4.1 and 4.2. The output of the analytic method is a p-value which3

reports on whether the persistent homology of the point clouds of each given label4

are statistically significantly distinct from the point clouds with other labels.5

A brief introduction to persistent homology is given, though we direct interested6

readers to a thorough introduction and overview given by [6]. For an extended7

discussion of the relevance of topological summaries to fMRI, and a detailed com-8

parison of the kinds of insights about fMRI data obtainable via persistent homology,9

but not by classical statistical methods (e.g. regression analysis), we refer the reader10

to the paper [21], which is devoted to that topic. There are a variety of papers on11

TDA applied to time-series data, including [22], [14], and [18]; see [17] and [19] for12

nice surveys of some current ideas. The questions about hypothesis testing which13

motivate the present paper are not taken up in those works, however.14

2. Background on persistent homology. Topological data analysis involves15

computations of homology and persistent homology. In this section, we offer a primer16

on those ideas, but for reasons of space, restrict its scope. For a more complete in-17

troductory treatment of persistent homology, see [16]. For a more comprehensive18

introduction to topological data analysis in general (rather than specifically persis-19

tent homology), we refer the reader to [6]. Even more generally, a more completely20

introductory treatment of homology can be found in any textbook on algebraic21

topology, such as the widely used book [11].22

Before we begin, we note that persistent homology is defined on a choice of23

“point cloud” (see footnote for the definition of this term) together with a choice of24

coefficient ring. In most practical applications of persistent homology, the coefficient25

ring has been chosen to be the field with two elements, F2 = {0, 1}; see for example26

Table 3.1 in [15] for a 2015 list of commonly-used persistent homology software27

libraries which use F2 as either the default coefficient ring or as the only supported28

coefficient ring, e.g. Perseus, Dionysus, and GUDHI. We adhere to that convention29

in this paper: throughout, all homology is taken with coefficients in F2.30

Now we sketch the definition of a simplicial complex and its homology. We begin31

with a set of points v0, v1, ..., vk in Rn such that the vectors v1−v0, v2−v0, ..., vk−v032

are linearly independent. Taking the convex hull [v0, v1, ..., vk] of this set, we form33

its k-simplex. A face of that k-simplex is then the convex hull of a proper subset34

of {v0, v1, ..., vk}. So, for example, a 1-simplex is a line segment, and its faces are35

the endpoints of that line segment. Similarly, a 2-simplex is a solid triangle, and its36

faces are the edges of the triangle. A 3-simplex is a solid tetrahedron, and its faces37

are the triangles comprising the surface of the tetrahedron.38

Next, consider a countable set K of simplices in Rn such that:39

• for each simplex in K, each of its faces are also contained in K, and40

• the intersection of two simplices in K is either a face of both simplices, or is41

empty.42

Such a set K is known as a simplicial complex. The intuition here is that a simplicial43

complex K is a geometric object which is “built” by taking a union of simplices,44

allowing any two to intersect only along a common face. If a simplicial complex K45

has only finitely many simplices, then K is a finite simplicial complex.46

Let K be a simplicial complex, and for each integer k, consider the vector space
Vk(K) of formal F2-linear combinations of k-simplices in K. That is, Vk(K) is the
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vector space of simplicial k-chains. Then the boundary map, extending to k-chains
by linearity, is given by

δk(K) : Vk(K) −→ Vk−1(K)

[v0, v1, ..., vk] 7−→
k∑

j=0

[v0, v1, ..., v̂j , ..., vk],

where v̂j indicates that vj is omitted from the simplex. The simplicial chain complex1

of the finite simplicial complex K is the sequence of F2-vector spaces and F2-linear2

functions3

· · · δk+1−−−→ Vk(K)
δk−→ Vk−1(K)

δk−1−−−→ · · · δ2−→ V1(K)
δ1−→ V0(K)

δ0−→ 0.

The image (that is, range) of δk+1 : Vk+1(K) → Vk(K) is called the vector space of4

k-boundaries of K, while the kernel (that is, nullspace) of δk : Vk(K) → Vk−1(K)5

is called the vector space of k-cycles of K.6

The boundary maps in the simplicial complex satisfy δk◦δk+1 = 0 for each integer7

k, that is, every k-boundary is also a k-cycle. Consequently we have a well-defined8

quotient vector space ker δk/im δk+1 which is trivial if and only if every k-cycle is9

a k-boundary. The vector space ker δk/im δk+1 is called the kth homology of K,10

written Hk(K). When it is important to remember that the coefficient ring has11

been taken to be the field F2, we write Hk(K;F2) instead of Hk(K).12

Now, given a simplicial complex K, consider a family {Ka : a ∈ R} of simplicial13

sub-complexes of K such that Km ⊆ Kn whenever m ≤ n. That is, for each real14

number a, Ka is a simplicial sub-complex of K, and if a, b are real numbers with15

a < b, then every simplex in Kb is also in Ka. (So, as the subscript a gets smaller,16

the simplicial complex Ka also gets smaller.) The simplicial complex K together17

with the family {Ka : a ∈ R} is known as a filtered simplicial complex. For a ≤ b,18

denoting the boundary maps on Vk(Ka) and Vk(Kb) by δak and δbk, respectively, we19

naturally have inclusion maps ι : Ka −→ Kb, which, in turn, gives inclusion maps20

ι : Im(δak+1) −→ Im(δbk+1) and ι : Ker(δak) −→ Ker(δbk).21

If the simplicial complex K is finite, then for most pairs of real numbers a < b22

with a sufficiently close to b, the subcomplex Ka of Kb is simply the entirety of23

Kb. There is only a finite list of real numbers b such that Ka differs from Kb for all24

a < b, no matter how close a is to b. Writing b1, b2, . . . , bm for that finite sequence25

of real numbers, we have a sequence of F2-linear functions26

0 → Hk(Kb1) → Hk(Kb2) → · · · → Hk(Kbm)

called the persistent homology groups of K.27

An element z of Hk(Kbi) has a birth radius, that is, the least real number bh28

such that z is in the image of the function Hk(Kbh) → Hk(Kbi). Similarly, z has a29

death radius, that is, the least real number bj such that z maps to zero under the30

function Hk(Kbi) → Hk(Kbj ). If the image of z is nonzero in Hk(Kbj ) for all bj ,31

then the death radius of z is defined to be ∞. (The birth radius of z, however, is32

always finite.)33

We are now prepared to define the persistence diagram. The kth persistence34

diagram of the kth persistence module is a multiset3 of points in R × (R ∪ {∞}).35

Each point in the diagram represents a homology class; the x-coordinate of the point36

3Recall that a “multiset” is a set with (unordered) multiplicities, that is, an element of a

multiset can be contained in that multiset “multiple times.” A typical way to make this intuitive

idea rigorous is to simply think of a multiset as an ordinary set S equipped with an equivalence
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representing a homology class z is the birth radius of z, while the y-coordinate1

of that point is the death radius of z. By convention, we include (with infinite2

multiplicity) all points such that x = y (that is, the points lying along the diagonal).3

The further a point is from the diagonal of a persistence diagram, the longer the4

homology class persists (i.e., is nonzero) as the filtration parameter ranges over the5

real numbers. The intuition here, then is that the closer a point in the persistence6

diagram is to the diagonal, the more we think of the topological feature represented7

by that homology class as a kind of “topological noise,” rather than a meaningful8

topological pattern involving and organizing a large part of the data set.9

The typical intended use of persistent homology for the sake of data analysis10

is that one begins with a point cloud, one builds a finite filtered simplicial com-11

plex whose structure reflects the geometry of the point cloud in some desired way,12

and then one calculates the persistent homology groups of that filtered simplicial13

complex. We have explained the last step, but we have not yet explained how to14

build a finite filtered simplicial complex from a point cloud. There are several ways15

to do this: a point cloud has an associated Čech complex, Vietoris-Rips complex,16

Delaunay complex, witness complexes, and others, each of which is a finite filtered17

simplicial complex whose structure “encodes” the geometry of the point cloud in18

some particular way. See [8] for discussion and comparison of the Čech and Vietoris-19

Rips complexes, for example. For brevity, here we do not attempt a survey of these20

various filtered simplicial complexes, but we at least give a definition of the Čech21

complex, since it is the most geometrically straightforward: given a point cloud22

X ⊆ Rn and a subset U of X, the diameter of X is the least real number ϵ such23

that every element of U is contained in a closed ball of radius ϵ in Rn. The Čech24

complex of X is the filtered simplicial complex {Ka : a ∈ R} such that Ka is the25

union of the convex hulls of each of the subsets of X of diameter < a.26

The persistent homology groups have intuitive geometric significance, of which27

we now give a very brief account. The dimension of the vector space H0(K) counts28

the connected components in the geometric realization of the simplicial complex K.29

Similarly, the dimension of the vector space H1(K) counts noncontractible loops (up30

to “homology”, a certain equivalence relation) in the geometric realization of K.31

The dimension of the vector space H2(K) counts noncontractible spheres (again,32

up to “homology”) in the geometric realization of K; one often thinks of such33

noncontractible spheres as being wrapped around three-dimensional voids in the34

geometric realization. As applied to a point cloud arising from real-world data,35

persistent H0 measures clustering at different scales, while persistent H1 measures36

loop-shaped “gaps” at different scales in the point cloud, and persistentH2 measures37

open “voids” at different scales in the point cloud. The persistent Hn for n > 238

measures higher-dimensional analogues of loop-shaped gaps, voids, etc39

As an example, consider a point cloud formed by sampling points from an an-40

nulus. Figure 1 shows a side-by-side comparison of balls of radius 1
3 around each41

point and a visualization of the associated simplicial complex. Figure 2 shows the42

persistence diagram computed from that point cloud. The triangles in the persis-43

tence diagram represent 1-dimensional homological features which occur as a result44

of non-contractible loops in the filtered simplicial complex. The triangles closer to45

the diagonal (i.e. lower persistence features) are a result of smaller loops in the46

point cloud that exist because of our noisy sampling of the annulus. The single47

relation. Given an element s of S, the multiplicity of s in S is understood to be the number of
elements in the equivalence class of s.
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triangle far from the diagonal (i.e. a high persistence feature) is a result of the large1

hole in the center of the point cloud.2

For more details, the reader can consult the references cited at the start of this3

section.4

Figure 1. On the left is a plot of the point cloud with balls of
radius 1

3 around each point. On the right is a visualization of the

simplicial complex for filtration= 1
3 .

Figure 2. The persistence diagram computed from the point
cloud in Figure 1.
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3. Summary of Existing Hypothesis Testing Methods for Topological1

Data Analysis. The purpose of this section is to discuss (and extend via [4]) the2

methods used in [20] which we will apply to our fMRI data. To clarify, everything3

we discuss in this section is due to [20] and [4].4

We begin by involving some ideas from statistics alongside the basic notions in5

persistent homology.The idea here is as follows: Imagine that we collect fMRI data6

using a task that oscillates between blocks of multiple task active conditions and rest7

(i.e., what is known as a typical “block design”). We want to calculate the persistent8

homology of all the data acquired in each block and develop a statistical test (i.e.,9

a hypothesis test) to determine whether the persistence diagrams generated from10

one condition are distinguishable from persistence diagrams generated from another11

condition within the same acquisition. Thus, in order to assess the strength of evi-12

dence against the claim that the two conditions elicit indistinguishable topological13

organization, we can study the distributions of persistence diagrams associated with14

each condition. The goal of Robinson and Turner’s work in [20] is to use hypothe-15

sis testing to compare two groups of persistence diagrams. The methods discussed16

in [20] are extended in [4] in order to use hypothesis testing to compare multiple17

groups of persistence diagrams. The need for us to extend the comparisons between18

persistence diagrams to 3 or more groups of persistence diagrams comes from the19

multi-level block sampling framework that we apply to our time-series data in the20

next section of this paper, where we freely permute multiple blocks (and, hence,21

multiple groups of persistence diagrams) to carry out our hypothesis test.22

Our hypothesis test begins with a set of n persistence diagrams divided into23

s groups β1 = {X1,1, X1,2, ..., X1,n1}, β2 = {X2,1, X2,2, ..., X2,n2}, ... , βs =24

{Xs,1, Xs,2, ..., Xs,ns} containing n1, n2, ... , ns diagrams, respectively, with this di-25

vision into multiple groups done according to some initially-chosen labeling scheme.26

The hypothesis test corresponding to the case s = 2 is the subject of [20], while27

the generalization to arbitrary finite s was the focus of [4]. The null hypothesis is28

that the underlying distribution of β1 is the same as the underlying distribution29

of β2. The alternative hypothesis is that the underlying distributions are different.30

An observed test statistic is computed using the initial labeling scheme, and com-31

puted further for each permutation of labels in the permutation test. The key to32

computing the final p-value, which assesses the strength of evidence against the null33

hypothesis, then, is to compute the ratio of permutations that yield a test statis-34

tic more extreme than the observed statistic to the total number of permutations.35

We note that a necessary assumption for the test is that observations (respectively,36

persistence diagrams) are independent.4 Also, the permutation test we carry out is37

a randomization test. As mentioned in Section 2.6 of [20], using a randomization38

test avoids any need to hypothesize a distribution model from which persistence39

diagrams are drawn under the null hypothesis .40

3.1. Metric on Persistence Diagrams. In order to carry out our hypothesis41

test, we first need to introduce a metric, i.e., a distance function, on the space of42

persistence diagrams. This metric allows us to compare two persistence diagrams43

and is a key piece of the test statistic that we’ll utilize in this hypothesis test.44

4Since our goal is to have a statistical test that can be applied to the persistence diagrams
of non-independent time series data, in the next section, we apply a multi-level block sampling

framework to satisfy the exchangeability criteria for our permutation test, thereby removing the
requirement of our observations being independent.
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The appropriate distance metric between persistence diagrams X and Y that we
consider is the bottleneck distance

d∞(X,Y ) = inf
bij.ϕ:X−→Y

sup
x∈X

||x− ϕ(x)||∞

which occurs as the limit of the metric

dp(X,Y ) =

(
inf

bij.ϕ:X−→Y

∑
x∈X

||x− ϕ(x)||pp

)1/p

as p goes to infinity, where ||x−ϕ(x)||pp is the Lp-norm between x and ϕ(x) raised to1

the p-th power, and the infimum is taken over all bijections ϕ between the points of2

X and the points of Y . Note that, as a metric on the space of persistence diagrams,3

the bottleneck distance d∞(X,Y ) between X and Y is indeed symmetric. This4

follows since a bijection ϕ : X −→ Y also defines a bijection ϕ−1 : Y −→ X. We5

now unpack the construction of these metrics.6

The metrics take into account an optimal bijection ϕ : X −→ Y between the7

points of X and the points of Y . A bijection ϕ : X −→ Y is said to be “optimal”8

if it minimizes the total cost
∑
x∈X

||x − ϕ(x)||2. Optimal bijections are found by9

using the Hungarian algorithm. Given two sets of elements S = {s1, ..., sn} and10

T = {t1, ..., tn}, and a square matrix A, where the ith row of A is represented by11

the element si and the jth column is represented by the element tj , one can apply12

the Hungarian algorithm to A to find the optimal bijection between elements of S13

and elements of T . (The original reference for the Hungarian algorithm is the 195514

paper [12], but today the Hungarian algorithm is a standard topic covered in many15

discrete mathematics textbooks, so many modern expositions are available.)16

Here is a bit more detail about what the bottleneck distance between two persis-17

tence diagrams is. If X has points x1, ..., xn and Y has points y1, ..., ym, one takes18

copies xn+1, ..., xn+m and ym+1, ..., ym+n of the diagonal in a persistence diagram,19

where this diagonal is the line of slope 1 in the birth-death plane, and constructs20

the (n+m)× (n+m) matrix in which the (i, j) entry is the cost ||xi − yj ||22. When21

one of xi or yj is a copy of the diagonal, this is the perpendicular distance between22

xi and yj . When both xi and yj are copies of the diagonal, the cost is simply 0.23

3.2. Test Statistic and p-value for Comparing Groupings of Persistence
Diagrams. Now that we have established an appropriate metric on two persistence
diagrams, we can formulate a test statistic for our hypothesis test. The test statistic
is the joint loss function given by

F ′
p,q({X1,i}, {X2,i}, ..., {Xs,i}) :=

s∑
m=1

1

2nm(nm − 1)

nm∑
i=1

nm∑
j=1

dp(Xm,i, Xm,j)
q,

where p ∈ [1,∞), q ∈ [1,∞). This joint loss function, as a test statistic, was24

introduced in [4] as a generalization of the s = 2 case considered in [20]. (In [4],25

only the case of p = 2 and q = 2 is considered, but the extension to other values of26

p and q is straightforward. In our application of these ideas, we take p to be infinity27

and q to be 1.) Since the groups β1, β2, ... , βs are determined by a choice of28

labeling L, we will use the notation F ′(L) to mean the joint loss function computed29

on the s groups of persistence diagrams determined by L, and F ′(Lobserved) to mean30

the joint loss function computed on the s groups of diagrams determined by the31

initial choice of labeling. When implemented in software, the pairwise distances32
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between persistence diagrams are only computed once and stored in a table. Note1

that the test statistic given by the joint loss function takes into account distances2

between observations (respectively, persistence diagrams), rather than distances3

between observations and the mean. This is because the latter consideration is very4

computationally expensive5.5

Taking α to be the proportion of all labelings L such that F ′(L) ≤ F ′(Lobserved),6

where all of the possible labelings L are determined by the permutation test carried7

out to permute the labels on persistence diagrams, we can now generalize (via8

[4]) the algorithm developed in [20] to compute the proportion α to be taken as9

the p-value (after a standard modification to α in order to avoid a p-value of 0).10

The difference is that, rather than having n1 + n2 persistence diagrams with labels11

Lobserved in disjoint sets of size n1 and n2 and randomly shuffling the group labels12

into disjoint sets of size n1 and n2 to give the labeling L, we now have n1+n2+...+ns13

persistence diagrams with labels Lobserved in disjoint sets of sizes n1, n2, ..., ns and14

we randomly shuffle the group labels into disjoint sets of sizes n1, n2, ..., ns to give15

the labeling L. It is shown in [20] that the modified α is a true p-value, and by16

Lemma 1 of [20], α is an unbiased estimator of the permutation p-value under the17

assumption that the persistence diagrams are i.i.d. As mentioned before, our goal in18

this paper is to adapt the Robinson-Turner test to the common real-world situation19

of time series data which is not independent, and consequently our persistence20

diagrams, regarded as observations, are not independent observations. However,21

again, we’re able to correct for this using our methods in the next section.22

4. Hypothesis Testing for Topological Data Analysis extended to Non-23

Independent Data. In this section, we describe a single and multi-level block vari-24

ation of the original Monte Carlo test that allows for the analysis of non-independent25

data sets. The primary idea involves accommodating the unique exchangeability26

structure of a particular set of data.27

4.1. Exchangeability. A sequence of random variablesX1, X2, ..., Xn is exchange-28

able under a set of permutations Π of {1, 2, .., n} if it has the same joint distribution29

as the sequence Xπ(1), Xπ(2), ..., Xπ(n) for every π ∈ Π. Determining the set Π for30

which exchangeability holds is critical to perform sound statistical inference via a31

permutation test. If the joint distribution of a set of data changes under particular32

permutations of labels, then the distribution of a test statistic under those per-33

mutations is not suitable to be compared to the observed test statistic and could34

elicit spurious results. In the case of independent and identically-distributed ran-35

dom variables, the set Π contains all permutations of {1, 2, .., n}, meaning labels36

may be freely exchanged during a permutation test. As a result, the hypothesis37

testing framework described in Section 2 did not require any considerations of ex-38

changeability. In many cases, however, the set of permutations that satisfy the39

above exchangeability criterion is far more restrictive. Fortunately, by restricting40

permutations to the set Π while generating the distribution of a test statistic, a41

permutation test may proceed without the iid requirement.42

In practice, implementing a restrictive set of permutations is done via a multi-43

level block shuffling scheme, as in [26]. Instead of exchanging the label of one ob-44

servation with another, shuffling takes places across blocks of data called exchange-45

ability blocks. Exchangeability blocks can either be shuffled as a whole(defined as46

5Also, there is not a clear notion of the mean of a set of persistence diagrams.
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whole-block exchangeability) or labels may be shuffled within a block(defined as1

within-block exchangeability). The block sizes and attributes are chosen in accor-2

dance with the permitted set of permutations.3

For example, consider an fMRI experimental design that consists of 120 total4

scans. Suppose a stimulus or task is administered every 10 scans and lasts for 105

scans. Our whole-block exchangeable level in this scenario would be defined as6

each contiguous set of 10 scans starting at 1, accounting for 12 blocks in total.7

These first-level exchangeability blocks ensure that any label shuffling would result8

in a set of labels exhibiting a similar contiguity to the initial set of labels (those9

assigned stimulus/no stimulus during the experiment) and retain structure related10

to the experiment design. They do not, however, account for a temporal dependence11

structure across the whole of the experiment. Without additional restrictions, labels12

may be shuffled into two groups where one group is the data associated with scans13

1-60 and the other is the data associated with 61-120. A distinguishing pattern14

across early versus late stages of fMRI experiments have been noted so the test15

statistic computed for this set of labels could display an extremeness resulting from16

this temporal phenomena [13]. As such, a within-block exchangeability level is17

necessary.18

A within-block exchangeability level would consist of two blocks, one covering19

scans 1-60 and another covering scans 61-120. In this design, the whole-block ex-20

changeable blocks present in labels 1-60 could only be exchanged amongst them-21

selves and not with their corresponding blocks in labels 61-120. This ensures that22

the first half of the experiment and the second half of the experiment would have23

equal representation in any set of labels shuffled under this scheme, accounting for24

early versus late confounding.25

In the context of topological hypothesis testing, we define a two-level point cloud26

grouping and associated labelling scheme to encode the multi-level block shuffling27

technique described above:28

29

Definition 4.1. A (two-level) point cloud grouping is the following data:30

1. A set T of indexes for each point cloud.31

2. A function pc from T to the set of all (observed) point clouds.32

3. A partition T into subsets T1, ..., Tn and,33

4. A partition T into subsets T
′

1, ..., T
′

m which is finer than the partition T1, ..., Tn34

of T .35

Definition 4.2. Given a two-level point-cloud grouping X, a 2-group labelling36

scheme on X is a partition of T into subsets S1 and S2 by the following:37

1. For each i ∈ {1, .., n}, ∃ j1, .., jki
∈ {1, ..,m} such that

ki⋃
a=1

T
′

ja
= Ti.38

2. For each i, choose ki/2 elements without replacement, i.e. without repetition,39

from the set {j1, ..., jki
}, denoted {si1, ..., siki/2

}.40

3. Define S1 =
n⋃

i=1

ki
2⋃

k=1

T
′

sik
and S2 = T − S1.41

The partition T1, .., Tn represents the whole-block exchangeable level and the42

partition T
′

1, .., T
′

m represents the within-block exchangeable level. Permutations of43

labels are then obtained by generating distinct labelling schemes as defined above.44
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In the fMRI example described above, T would be the set of a time indices from 11

to 120 and the partitions would be defined as follows:2

T1 = {1 : 10} T2 = {11 : 20} T3 = {21 : 30} T4 = {31 : 40}
T5 = {41 : 50} T6 = {51 : 60} T7 = {61 : 70} T8 = {71 : 80}
T9 = {81 : 90} T10 = {91 : 100} T11 = {101 : 110} T12 = {111 : 120}

T
′

1 = {1 : 60} T
′

2 = {61 : 120}
The function pc would map an element of T to its corresponding point cloud.3

4.2. Overview of Analysis Pipeline. In this section, a broad overview of the4

steps to go from a data set to a p-value for a hypothesis is given. Several of the5

computational tasks involved can be accomplished using our R package “TimeSeri-6

esTDA”. Beginning with a data set of interest, carry out the following:7

1. Compute persistent homology on all observations of your data set to produce a8

collection of persistence diagrams. Each observation should be a point cloud.9

2. Generate a hypothesis that conjectures a significant difference between two10

sub-collections of your collection of persistent diagrams, called groupings. The11

null hypothesis is that the two groupings are not significantly different from12

each other. Choose an α level for rejecting the null hypothesis. For example,13

for α = 0.05 , the null hypothesis will be rejected if the resulting p-value of14

this hypothesis test is less than 0.05.15

3. Compute the value of the appropriate joint loss function given labels for the16

above groupings, called F ′(Lobserved) as defined in Section 3.17

4. Determine the exchangeability structure of your observations and encode it in18

a two-level point cloud grouping. In particular, define the set T and partitions19

of T corresponding to whole-block and within-block exchangeability levels, as20

in Definitions 4.1 and 4.2.21

5. Generate distinct labelling schemes and recompute the joint loss function value22

for each new set of labels. Compute a p-value by taking the proportion of23

permuted labels L such that F ′(L) ≤ F ′(Lobserved). Compare the p-value to24

the pre-determined α-threshold to evaluate whether the null hypothesis will25

be rejected or not.26

5. Application to fMRI data. fMRI imaging is a rich source for obtaining non-27

independent time-series data. The data obtained from an fMRI scan is time-series28

data consisting of, at each time index t, a real number f(x, y, z, t) at each point29

(x, y, z) in a certain set of lattice points in R3. The number f(x, y, z, t) is the30

fMRI signal amplitude, which is understood to vary (non-linearly) with the ratio31

of oxygenated hemoglobin to deoxygenated hemoglobin in the blood in the tissues32

near physical location (x, y, z) at time t. That is, fMRI data is time series data,33

such that at each time index, we have a point cloud in R4: three spatial dimensions,34

and one signal amplitude dimension. The fMRI signal amplitude has a relationship35

to unfolding biological processes in the brain. These processes are, at each moment36

in time, potentially dependent on their states at prior moments in time. [2]37

Before applying persistent homology, a suitable normalization technique for the38

fMRI signal needs to be identified such that the 4-dimensional point clouds ob-39

tained from fMRI data are organized in such a way that persistent homology is40

adequately sensitive to evolving topological structure. Additionally, parameters41
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related to persistence, such as maximum birth and death radiuses to compute per-1

sistent homology to, and cutoffs for persistence diagram feature selection, need to2

be explored in the context of fMRI data. In this section, we discuss each of these3

decisions (normalization method, and parameter choices) in turn.4

5.1. Normalization. At each individual time index, the structure of fMRI data5

consists of three spatial coordinates and a signal amplitude coordinate. When6

discovering topological features in the 4-dimensional point cloud, one would hope7

that the same features would be obtained regardless of the choice of units. This8

poses an issue as the three spatial coordinates are measured in millimeters, whereas9

the signal amplitude is unitless. A change in units of distance would rescale the three10

spatial dimensions but not the fourth (signal amplitude), changing the topological11

features and persistence diagrams acquired. Consequently, in order to yield results12

that are invariant under changing units, fMRI data must be normalized before13

calculating persistence diagrams. Different choices of how to normalize fMRI data14

may yield different persistence diagrams, so topological structure in fMRI data is15

impacted by how we normalize the data. Below, two methods of normalizing fMRI16

data are discussed. In section 5.4, we report on which of these two normalization17

methods, when applied to our simulated fMRI data, allow our statistical test to18

achieve greater statistical power.19

Definition 5.1 (Normalization Scheme 1). Define the following notation:

Smin = min
{
min{x− coordinates},min{y − coordinates},min{z − coordinates}

}
Smax = max

{
max{x− coordinates},max{y − coordinates},max{z − coordinates}

}
Amin = min

{
signal amplitude

}
Amax = max

{
signal amplitude

}
where the minimums and maximums are taken for each time slice and each subject
individually. For any given coordinate (x, y, z, ϵ), replace ϵ (the signal amplitude)
with [

ϵ−Amin

Amax −Amin
· (Smax − Smin)

]
+ Smin.

Definition 5.2 (Normalization Scheme 2). Define the following notation:

Smin =
min

{
x− coordinates

}
+min

{
y − coordinates

}
+min

{
z − coordinates

}
3

Smax =
max

{
x− coordinates

}
+max

{
y − coordinates

}
+max

{
z − coordinates

}
3

,

where the minimums and maximums are taken for each time slice and each subject
individually. We let Amin and Amax be as in Definition 5.1. For any given coordinate
(x, y, z, ϵ), replace ϵ (here, the fMRI signal amplitude) with[

ϵ−Amin

Amax −Amin
· (Smax − Smin)

]
+ Smin.

Normalization Scheme 2 is preferred due to the fMRI signal amplitude simi-20

larity to the spatial coordinates range, maximums, minimums, and magnitudes.21
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This occurs because Scheme 2 utilizes the averages of the spatial coordinates. We1

demonstrate this preference in the following example:2

Example 5.1. Suppose we consider fMRI data whose spatial coordinates have3

x, y, and z coordinates in the ranges x ∈ (35, 57), y ∈ (65, 90), z ∈ (32, 63). Using4

Normalization Scheme 1 linearly rescales the fMRI signal amplitudes, at each time5

slice, so that the normalized signal amplitudes lie in the range (32, 90). On the other6

hand, Normalization Scheme 2 linearly rescales the fMRI signal amplitudes so that7

the normalized signal amplitudes lie in the range (44, 70). The reason an average8

is preferred is due to the sizes of the ranges: the normalized amplitudes under the9

first method lie in an interval of length 58, while the normalized amplitudes under10

the second method lie an interval of length 26, which is closer to the ranges of the11

spatial coordinates, since the lengths of the ranges for the x, y, and z coordinates are12

22, 25, and 31, respectively. In this example, we see that the second normalization13

scheme yields a normalized fMRI amplitude whose properties more closely mirror14

the properties of the spatial coordinates. See section 5.4 for empirical calculations15

of the power of our statistical test when applied to simulated fMRI data with each16

of the two normalization schemes.17

5.2. Parameter considerations. To compute persistent homology, a choice of18

maximum filtration parameter and maximum dimension of homology is made. Vary-19

ing these choices does not introduce external artifacts, but instead varies how com-20

prehensive of a view of the data is obtained. We emphasize that computational21

constraints typically play the biggest role in selecting these parameters.22

The first consideration is the maximum filtration parameter for which to compute23

the persistent homology. For the Čech filtration (defined in section 2), the ideal24

choice for this parameter is half the distance of the two farthest points in a data25

set, since there are no non-trivial changes in the topology of the space beyond that26

radius (the topology is that of a single convex body). This is an example of a27

“canonical choice” of the filtration parameter.28

However, in most fMRI data sets, computing persistent homology up to that29

distance is not computationally feasible. Instead, a threshold value is chosen such30

that it has the potential to capture nontrivial topology, and the process completes31

in a reasonable amount of time. For example, using maximum filtration parameter32

1 or 2 with the two normalization techniques previously discussed yields virtually33

no one-dimensional homological features in fMRI data. This is not because those34

features are not present, but rather because the birth radius or death radius of those35

features is greater than 1 or 2. Using maximum radius 3 or 4, on the other hand, is36

large enough to capture interesting topological information. In practice, one should37

choose a value as close to the “canonical choice” as your time and computational38

resources allow. It is important to determine whether tweaking this choice of pa-39

rameter alters results (and we present some conclusions to this effect in section 5.4),40

since as this parameter changes, so does the hypothesis and statistical conclusion41

of our test. For example, rejecting the null hypothesis would show that there is42

enough evidence to support the claim that the two groups of persistence diagrams,43

up to persistence (= maximum radius), are statistically significantly different from44

each other. This not only indicates differing topological structure, it also indicates45

the maximum size and scale of the topological structures that influence the result.46
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The second consideration is the maximum dimension of homology for which1

to compute persistent homology. Recall that 0-dimensional homology (H0) is re-2

lated to connected components, 1-dimensional homology (H1) is related to non-3

contractible loops, and higher dimensional homology is related to voids and their4

higher-dimensional analogues. If a point cloud is n-dimensional, a “canonical” up-5

per bound for dimension of homology to calculate is n− 1. This is because it is not6

possible for there to be nontrivial homology in dimensions greater than n − 1; see7

Corollary 2.2 of [7] and surrounding discussion for a nice exposition of why this is8

true (technically this discussion handles only Čech homology; for the close relation-9

ship between Čech homology and Vietoris-Rips homology, see (6.5) in section 6.110

of [7]). Consider the point cloud sampled from an annulus in Figure 1. Each point11

is a point of R2 and the one-dimensional hole in the point cloud is captured by H1.12

It is not possible for there to be nontrivial H2 because a two-dimensional void is13

not possible in R2. Therefore, computing persistence homology up to dimension 114

is satisfactory. Unfortunately, the canonical upper bound is not always achievable.15

For example, with fMRI data, our point cloud consists of points in 4-dimensional16

space (i.e. in R4). In this case, it would be ideal to compute persistent homology17

up to dimension 3. In reality, at present, computing up to dimension 1 is all that18

is possible for the computation to finish in a reasonable amount of time and with19

modest computational resources. As such, persistent homology is only computed20

up to H1 in our simulation.21

After sets of persistence diagrams are in hand, the next parameter to consider is22

the number of features in persistence diagrams that are retained for our analysis.23

A distance matrix of the persistence diagrams is necessary to compute the test24

statistic in our Monte Carlo test. Ideally, one would not remove any features from25

the persistence diagrams when computing this distance matrix, however that is not26

always possible. For example, it has been found that reasonably sized sets of fMRI27

data (>1000 4-dimensional points) contain potentially thousands of 1-dimensional28

homological features. It is not tractable to compute a distance matrix between29

more than a few dozen persistence diagrams when each has that many features.30

Fortunately, there are methodological considerations for filtering out a large subset31

of features. Masked fMRI data is composed on a lattice with distance 1 between32

adjacent points. Setting signal to zero for all points, computing persistent homology33

on such a space would result in an abundance of features with persistence
√

(2)/234

(≈0.707). It is then reasonable to infer that features at that persistence and below35

are likely more related to small-scale “topological noise” rather than large-scale,36

meaningful topological organization within the data. Thus, our initial cutoff for37

minimum persistence threshold is 0.8. In our results section, we determine whether38

increasing that cutoff gives a more powerful test or not. Although we have just39

given a logical explanation for why choosing this cutoff is reasonable, we again40

emphasize that this choice of parameter should be made to be as close to zero (i.e.41

not removing any features) as is computationally feasible.42

5.3. fMRI Data Simulation. Here, we discuss how we generated simulated fMRI43

data in order to test the power, accuracy, and reliability of the proposed method.44

We used the R package neuRosim [24] to simulate the data.45

5.3.1. Experimental Design. We generated simulated fMRI data with a repetition46

time (TR) of two seconds in a spatial region (i.e., a region of stereotactic space) in47

the shape of a standard fMRI mask of the hippocampus. Throughout each simulated48
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run, the signal amplitudes in this spatial region are first given by a standard simu-1

lation of physiological noise. Physiological noise is intended to mimic noise caused2

by heart beat and respiratory rate. It is modelled by sine and cosine functions with3

the addition of Gaussian noise to increase variability across voxels.4

The simulated data is structured so that, in each simulated run, there are six5

“epochs,” consisting of 20 seconds each. At the onset of each epoch, the signal6

amplitudes are increased in a sphere-shaped region within the hippocampus-shaped7

region, depicted in the figures below. Activation is greatest at the beginning of each8

epoch and fades throughout.9

5.3.2. Simulation Characteristics. With this experimental design we varied the char-10

acteristics of both noise and signal in the interest of deciding what, if any, topological11

structure this method might detect. By varying noise and signal characteristics, the12

topology of the data will vary with it.13

Each simulated data set was generated by the following process:14

1. For each time index t from t = 1 to t = 120, set the signal amplitude in15

each voxel in a standard hippocampal mask to the values given by simulated16

physiological noise, depicted in Figure 3.17

2. Choose a radius r (we considered the values r = 1, 3, 5, 7, and 15, in separate18

runs) and a point p in the mask. In a spherical region of radius r (measured in19

voxel edge lengths) with center p, replace the physiological noise signal with an20

“activated signal” of high amplitude at the start of each epoch, and decaying21

in amplitude throughout the epoch. We used a standard amplitude curve for22

simulated fMRI provided by neuRosim, depicted in Figure 4. It is necessary23

to choose the initial effect size (which can be thought of as a measure of the24

magnitude of activation) of the activation in the sphere. We generated data25

with initial effect sizes 2, 5, 10, and 20, to compare the results. Figure 526

contains images of the resulting mask, with the spheres indicated in yellow.27
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Figure 3. This shows the amplitude of a voxel outside of the
embedded sphere that does not respond to the experimental task
and has been simulated with physiological noise. Simulated with
effect size = 5.

Figure 4. This shows the amplitude of a voxel within the embed-
ded sphere that does respond to the periodic experimental task.
Simulated with effect size = 5.
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(a) Radius

= 1

(b) Radius

= 3

(c) Radius
= 5

(d) Radius
= 7

(e) Radius

= 15

Figure 5. Simulation Volumes: Spheres of various sizes embedded
in a mask of the right hippocampus (lateral view).
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Figure 6. Hippocampus mask overlaid onto a brain image.
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In order to clearly indicate how the simulation volumes in Figure 5 correspond1

to the shape of one half of a standard hippocampus mask, in Figure 6 we show2

sagittal, coronal, and transverse cross-sections of a hippocampus mask overlayed3

onto a brain image. The yellow-highlighted voxels are those in the hippocampus4

mask. Our simulated volumes, as pictured in Figure 5, are precisely the voxels in5

the right hippocampus.6

We see from Figure 5 that, in the simulation volumes, the activated regions7

(pictured in yellow) do not form tunnel or ring-like shapes. In particular, if we8

regard the red regions of the simulation volumes pictured in Figure 5 as subsets of9

R3, the classical singular homology group H1 is trivial. Consequently one expects10

to find that the persistent H1 of these data sets consists of relatively low-persistence11

features. This expectation about the simulated data pictured in Figure 5 is borne12

out: see below, in Figure 9. (See [3] for an influential study of the sensitivity of13

low-persistence features in persistent homology to geometric structure in a data14

set.)15

Signal to noise ratio (SNR) is the magnitude of the signal over the magnitude16

of the noise. The SNR establishes the rough amplitude of noise only after the17

amplitude of the non-noise signal has already been established. SNR is defined a18

variety of ways in the literature. NeuRosim defines average SNR as the following:19

SNR =
S

σN

where S is the average signal magnitude and σN is the standard deviation of20

the noise. For this particular definition of SNR, an overview of fMRI studies found21

its value to range from 1 to 1000 in the literature [25]. As such, our simulations22

included SNR values of 2, 5, 10, and 20.23

Minimum persistence was also investigated at values of .8, 1, and 1.2. Recall24

from section 5.2 that, for fMRI data, we see .8 as a canonical choice to remove noise25

from the persistence diagrams.26

The two normalization functions discussed earlier were also compared, with re-27

sults explained in the Results section, below.28

5.4. Results. Our method was evaluated on its ability to identify the task-based29

activation of embedded spheres of various radii. This was accomplished by calcu-30

lating statistical power. Statistical power is the probability that a method rejects31

the null hypothesis when the alternative hypothesis is correct. In this case, the null32

hypothesis is that the persistence diagrams of observations during the “resting”33

phases of our simulated experiment are no different than the persistence diagrams34

of those during the “task” phases. Power was empirically estimated by first simu-35

lating each set of parameters 500 times and conducting the permutation test with36

2000 permutations for each simulation. The proportion of tests that rejected the37

null hypothesis is then our empirical estimate for power. The figures at the end of38

this section summarize the empirical power estimates across sphere radius, mini-39

mum persistence threshold, and effect size. In addition, Figure 7 gives an example40

of a persistence diagram from a “rest” epoch and a persistence diagram from an41

“activation” epoch. Though similar, we point out the band of higher-persistence 1-42

dimensional features (triangles far from the diagonal) that is present for birth radius43

greater than 2 in the “activation” epoch persistence diagram that is not present in44

the “rest” epoch persistence diagram. Furthermore, there appears to be a denser45
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cluster of 1-dimensional features in the “rest” epoch persistence diagram compared1

to the “activation” epoch persistence diagram.2

The lower the minimum persistence threshold for features considered, the more3

powerful the method became (see Figure 4). This indicates that the incorporation4

of lower persistence features provides information useful for identifying the activity5

of the embedded sphere. Performance also improved when increasing maximum6

radius of homology computed from 3 to 4, informing us that more information im-7

proved results rather than overwhelming the method. Additionally, the canonical8

normalization scheme in Definition 4.1 outperformed the Definition 4.2 normaliza-9

tion scheme for constants 10 and 100, and performed comparably with constant 50.10

Thus, normalizing the signal to have a similar spread to the spatial coordinates per-11

forms better than either having a smaller variation in the signal or larger variation12

in the signal relative to the spatial coordinates.13

For effect size 5 and above, our method displayed power > 0.85 for all radii14

except r=15 (see Figure 5). The sensitivity of our method to task-activated spheres15

as small as radius 1 without sub-setting the data is evidence that, even for more16

subtle patterns of activity, persistence diagrams record differentiating topological17

structure. The drop-off in power for radius=15 is likely because, as the embedded18

sphere at that radius made up most of the hippocampus-shaped data, it likely was19

not as detectable via one-dimensional homological features. Perhaps including zero-20

dimensional homological features(which represent connected components) would21

improve sensitivity to larger clusters.22

Our simulations demonstrate the efficacy of statistical inference using persistent23

homology to capture associations in task-based fMRI experiments.24
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Figure 7. On the left is a persistence diagram from a “rest” epoch
of our simulation and on the right is a persistence diagram from
an “activation” epoch of our simulation. This is for effect size=5,
sphere radius=5, and SNR=2.
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Figure 8. Empirical power estimates by radius of embedded
sphere.

Figure 9. Empirical power estimates by minimum persistence
threshold of homological features.
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Figure 10. Empirical power estimates by effect size for embedded
sphere’s response to task.

6. Discussion. We have described a statistical test intended for use on time series1

data which comes equipped with a point cloud grouping and a labelling scheme,2

as defined in 4.1 and 4.2. Such time series data are typical of task-based fMRI3

studies. More generally, any time-series data collected from any source with tempo-4

rally distinct “epochs” serves as an appropriate target application. Our statistical5

test yields a p-value which provides information on the statistically reliability of6

the difference between the veridical labelling scheme of the persistent homology of7

the observations against a randomly-assigned labelling scheme. By incorporating8

a multi-level block sampling protocol, our test does not have the independence re-9

quirement that prevented earlier analogues (in [20] and [4]) from being applied to10

time-series data.11

Our simulated fMRI data was of a simple and typical (in real-world fMRI data)12

pattern, consisting of an activated region inside a convex ROI mask (Figure 5),13

providing a typical representation of real-world fMRI data. Figures 8 through14

10 indicate that our test was able to distinguish between the topological “sig-15

nature” (i.e., the persistence diagram) of the simulated fMRI signal during ac-16

tive against during resting epochs. Our approach will be valuable to other sci-17

entists working with labelled time-series data who a) chose to apply persistent18

homology to capture the topological properties of distinct parts of the time se-19

ries before b) exploring whether topological properties of the epochs are statis-20

tically significant from each other. We invite researchers to apply these meth-21

ods (https://github.com/hassan-abdallah/TimeSeriesTDA) to their time series22

data of choice.23

https://github.com/hassan-abdallah/TimeSeriesTDA
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